
fphys-11-612928 December 21, 2020 Time: 14:21 # 1

ORIGINAL RESEARCH
published: 23 December 2020

doi: 10.3389/fphys.2020.612928

Edited by:
Xin Gao,

King Abdullah University of Science
and Technology, Saudi Arabia

Reviewed by:
Qi Liu,

Tongji University, China
Wen Qin,

Tianjin Medical University General
Hospital, China

*Correspondence:
Yan Wang

wy6868@jlu.edu.cn
Chunjie Guo

guocj@jlu.edu.cn

Specialty section:
This article was submitted to

Computational Physiology
and Medicine,

a section of the journal
Frontiers in Physiology

Received: 01 October 2020
Accepted: 07 December 2020
Published: 23 December 2020

Citation:
Wang Z, Yu Z, Wang Y, Zhang H,
Luo Y, Shi L, Wang Y and Guo C

(2020) 3D Compressed Convolutional
Neural Network Differentiates

Neuromyelitis Optical Spectrum
Disorders From Multiple Sclerosis

Using Automated White Matter
Hyperintensities Segmentations.

Front. Physiol. 11:612928.
doi: 10.3389/fphys.2020.612928

3D Compressed Convolutional
Neural Network Differentiates
Neuromyelitis Optical Spectrum
Disorders From Multiple Sclerosis
Using Automated White Matter
Hyperintensities Segmentations
Zhuo Wang1,2, Zhezhou Yu1, Yao Wang1, Huimao Zhang2,3, Yishan Luo4, Lin Shi4,5,
Yan Wang1* and Chunjie Guo2,3*

1 Key Laboratory of Symbol Computation & Knowledge Engineering, Ministry of Education, College of Computer Science &
Technology, Jilin University, Changchun, China, 2 Department of Radiology, the First Hospital of Jilin University, Changchun,
China, 3 Jilin Provincial Key Laboratory for Medical imaging, Changchun, China, 4 BrainNow Research Institute, Hong Kong,
China, 5 Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong, China

Background: Magnetic resonance imaging (MRI) has a wide range of applications
in medical imaging. Recently, studies based on deep learning algorithms have
demonstrated powerful processing capabilities for medical imaging data. Previous
studies have mostly focused on common diseases that usually have large scales of
datasets and centralized the lesions in the brain. In this paper, we used deep learning
models to process MRI images to differentiate the rare neuromyelitis optical spectrum
disorder (NMOSD) from multiple sclerosis (MS) automatically, which are characterized
by scattered and overlapping lesions.

Methods: We proposed a novel model structure to capture 3D MRI images’ essential
information and converted them into lower dimensions. To empirically prove the
efficiency of our model, firstly, we used a conventional 3-dimensional (3D) model to
classify the T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) images and
proved that the traditional 3D convolutional neural network (CNN) models lack the
learning capacity to distinguish between NMOSD and MS. Then, we compressed the
3D T2-FLAIR images by a two-view compression block to apply two different depths
(18 and 34 layers) of 2D models for disease diagnosis and also applied transfer learning
by pre-training our model on ImageNet dataset.

Results: We found that our models possess superior performance when our models
were pre-trained on ImageNet dataset, in which the models’ average accuracies of 34
layers model and 18 layers model were 0.75 and 0.725, sensitivities were 0.707 and
0.708, and specificities were 0.759 and 0.719, respectively. Meanwhile, the traditional
3D CNN models lacked the learning capacity to distinguish between NMOSD and MS.
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Conclusion: The novel CNN model we proposed could automatically differentiate
the rare NMOSD from MS, especially, our model showed better performance than
traditional3D CNN models. It indicated that our 3D compressed CNN models are
applicable in handling diseases with small-scale datasets and possess overlapping and
scattered lesions.

