AUTHOR=Mulder Eric , Schagatay Erika , Sieber Arne TITLE=First Evaluation of a Newly Constructed Underwater Pulse Oximeter for Use in Breath-Holding Activities JOURNAL=Frontiers in Physiology VOLUME=12 YEAR=2021 URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2021.649674 DOI=10.3389/fphys.2021.649674 ISSN=1664-042X ABSTRACT=
Studying risk factors in freediving, such as hypoxic blackout, requires development of new methods to enable remote underwater monitoring of physiological variables. We aimed to construct and evaluate a new water- and pressure proof pulse oximeter for use in freediving research. The study consisted of three parts: (I) A submersible pulse oximeter (SUB) was developed on a ruggedized platform for recording of physiological parameters in challenging environments. Two MAX30102 sensors were used to record plethysmograms, and included red and infra-red emitters, diode drivers, photodiode, photodiode amplifier, analog to digital converter, and controller. (II) We equipped 20 volunteers with two transmission pulse oximeters (TPULS) and SUB to the fingers. Arterial oxygen saturation (SpO2) and heart rate (HR) were recorded, while breathing room air (21% O2) and subsequently a hypoxic gas (10.7% O2) at rest in dry conditions. Bland-Altman analysis was used to evaluate bias and precision of SUB relative to SpO2 values from TPULS. (III) Six freedivers were monitored with one TPULS and SUB placed at the forehead, during a maximal effort immersed static apnea. For dry baseline measurements (