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Intracellular signaling pathways are at the core of cellular information processing.

The states of these pathways and their inputs determine signaling dynamics and

drive cell function. Within a cancerous tumor, many combinations of cell states and

microenvironments can lead to dramatic variations in responses to treatment. Network

rewiring has been thought to underlie these context-dependent differences in signaling;

however, from a biochemical standpoint, rewiring of signaling networks should not

be a prerequisite for heterogeneity in responses to stimuli. Here we address this

conundrum by analyzing an in vitro model of the epithelial mesenchymal transition

(EMT), a biological program implicated in increased tumor invasiveness, heterogeneity,

and drug resistance. We used mass cytometry to measure EGF signaling dynamics

in the ERK and AKT signaling pathways before and after induction of EMT in Py2T

murine breast cancer cells. Analysis of the data with standard network inference

methods suggested EMT-dependent network rewiring. In contrast, use of a modeling

approach that adequately accounts for single-cell variation demonstrated that a single

reaction-based pathway model with constant structure and near-constant parameters

is sufficient to represent differences in EGF signaling across EMT. This result indicates

that rewiring of the signaling network is not necessary for heterogeneous responses to a

signal and that unifying reaction-based models should be employed for characterization

of signaling in heterogeneous environments, such as cancer.

Keywords: epithelial-to-mesenchymal transition (EMT), systems biology, ordinary differential equations, kinetic

model, ERK pathway, AKT pathway, computational biology, single cell modeling

1. INTRODUCTION

Intracellular signaling networks are biochemical systems that integrate spatio-temporal
information regarding the intra- and extracellular environments into functional programs that
drive cellular decisions (Dolmetsch et al., 1997; Kholodenko, 2006; Selimkhanov et al., 2014).
Signals, such as extracellular ligand concentrations, are transduced by modulating the enzymatic
activities and local concentrations of signaling mediators, such as kinases, within a cell. In
traditional analysis, the structures of signaling networks are studied in biochemical experiments
and are then formalized as graphs where nodes represent the activity state of signaling molecules
and directed edges represent interactions between molecules. More recently, statistical modeling
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has been used to infer network structures in a data-driven
manner (Sachs et al., 2005). In contrast to canonical
representations of signaling networks as static structures,
data-driven approaches of network inference have represented
the structure of signaling networks as dependent upon context,
including cell phenotype, type of input signal, and treatment,
e.g., with an inhibitor, as well as unaccounted cell-to-cell
variability (Hill et al., 2017; Petsalaki et al., 2015; Will and Helms,
2015; Brightman and Fell, 2000). The context-dependence of
signaling is of particular consequence in diseases like cancer,
where genetic errors lead to changes in the relative expression or
function (Creixell et al., 2015) of signaling proteins and where
the local microenvironment can be abnormal, resulting in signal
responses that substantially differ from those of healthy cells
(Altschuler and Wu, 2010). Consideration of signaling network
rewiring between contexts has led to the development of novel
treatment regimens (Lee et al., 2012). While useful, data-driven
network inference requires large quantities of data and, typically,
some prior knowledge of causative relationships. However,
even though contexts are considered in this type of modeling,
the results remain static representations of dynamic processes,
which immediately limits predictions of cellular dynamics and
responses (Kolitz and Lauffenburger, 2012).

Unlike graph-based network models, mechanistic models of
signaling capture both the reaction network structure and the
temporal dynamics of signaling, with residual noise attributed
to natural cell-to-cell variability or stochasticity. These models
consist of sets of reactions in the form of differential equations
that describe how each signaling component changes over time
as a function of the overall state of the system, and all model
components and parameters have physical interpretations, such
as concentrations, binding affinities, or reaction rates (Aldridge
et al., 2006). Properly calibrated mechanistic models can be used
to predict cellular dynamics from a snapshot of cell state and to
analyze the consequences of observed or hypothetical alterations
in relative concentrations or activities of components. The
drawback of mechanistic models is that their construction relies
on detailed prior knowledge of the reaction network structure
and on multiple, targeted experiments that permit calibration of
the model’s parameter values (Aldridge et al., 2006; Kholodenko,
2006). The need for detailed prior information presents a great
challenge when multiple contexts are to be considered (Halasz
et al., 2016; Kholodenko, 2006).