Keywords: Neuromyelitis optical spectrum disorder (NMOSD), multiple sclerosis (MS), magnetic resonance
imaging (MRI), deep learning, convolutional neural networks (CNNs)

INTRODUCTION

Neuromyelitis optical spectrum disorder (NMOSD) is a rare
aquaporin-4 immunoglobin G antibody (AQP4-IgG) mediated
chronic disorder of the brain and spinal cord (Wingerchuk
et al., 2007, 2015). Traditionally considered a subtype of multiple
sclerosis (MS), NMOSD has been recognized as a distinct clinical
entity based on unique immunologic features in recent years
(Wingerchuk et al., 2015). Up to 70% of NMOSD patients have
brain lesions visible on magnetic resonance imaging (MRI) (Kim
et al., 2015). But only about half of NMOSD patients have typical
brain lesions, and their distributions of NMOSD and MS are
overlapped (Cacciaguerra et al., 2019). Furthermore, compared
to MS and stroke, it is challenging to segment and quantify
white matter lesions (WMLs) on T2-weighted fluid-attenuated
inversion recovery (T2-FLAIR) images in NMOSD, as its lesions
are often located very close to the ventricles. However, it is vital
to differentiate NMOSD from MS. Some MS treatments such
as β-interferon can worsen NMOSD (Jacob et al., 2012; Kim
et al., 2012), but distinguishing between the two disease entities
is challenging. Studies based on machine learning to discriminate
NMOSD from MS are limited.

Machine learning algorithms that precede human observation
have shown application potential in medical image processing
(Wernick et al., 2010). These algorithms handle a large number
of features extracted from patients and lack inconsistencies
(Eshaghi et al., 2016). Therefore, machine learning algorithms
can build decision systems to support the diagnostic process.
Previous studies have proved the efficiency and robustness of
machine learning algorithms for many common diseases, such
as breast cancer (Rastghalam and Pourghassem, 2016), brain
tumors (Zacharaki et al., 2009), etc. However, NMOSD is a rare
disease, which is a lack of large-scale public datasets for scientific
research, and its similar phenotypes with MS bring challenges
to build high-performance machine learning models. Laura
Cacciaguerra et al. used typical/atypical brain and spinal cord
lesions to construct a possible evidence-based diagnostic machine
learning algorithm to discriminate NMOSD from MS with the
sensitivity of 0.92, 0.82, and specificity of 0.91,0.91 in training
and validation samples separately. However, the blinded machine
learning approaches were not conducted yet (Cacciaguerra et al.,
2019). Eshaghi et al. built a machine learning classifier using brain
gray matter (GM) imaging measures to distinguish patients with
MS from those with NMOSD with an average accuracy of 74%.
When they used thalamic volume together with the white matter
lesion volume, the classifier achieved an average accuracy of 80%
(Eshaghi et al., 2016). Machine learning-based models indeed

show applicational potential for medical image processing;
however, there are some issues to resolve. First, medical images
can’t be the model’s input directly; all features have to be extracted
from the raw images by radiologists, which means the radiologists
have already studied the raw data’s intrinsic information. Feature
extraction processing, which is the bottleneck of the models’
performances, is highly influenced by the radiologists’ subjective
judgments. Second, manual intervention is indispensable for
both the training and testing phases, which means radiologists
must process all images.

As a subfield of machine learning, deep learning can solve
the problems as mentioned above. Deep learning algorithms can
efficiently extract raw images’ features through convolutional
neural networks (CNNs), and they are also widely applied to
the medical images’ classification, segmentation, and detection
tasks (Litjens et al., 2017). Researchers have conducted on
the deep CNNs and have achieved better results than with
other machine learning algorithms. Shen et al. (2015) proposed
M-CNN to distinguish between malignant and benign nodules
without nodule segmentation. Nie et al. (2016) proposed a three-
dimensional (3D) CNN model to predict the overall survival
(OS) for brain glioma patients. Payan et al. used 3D-CNN to
process brain MRI data of Alzheimer’s disease (AD), and the
classification of AD reached an accuracy rate of 89.47% (Payan
and Montana, 2015). Wang et al. built an ensemble 3D-DenseNet
to predict AD (Wang H. et al., 2019). U-net, proposed by
Ronneberger et al. (2015), had a good effect on two-dimensional
(2D) medical image segmentation. Based on this, Milletari et al.
(2016) combined U-net and ResNet to propose V-net to solve the
image segmentation problems of 3D data. Previous work based
on 3D deep learning models focused on diseases with large data
sets and concentrated lesions, such as AD and tumors. Multiple
3D-CNNs were used to extract the features and demonstrated the
effectiveness of dealing with 3D images. 3D medical images are
the input of 3D CNN models, which can reflect the whole lesion.
However, there is still a lack of 3D CNN models to handle rare
diseases with small-scale datasets, such as NMOSD. Significantly,
the lesion distributions of NMOSD and MS are overlapped,
which brings more challenges to build a high-performance 3D
CNN model. 2D CNN model with less learnable parameters is
more easily trained with small-scale datasets. Our experiment
created a new model combining the advantages of 3D and 2D
CNN models to differentiate NMOSD from MS in terms of
WMLs segmentation with less learnable parameters and achieved
better performance than the 3D ResNet baseline.