Biochemical reasoning suggests that the signaling reaction
structures themselves should be fixed, as the kinetics of a
particular interaction does not change unless other factors
or modulators are altered. This reasoning suggests that a
mechanistic model should be “context-explicit,” reconciling the
entire range of context-dependent signaling dynamics without
network rewiring. In principle, therefore, it should be possible to
construct a single mechanistic model that, combined with initial
snapshots of individual cell states, explains and predicts signaling
across many phenotypic contexts. In practice, however, the ability
of a single mechanistic model to represent signaling across cell
phenotypes is often limited due to ill-characterized differences in
cellularmilieu and gaps in knowledge, which are often considered
as sources of natural stochasticity.

Here, we propose differential equation based mechanistic
modeling—a model with static network structure—of single-cell
mass cytometry data to investigate whether a context-dependent
signaling network structure is necessary to represent differences
in signaling dynamics in two distinct cell phenotypes: cells before
and after an epithelial-mesenchymal transition (EMT). EMT is
a developmental program through which epithelial cells trans-
differentiate into a mesenchymal phenotype; EMT results in loss
of cell-cell adhesion junctions, increased capacity for migration
and invasion, and resistance to apoptosis (Fu et al., 2018). EMT
has been implicated in the generation of metastatic and resistant
cancer cell populations, and both bulk (Desai et al., 2015) and
single-cell data (Krishnaswamy et al., 2018) have demonstrated
EMT-associated alterations in signaling.

To study changes in signaling dynamics and network structure
across an EMT, we use a previously established experimental
model of TGF-β-induced EMT in Py2T murine breast cancer
cells (Waldmeier et al., 2012). We performed mass cytometry to
simultaneously quantify markers of epithelial and mesenchymal
phenotypes, as well as the total expression and phosphorylation
dynamics of multiple MAPK/ERK and PI3K/AKT signaling
pathway components in response to stimulation with EGF, a
proliferative signal that can drive tumor growth. These pathways
and EGF signaling were chosen due to the robust signaling
dynamics they provided in both epithelial and mesenchymal
Py2T cell phenotypes.

To study the EMT-related changes in EGF signaling, we first
applied a classical network-inference method to the data. This
analysis suggested that the network structure of the ERK and
AKT pathways is rewired in a phenotype-dependent manner.
Then, using the same data and amechanistic single-cell modeling
approach based on the core principles of biochemical systems
modeling (Savageau, 1976; Voit, 2000, 2013), we constructed,
ab initio, two models of the signaling pathway, one for the
mesenchymal phenotype and one for the epithelial phenotype.
Intriguingly, accounting for unmeasured contextual variables
allowed us to consolidate the two models into a single model
with constant reaction structure and with very modest residual
noise. This result presents proof-of-principle that rewiring does
not occur during EMT but that alterations in signaling processes
during this dramatic transition result from changes in the relative
concentrations of signaling components. Our results suggest that
further extending this type of single-cell model development,
combined with highly-multiplexed single-cell measurements of
intra- and extracellular states, has the potential to greatly reduce
uncertainty that is otherwise attributed to stochasticity and to
improve our ability to predict and analyze signaling responses in
heterogeneous tissues and different disease contexts.

2. RESULTS

During EMT, cells undergo dramatic changes in phenotype that
are known to be driven by signaling; therefore, we sought to
determine whether signaling networks are rewired or whether
changes in the relative concentrations of signaling components
are sufficient to permit altered dynamics (Figure 1). Specifically,
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FIGURE 1 | Conceptual overview. A phenotypic transition is associated with a changed signaling response. A key question is whether this alteration requires network

rewiring (associated with the addition or elimination of edges) or whether the network structure is constant and moderate differences in relative concentrations drive

differences.

we pose the hypothesis that a single, mechanisticmodel with fixed
reaction network structure and kinetic parameters, calibrated
with highly-multiplexed single-cell measurements of signaling
protein state and expression, should be able to reconcile the
differences in signaling across phenotypes.

To test our hypothesis, we used an experimental model of
EMT, TGF-β-induced EMT in murine Py2T cells, and focused
on EGF signaling dynamics in the proliferative, pro-growth,
and pro-oncogenic MAPK/ERK and PI3K/AKT pathways (Wee
and Wang, 2017). We used mass cytometry to quantify
markers of epithelial and mesenchymal phenotypes and levels
of phosphorylated and total signaling proteins. Specifically, we
measured total and phosphorylated forms of MEK, ERK, and
p90RSK (RSK) in the core ERK pathway, AKT and GSK3β in
the AKT pathway, ribosomal protein S6 (S6), a downstream
target of both ERK and AKT signaling, as well as cell cycle,

death and size markers in 12 serial samples from a time
course of EGF stimulation (for the full antibody panel, see
Supplementary Table 4).

Our dataset contains 31-dimensional measurements across 34
conditions: Thirteen time points for EGF stimulation and four
time points for unstimulated EGF control both before and after
induction of EMT. Samples were analyzed in triplicate with an
average of nearly 10,000 cells analyzed per sample.

2.1. Data-Driven Statistical Network
Inference Suggests That the AKT/ERK
Signaling Network Is Rewired in Response
to TGF-β Treatment
To study signaling during EMT, we used a model of TGF-
β induced EMT in Py2T cells (Waldmeier et al., 2012;
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Krishnaswamy et al., 2018). When grown in a monolayer, these
cells are epithelial in visual and molecular phenotype with a
homogeneous cobblestone appearance and high expression of
the epithelial marker E-cadherin. Chronic treatment of cells with
TGF-β causes them to transition to a mesenchymal phenotype;
cells no longer grow in a monolayer, have an elongated shape,
no longer express E-cadherin, and instead express mesenchymal
markers, such as vimentin. As in previous studies, we defined
epithelial cells as those with high levels of E-cadherin and
low levels of vimentin expression. To generate a population of
mesenchymal cells, samples were treated with TGF-β at 24 h
intervals for 3 days; these cells expressed little E-cadherin and
high levels of vimentin (Figure 2A; Supplementary Figure 1).

We first used traditional methods of statistical network
inference to determine whether they would suggest that the
ERK/AKT signaling network becomes rewired during EMT.
Specifically, we used the data-driven approach of partial
correlation analysis (Garmaroudi et al., 2010; Desai et al., 2015),
which quantifies the correlation between two variables after
removing potentially confounding correlations to other variables
in the system. The partial correlation between all pairs of
phosphoproteins in our panel for epithelial and mesenchymal
cells is shown in Figure 2B (see Supplementary Figure 2 for
the analysis including both phospho- and total proteins). Partial
correlation values with magnitudes >0.1 were taken to define
edges representing true interactions. In epithelial cells, partial
correlation recovered the canonical pMEK-ppERK-pRSK-pS6
and pAKT-pGSK3β pathways (Mendoza et al., 2011; Manning
and Cantley, 2007; Olayioye and Neve, 2000; Wee and Wang,
2017); note that GSK3β phosphorylation at S9 is inhibitory. By
contrast, the canonical pAKT-pS6 (via p70S6 kinase) (Mendoza
et al., 2011) and pRSK-pGSK3β (Manning and Cantley, 2007)
relationships were attributed to pGSK3β-pS6 and ppERK-
pGSK3β , respectively. The crosstalk suggested between pMEK
and pAKT has not been reported previously, but could indirectly
reflect known crosstalk between PI3K3CA and the RAF activator
RAC (Ebi et al., 2013).