In this paper, we (i) investigated the traditional 3D CNN
model for a 3D MRI data classification task and found that the
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conventional approach lacks generalization ability for NMOSD
and MS classification; (ii) presented a two-view 2D model to
boost the classification performance, comparing models that were
pre-trained on an ImageNet dataset with models not pre-trained;
(iii) set up experiments to analyze the primary factors influencing
the experiments’ results.

MATERIALS AND METHODS

Data Description
Participants
A retrospective sample of 41 NMOSD patients diagnosed
according to the revised 2015 diagnostic criteria (Wingerchuk
et al., 2015) was recruited in this work. 47 MS patients who
had received their diagnosis according to the 2010 McDonald
Criteria (Polman et al., 2011) were enrolled, and they also
fulfilled the recently revised diagnostic criteria (Thompson et al.,
2018). The MS group matched for age, sex, disease duration,
and Expanded Disability Status Scale (EDSS) (Kurtzke, 1983)
scores to the NMOSD group. All patients in the acute disease
phase with brain MRI lesions were included in this study.
Clinical characteristics, including EDSS scores of all patients,
were performed within 48 hours from the MRI acquisition
(Table 1). All the patients undergoing high-dose corticosteroid
treatment or with a medical condition that could result in
hyperintensity on T2-weighted and T2-FLAIR images were
excluded. Besides, neurological comorbidities, a history of head
trauma or surgery, and low-quality images or severe motion
artifacts were excluded. This study was approved by the local
ethics committee, and written informed consent was obtained
from all participants.

MRI Acquisition
The MRI protocol included 3D T2-FLAIR and 3D T1-weighted
(T1W) fast field echo (FFE) sequences were obtained from
the same 3.0T Philips Ingenia scanner (Philips Healthcare,
Best, Netherland) between July 2015 and April 2018. There
were some acquisition parameter variations over the years,
where images were acquired axially or sagittally with parameter
ranges. Sagittal/Axial T2-FLAIR: repetition time (TR) = 4800 m
sec, echo time (TE) = 279–324 m sec, flip angle = 90◦,
number of slices = 160–192, field of view (FOV) = 220 mm,
acquisition matrix = 224∗224, section thickness = 2 mm.

TABLE 1 | Demographic, clinical characteristics and brain WMH volume
measurement.

MS (n = 47) NMOSD (n = 41) P-value

Age (years) 40.0 ± 11.1 44 ± 13 0.0865

Gender 14 M/33F 8 M/33 F 0.2720

Disease Duration (months) 57.1 ± 73.4 35.0 ± 42.9 0.1133

EDSS 3.6 ± 1.8 4.2 ± 2.4 0.1949

ICV (ml) 1407.2 ± 171.2 1367.3 ± 120.3 0.2165

WMH (ml) 9.0 ± 8.8 3.5 ± 4.8 0.0007

Normalized WMH (% of ICV) 0.66 ± 0.65 0.26 ± 0.37 0.0008

Sagittal T1W: repetition time (TR) = 7.0–7.8 m sec, echo time
(TE) = 3.2–3.6 m sec, flip angle = 7◦, number of sections = 160–
192, field of view (FOV) = 220 mm, acquisition matrix = 240∗240,
section thickness = 1 mm.

Automated Segmentation
The automated segmentation software, AccuBrain IV1.0 R© (Luo,
2017; Abrigo et al., 2019; Guo et al., 2019; Wang C. et al.,
2019) (BrainNow Medical Technology Limited, Hong Kong,
China), was used in the WML segmentation. Using AccuBrain,
WML segmentation was automatically performed on T1W
and T2-FLAIR images. Segmentation was first performed
on T1 images, where brain structure masks and tissue
masks were generated. Then, T1W and T2-FLAIR images
were co-registered, and the structure and tissue masks were
transformed into the T2-FLAIR space. Using a coarse-to-fine
white matter hyperintensities (WMH) segmentation process,
which utilizes mathematical morphological operations including
binary dilation, grayscale closing, binary reconstruction, and
grayscale reconstruction (Shi et al., 2013), WMH is extracted
on T2-FLAIR images and is refined using the transformed
brain structure mask from T1WI. The intracranial volume
(ICV) is also calculated automatically, then the normalized
WMH (% of ICV) is available. Figure 1 shows examples of the
results of automated segmentation. The performance of WMH
has been validated to have good accuracy and reproducibility
(Guo et al., 2019).