This analysis suggests that EMT rewired the signaling
network. With the chosen cutoff, the mesenchymal cells appear
to lose three (of seven) original edges and gain six new edges
after the transition to mesenchymal cells. Compared to epithelial
cells, in mesenchymal cells the edges ppERK-pRSK, pGSKβ-pS6,
or pMEK-pAKT are lost and edges pMEK-pRSK, pMEK-pGSKβ ,
pMEK-pS6, ppERK-pAKT, ppERK-pS6, and pRSK-pGSKβ are
gained. Noticeably absent in mesenchymal cells is a direct path
from the AKT pathway to pS6. When different cutoffs were
used, the specific edges gained and lost changed somewhat
(see Supplementary Figure 2), but significant EMT-dependent
rewiring was predicted at all cutoffs.

Signaling is a dynamic process. To assess the time dependence
of various signaling states, we quantified the dynamics of network
relationships by calculating the partial correlation between
widely documented “canonical” network edges for each time
point (Figure 2C). This analysis demonstrated that the strengths
of most edge relationships, including that of the pMEK-ppERK
edge, varied when compared before and after EMT. Such
variation is expected, as existence of an edge can be interpreted

as identification of signaling “activation.” Notably, at certain time
points we observed two edges that were not observed at the
steady state, the ppERK-pRSK edge in mesenchymal cells and
the pAKT-pS6 edge in epithelial cells. The dependence of the
network structure on context, such as time relative to stimulation
and cell phenotype, illustrates that such a purely network-based
statistical analysis, even if it is based on distributions of single-cell
data, does not always accurately predict signaling responses.

2.2. Mechanistic Model With Constant
Network Structure Permits Heterogeneity
of Epithelial and Mesenchymal ERK/AKT
Signaling
We hypothesized that a dynamic mechanistic model with
constant reaction network structure that includes context-
dependent parameters should more accurately predict signaling
dynamics in cells of both epithelial and mesenchymal
phenotypes. Using prior knowledge combined with our
multiplexed single-cell data, we constructed a reaction network
model of the RAF-MEK-ERK-RSK-S6 and PI3K-AKT-GSK3β-
S6 pathways (Mendoza et al., 2011; Manning and Cantley, 2007;
Olayioye and Neve, 2000; Wee and Wang, 2017) that included
pathway crosstalk at the level of PI3K to RAC (Ebi et al., 2013)
and RSK to GSK3β (Manning and Cantley, 2007) (summarized
in Figure 3A). The reactions were modeled in canonical format
to reduce the inclusion of unmeasured reaction components,
which is a streamlining step that has worked well in many other
contexts (Savageau, 1976; Voit, 2000, 2013). We aggregated all
upstream components into a single input with time delay (τ )
and an unmeasured modifier variable, pRAF or PI3K, for each
pathway. As they were not explicitly modeled, changes that
occurred in upstream components (e.g., receptor expression and
activation state) or regulation (e.g., altered membrane dynamics)
during EMT were represented by changes in parameters, i.e., as
magnitudes of pathway inputs.

In contrast to classical model calibration, which uses
population averages for parameter estimation, we applied an
approach that uses single-cell data to explicitly model single-
cell variation and better constrains model parameters. This
approach simulates sets of individual cells, where the initial
state of each cell is taken from a snapshot measurement, and
each combination of the individual cell trajectories represents
an empirical multivariate distribution analogous to that derived
from multiplexed single-cell measurements (see Methods).

After model fitting, simulations of independently subsampled
cells showed strong agreement between model and data
in both the marker distributions and parametric statistical
features, such as the mean and covariance (Figures 3B,C,
Supplementary Figure 3). Moreover, the shape of the model
distributions fit overall very well; departing furthest from
measurements in the density of pAKT for mesenchymal cells
(Figure 3B). This deviation may be due to unmeasured reaction
components or modulators that change during EMT, such
as membrane-level variances due to cellular morphological
switches. Overall, this result confirms that a constant reaction
structure is sufficient to represent signaling across EMT.
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FIGURE 2 | Partial correlation-based network inference suggests that the ERK/AKT signaling network is significantly rewired during EMT. (A) Overview of an EMT

model (top) including an illustration of the visual phenotype and a molecular definition of epithelial and mesenchymal cells measured by mass cytometry at various time

(Continued)
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FIGURE 2 | points (bottom). (B) Partial correlation (ρXY ·Z ) analysis of phosphoproteins is used to infer the different network structures in epithelial and mesenchymal

cells sampled across replicates. The threshold for accepting an edge between X and Y is defined as ρXY ·Z ≥ |0.1|. All values are Fisher z-transformed. (C) Time

dependence of signaling strength in canonical signaling edges. Blue and green represent epithelial and mesenchymal phenotypes, respectively. Error bars represent

standard deviation of partial correlation across replicates.

2.3. Consolidation of ERK/AKT Signaling in
Epithelial and Mesenchymal Cells Requires
Only Minimal Adjustments of Mechanistic
Model Parameters
Using our unifying reaction network structure, we investigated to
what extent the parameters of the dynamic reaction model could
be held constant across epithelial and mesenchymal cells. The
original point estimates for the model parameter sets differed for
the two phenotypes. However, for both phenotypes, there were
ranges of parameter values within which the data fit very well. In
most cases, these ranges overlapped between the epithelial and
mesenchymal cell models. This quality of fit can be visualized
in a grid-based sensitivity analysis of how individual parameter
changes alter the quality of a model fit (Figure 4A). Although
these results were encouraging, such univariate sensitivity
analyses do not account for the potentially complex effects
of changing multiple parameters simultaneously. We therefore
systematically searched simultaneously for complete, close-by
parameter sets that minimized the differences in parameters
between epithelial and mesenchymal cells without decreasing
model fitness in either context (Figures 4B,C).

As we had hypothesized, based on generic biochemical
reasoning, analysis of the mechanistic model revealed that a
constant network structure was sufficient to accurately predict
signaling alterations during the transition from the epithelial
to the mesenchymal state. Amazingly, of the 38 total model
parameter values, only four required minor adjustments between
epithelial and mesenchymal states: First, I1, the magnitude of
the input to the ERK pathway, is 5.3 in the epithelial state
and 1.9 in the mesenchymal state, approaching the pre-EGF
steady-state value of 1, at which point there would be no
stimulation of the ERK pathway. Second, I2, the magnitude
of the input to the AKT pathway, increases by less than
an order of magnitude from 8.1 in the epithelial state to
55 in the mesenchymal state. Third, parameter h5 decreased
from 0.3 in the epithelial state to 0.05 in the mesenchymal
state. This parameter is related to the sensitivity of pGSK3β
dephosphorylation in response to increases in the concentration
of pGSK3β , and accounted for a minute 1% change in model
fitness. This change in h5 may not be surprising given the
direct interpretation of the reaction moving from near zero-
order (nearly saturated with respect to pGSK3β) to very near
zero-order (even closer to saturation), combined with the fact
that pGSK3β is generally higher in the mesenchymal state than
the epithelial state at across all time points. Fourth, k13, which
is related to the rate of S6 phosphorylation, decreases from
10−7.8 in the epithelial state to 10−9.5 in the mesenchymal
state. This difference could be related to altered expression
of unmonitored reaction components or to variations in
local concentrations or diffusion rates. Importantly, almost all

responses of the system could be explained without evoking
natural stochasticity.

To assess the validity of model predicted changes to ERK and
AKT pathway inputs, we used a previous molecular study of
EMT-dependent signaling across multiple in vitro EMT models
and more than 70 lung cancer cell lines (Salt et al., 2014). Our
model prediction that the ERK pathway input, I1, decreases
across EMT agreed with reported experimental findings that
levels of phosphorylated EGFR, as well as total expression of
other EGFR family members, were reduced in mesenchymal
cell states compared to epithelial cell states. The other relevant
prediction of ourmodel, that the AKT pathway input I2 increased
across EMT, also agreed with the experimental findings that
PI3KCA, which encodes the catalytic p110α subunit of PI3K
upstream of AKT activation, was upregulated and increased
AKT pathway signaling across EMT. The consistency of these
model predictions with independent experimental observations
provides an orthogonal validation of the our model.