Data Processing
Since NMOSD is a rare disease, it hard to find large-scale MRI
datasets for research. We have collected the MRI datasets with
a wide time range, so there are small differences in the size of
images. Hence, we unified and centralized the raw images for
the first time. The diagram of our data preprocessing procedure
is shown in Figure 2. The method is carried out in three
steps: i) we crop the raw MRI T2-FLAIR images to remove the
black background and get the fixed crop kernel; ii) we crop
the WMH brain lesion image with the fixed crop kernel that
obtained at pervious step. iii) we use the OpenCV package to
resize each section of peer MRI data to unify the data shape
to 100∗100∗100 pixels; (iv) we apply data augmentation by
shifting and flipping.

Data and Code Availability Statement
The reconstruction algorithms to support the findings of this
study are still under early-stage development. For the datasets, we
do not share them directly due to the ethics of clinical research.
Both the codes and data can only be acquired via a special request
to the corresponding author.

MODEL STRUCTURE

Previous studies have pointed out that the deeper the network,
the stronger its learning ability (Bengio and Lecun, 2007;
Bianchini and Scarselli, 2014; Montufar et al., 2014). But
information loss as a common problem of traditional
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FIGURE 1 | Brain 3D T2-FLAIR MR images of (a) one 33-year-old female MS patient and (b) one 61-year-old female NMOSD patient.

deep networks often appears in the process of information
transmission. At the same time, the model is hard to train
because of the gradient vanishing and the gradient explosion.
He K. et al. proposed the idea of residual learning to solve this
problem: To maintain the integrity of the information, He K.
et al. proposed a model structure to bypass the input information
to the output, which makes the model deeper (He et al., 2016).
Formally, we consider a ResNet block defined as:

y = F (x, θ)+ x (1)

where x and y are the input and output of the ResNet blocks
considered. θ is a set of learning parameters of function F(x).

Batch normalization (BN) is added to help the
network increase generalization ability and accelerate
the training process (Ioffe and Szegedy, 2015). ReLU
is added to the network as a non-linear activation
function.

3D ResNet for Image Classification
In this section, inspired by the work of Hara, K. et al. and ResNet
(He et al., 2016), and compared with the previous studies of 3D
CNN models (Payan and Montana, 2015; Hara et al., 2017, 2018;
Liang et al., 2018; Wang H. et al., 2019), we used 3D ResNet as
baseline models to solve the classification problem of NMOSD
and MS MRI T2-FLAIR images. For grayscale MRI T2-FLAIR
images, the shape of input data for the network is (1, h,w, l),
and (h,w, l) representing the shape size (height, width, length) of
each MRI T2-FLAIR image. The 3d convolution layer with input
size(Cin, hin, win, lin) and output (Cout, hout, wout, lout)
can be precisely described as:

out (Cout) =

Cin−1∑
k=0

weight
(
k
)
input(k)+ bais (2)
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FIGURE 2 | (i) cropping the raw MRI T2-FLAIR images to remove the background. (ii) cropping the brain lesion image with the same shape as the resized brain MRI
T2-FLAIR images. (iii) resizing each slice of peer MRI T2-FLAIR images to 100*100*100 pixels. (iv) data augmentation.

where is the valid 3D cross-correlation operator, and 2d
convolution calculates similarly.

2D ResNet for Image Classification
The large sample space and small data sets bring challenges
to the 3D deep learning model’s training. Transfer learning
can improve the model (Pan and Yang, 2010; Tajbakhsh et al.,
2016), but there is no available 3D pre-training model for image
classification. On the other hand, it’s impossible to distinguish
NMOSD from MS by a single 2D slice because of the highly
overlapping brain lesions. A compression block proposed to
extract the most critical features each 2D slice by one view
and map the 3D input (1, h,w, l) to a 2D form (c, h′,w′),
where c represents the image’s channel. The convolutional kernels
calculate each channel and sum them up to new channels that
merge each 2D slice’s internal relationship, making the mapping
operation lose structural information. Therefore, we proposed
a two-view structure to extract the essential features from two
different axes. The internal structure information is retained by
concatenating the compression blocks’ output, which effectively
reduces the sample space and can apply the compressed data to
transfer learning. Figure 3 shows our model architecture, and the
compression block used in our model. In the compression block,
the first convolution layer is designed to extract information from
input image. After many attempts with different parameters, we
set the convolution layer with a kernel size of 7 and stride of 3,
and the output channel of this layer is 32, which may get the
best performance. The compression operation can be precisely
described as:

x(h,w, l) h→c
⇒ x1(c,w, l) (3)

x(h,w, l) w→c
⇒ x2(h, c, l) (4)

y1 = σ(BN
(
conv2d (x1)+ b1

)
) (5)

y2 = σ(BN
(
conv2d (x2)+ b2

)
) (6)

y = concatenate
(
y1, y2

)
(7)

where BN is the batch normalization layer, and σ denotes ReLU.
Equation (3), (4) demonstrates that we change one axis of 3D
data to a channel, which means the compression block extract
features from one view.

Implementation Details
Our model is based on python and PyTorch. The optimizer
used in training is SGD, the initial learning rate is 0.01, and
the learning rate is reduced by 10% every ten steps. We added
dropout before the final fully connected layer (Srivastava et al.,
2014) to prevent model overfitting on the training data, with a
dropout rate of 0.15. We trained our model on a server with
one NVIDIA 1080ti. We also applied data augmentation for
T2-FLAIR MRI images by shifting. To reduce the accidental
factors, we conducted five-fold cross-validations to ensure that
each image was tested at least once and also repeated the cross-
validations process for 15 times to average the results. T2-FLAIR
MRI images of 41 NMOSD subjects and 47 MS subjects were used
for the experiments. The original data set was randomly divided
into five equal-sized groups to utilize a five-fold cross-validation
method to evaluate the model’s performance, which means four
groups were used for model training, and one group was regarded
as the validation dataset.

RESULTS

3D and 2D ResNet Model for Image
Classification
In this experiment, we applied a 3D RseNet model to process
NMOSD and MS MRI T2-FLAIR images. The 3D model we
used was based on the models proposed by Payan and Montana
(2015), Hara et al. (2017, 2018), Wang H. et al. (2019), which
were applied traditional 3D ResNet for classification tasks and
achieved desired results. However, the overlapping lesions and
the limited data set’s size of NMOSD and MS restrict the learning
efficiency of 3D ResNet. Considering the above problems, we
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FIGURE 3 | 2D model architecture for classification of NMOSD and MS.

FIGURE 4 | Comparison of accuracy between different models.

proposed a compression block to map the high dimensional 3D
data into a lower dimension. It can also extract the information
from the overlapping lesion locations by learning each single
MRI section and building long-range dependence at the same
time. After compressing the 3D data, we applied 2D ResNet
for model processing and used transfer learning to improve
the model’s generalization ability effectively. Figure 4 shows the
accuracy of different models. We set 3D ResNet-18 (18 layers)
and 3D ResNet-34 (34 layers) to the baseline models (Payan and
Montana, 2015; Hara et al., 2017, 2018; Wang H. et al., 2019).
This experiment demonstrates the limitations of traditional 3D
CNN models’ learning capacity on NMOSD and MS datasets.
The resulting diagram also showed that the accuracy of models
changed rapidly, indicating the convergences in the training
phase. In contrast, the validation phase’s unsatisfactory validation
performances of baseline model showed that the generalization
ability of the 3D ResNet was not ideal.

Overall, the experimental results indicated that our models
have higher prediction performance, as embodied in higher
validation accuracy. It also reflected that our model needs less
time to train. The best performance was achieved when the model
was pretrained on ImageNet datasets.

Comparing Different Models
To compare the differences in performance between different
models, we repeated the experiment 15 times. Table 2
shows the statistical test results. Table 3 shows the model
complexity statistics.

The experimental results show that our model was better
than traditional 3D CNNs and non-pretrained models, as the
best accuracy, sensitivity and specificity of our models on the
validation dataset was 0.75, 0.707 and 0.759 when the depth of
our model was 18 layers. The performance of our pretrained
model was improved comparing with the 3D baseline and
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TABLE 2 | Average performance comparison between different models.