3. DISCUSSION

Theoretically, differences in signaling responses across cells
should be determined by relative differences in concentrations
and states of reaction components, rather than by the idea of
substantial reaction network rewiring. We show here that this is
indeed the case for signaling in cells before and after the EMT in
an in vitromodel. To demonstrate this consistency, we performed
multiplexed single-cell measurements and applied computational
modeling to determine how EGF signaling in the ERK and
AKT pathways changes with cell phenotype. We generated a
large dataset; specifically, we used twice as many measured
state variables as had been used previously to create a single-
cell mechanistic model of signaling during EMT. Especially
valuable for use with the mechanistic modeling approach was
the inclusion of markers of total protein to evaluate variation in
protein expression.

While our analysis focused on the response of the ERK
and AKT pathways to EGF before and after EMT, we note
that these two pathways, as well as the SMAD pathway, are
involved in TGF-β-induced EMT itself. Furthermore, network-
based analyses have shown that signaling via all three pathways
is altered during in the same Py2T model of TGF-β-induced
EMT used here (Krishnaswamy et al., 2018). Although our results
suggest our mechanistic approach can be applied to characterize
TGF-β signaling across EMT, our focus was on EGF signaling.
The choice of EGF as the acute signaling stimulus over TGF-β
was made, first, to avoid potentially confounding input signals
due to the chronic TGF-β treatment used induce EMT, and
second, due to the relevance of proliferative EGF signaling and
potential in the tumor context.
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FIGURE 3 | Mechanistic model of EGF signaling in ERK and AKT pathways with parameter fits to epithelial and mesenchymal cells. (A) Model reaction structure and

measured variables used for each phenotype annotated with kinetic parameters. (B) Marginal distributions of (log2 transformed) data (solid) and model simulations

(Continued)

Frontiers in Physiology | www.frontiersin.org 7 November 2020 | Volume 11 | Article 579117

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Wade et al. Signaling Across Epithelial Mesenchymal Transition

FIGURE 3 | (orange line) for dynamic signaling variables in epithelial (blue solid, left) and mesenchymal (green solid, right) cells. Circles represent means. To enhance

visualization, the mean, rather than the marginal distribution, at the 1-min time point is not shown. (C) Data (symbols) and model simulations (line) of covariance

between signaling variables over time in cells of both phenotypes. Black bars represent the range of covariances across replicates. All values in (B,C) were calculated

by random subsampling of cells across experimental replicates.

FIGURE 4 | Reconciliation of mesenchymal and epithelial model parameters. (A) Sensitivity analysis of mesenchymal model parameter perturbations. Grid represents

parameter changes on log2 scale of epithelial parameters used in Figure 3. Circles represent mesenchymal parameters used in Figure 3 (normalized to epithelial

parameters in log2 scale). If epithelial and mesenchymal parameters are equal, the circles are blue; otherwise they are green. Grid color (color bar) represents percent

increase in cost function for the mesenchymal cell model given a corresponding parameter change. (B) Minimal parameter difference between epithelial and

mesenchymal parameter sets for constant mesenchymal function cost. Parameters associated with model inputs (input magnitude or degradation) are shown in red.

Scale and circle colors are as in (A).

We first used a traditional data-driven approach of network
inference based on partial correlation, which suggested that
the ERK/AKT signaling network had to be rewired in a
phenotype-dependent manner during EMT, as was previously
reported (Krishnaswamy et al., 2018). In stark contrast, the
dynamic, single-cell mechanistic model with constant network
structure and near constant kinetic parameter values, calibrated
with state-of-the-art single-cell data, predicts that rewiring
during EMT is not necessary. Instead, the mechanistic model
reconciled the variation in signaling dynamics in epithelial
cells vs. mesenchymal cells with only minor EMT-dependent

adjustments to model parameters. In summary, a properly
calibrated mechanistic model can represent signaling across a
contextual change as large as EMT. This mechanistic model
suggests that the hypothesis that rewiring of signaling networks
does not occur during this phenotypic change is correct;
rather cells modulate concentrations of reaction components to
alter signaling.