Model Accuracy (mean ± std) Sensitivity (mean ± std) Specificity (mean ± std)

Pretrained ResNet-18(ours) 0.750 ± 0.02 0.707 ± 0.09 0.759 ± 0.06

Pretrained ResNet-34(ours) 0.725 ± 0.01 0.708 ± 0.08 0.719 ± 0.11

No-pretrained ResNet-18 0.696 ± 0.01 0.689 ± 0.09 0.707 ± 0.07

No-pretrained ResNet-34 0.690 ± 0.04 0.653 ± 0.15 0.706 ± 0.09

3D ResNet-18 0.669 ± 0.02 0.694 ± 0.06 0.661 ± 0.06

3D ResNet-34 0.689 ± 0.04 0.701 ± 0.07 0.657 ± 0.07

no-pretrained models, it indicates that both the compression
block and pretrained datasets were beneficial for performance
and generalization ability improvement. When we applied the
compression block, the sample space of the image was effectively
reduced, and the intrinsic features of images were easier to
extract. Table 2 demonstrates that our model needs fewer
parameters and less training time.

DISCUSSION

In this paper, we used deep learning models to automatically
process WMH segmentation T2-FLAIR images to distinguish
NMOSD from MS automatically, and none of the approaches
had manual interventions. Previous studies based on 3D deep
learning models focused on diseases with large data sets and
concentrated lesions, for example, AD and tumors. Using 3D-
CNN to process 3D T2-FLAIR images is indeed in line with
people’s intuition. However, since 3D-CNN increases the number
of parameters, the model will be low learning efficiency on
the training data when the data sets is limited. Especially,
the overlapping lesion increase the difficulty for training the
model, which makes the generalization ability of the traditional
3D models is weak. The experimental result also shows that
the traditional 3D CNN model lacks the learning capacity for
NMOSD and MS MRI T2-FLAIR images. There are some reasons
for those results:i) The data set size was limited because of
the disease’s rareness, which means the model did not feed in
abundant data to be generalized. ii) The sample space was too
large due to the wide distribution of lesions. iii) Only about
half of the NMOSD patients have typical brain lesions, and the
brain lesion distribution of NMOSD and MS have overlap in
lesion localization (Cacciaguerra et al., 2019). Transfer learning
is a widely used technique that allows the model to have a
better initial parameter, which will enhance the performance
of the model, especially for dealing with small sample data.
Currently, there is no 3D pre-trained model available to apply to

TABLE 3 | Complexity comparison between different models.

Model Parameters Training Time(s/epoch)

ResNet-18(ours) 11,475,330 5

ResNet-34(ours) 21,583,490 6

3D ResNet-18 33,161,986 16

3D ResNet-34 63,471,618 23

NMOSD and MS T2-FLAIR images. In Experiment 2, our model
compressed the 3D data and then did fine-tuning to effectively
improve the performance, which also proved that models pre-
trained on ImageNet datasets have better generalization ability
for medical images. Our model effectively reduced the sample
space dimension and reduced parameter amount, making the
model much more easily to train and increase the generalization
ability of our model.

This study has some limitations. First, distinguishing NMOSD
from MS by automatic WMLs segmentation is a great challenge
because of their variability and scattered spatial distribution.
In this study, three high error rate cases disagreed with the
necessary diagnostic categories due to imprecise segmentation.
The outliers had lesions that were part of a confluence of lesions
or were located very close to the ventricles, which are extremely
difficult for automatic quantification, and semimanual lesion
outline correction will be conducted in our next study. Second,
the AQP4-IgG seronegative NMOSD patients were not excluded
from this study to avoid introducing demographic information
bias. However, it is a clinical challenge to distinguish AQP4-IgG
seronegative NMOSD from atypical MS. The mean proportion of
agreement for diagnosing the two diseases was low among expert
clinicians (Po = 0.5) (Wingerchuk et al., 2015), which means
the AQP4-IgG seronegative NMOSD subjects might increase the
difficulties in the classification of these two diseases. Besides,
MS subjects with lesions mimicking stroke were also likely to
be mistaken as NMOSD. Third, the prevalence of NMOSD is
approximately 0.52–4.4 per 100,000 individuals (Wingerchuk
et al., 2007); thus, only a small sample size was recruited in this
pilot study, bringing challenges for deep learning models.
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