The ability to explain variation in signaling responses from
an individual snapshot of cell states is an exciting prospect, but
we emphasize that it is necessary to, first, observe dynamics and,
second, explicitly measure and model the primary sources of
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variation in order to obtain accurate predictions. The system
components that affect the signaling dynamics will likely include
not only levels or functional states of signaling proteins but
also features of the microenvironment. For example, if a
subpopulation of cells expressed a change of function mutation
in a signaling protein, the new molecular species must be added
to the model with its own associated kinetic parameters and
the expression level must be measured or inferred. Thus, the
main limitations of our approach are related to the ability
to identify and measure the appropriate variables as well as
to the computational cost of fitting mechanistic models to
increasingly large systems. These limitations, however, will
diminish as multiplexed single-cell measurement technologies
and computational infrastructure improve.

Taken together, a single dynamic, mechanistic model with
entirely constant reaction structure at the single-cell level can
reconcile the EGF signaling dynamics of the ERK/AKT signaling
network across an EMT. The only parameter differences we
identified associated with the signaling responses of epithelial
and mesenchymal phenotypes are slight alterations in four of the
38 total model parameters. Only two of the changes are related
directly to kinetic parameters, while the other two are modest
variations in the magnitudes of inputs to the pathway. These
four EMT-dependent parameters can be interpreted as EMT-
dependent changes to reaction components that are not explicitly
measured; for example, the increase in I2 across EMT agrees
with the report of an EMT dependent increase in PI3K upstream
of AKT (Salt et al., 2014). Thus, we would expect the EMT-
dependent variation in I1 and I2 to be reduced when including
measurements of pEGFR and PI3K. Remarkably, accounting for
upstream signaling changes that alter the magnitude of input
signal (i.e., I1 and I2) to the ERK and AKT pathways was largely
sufficient to explain EMT-dependent signaling dynamics, with
the inferred EMT-dependent change in the S6 activation rate
alone (k13) sufficient to reach at least 99% model fitness for both
cell phenotypes.

Our analysis clearly demonstrates that the network structure
ofmurine Py2T breast cancer cells is not rewired during EMT.No
mechanisms or processes have to be added and none have to be
removed. In fact, it appears that the signaling system is essentially
deterministic. Our analysis suggests that the stochasticity inferred
from previous studies is by and large a matter of unmeasured
variables and a modest degree of intercellular variability. Given
the ability of calibrated mechanistic models to analyze, simulate,
and explain the dynamics from an initial snapshot of cell states,
our data indicate that it is possible to account for cellular context
via initialization of an appropriate model with multiplexed
single-cell measurements. The proof-of-principle we present here
represents an important step toward the construction of tumor-
level dynamic models of signaling networks.

4. METHODS

4.1. Cell Culture
Py2T cells were obtained from the laboratory of Gerhard
Cristofori, University of Basel, Switzerland; their characterization
was previously described (Waldmeier et al., 2012). Cells were

tested for mycoplasma contamination upon arrival and regularly
during culturing and before being used for experiments. Cells
were cultured at 37◦C in DMEM (D5671, Sigma Aldrich),
supplemented with 10% FBS, 2 mM L-glutamine, 100 U/ml
penicillin, and 100 µg/ml streptomycin, at 5% CO2. For cell
passaging, cells were incubated with TrypLETM Select 10X (Life
Technologies) in PBS in a 1:5 ratio (v/v) for 10 min at 37◦C. For
each experiment, cells were seeded at the density of 0.3 million
cells per plate (100-mmdiameter) and allowed to recover for 36 h.

4.2. TGF-β Stimulation
After reaching 60% confluence, cells were either mock-treated or
treated with 4 ng/ml human recombinant TGF-β (Cell Signaling
Technologies) for 72 h. Medium and TGF-β were replaced every
24 h until 24 h prior to EGF stimulation. For each condition, three
biological replicates were cultured, harvested, and analyzed.

4.3. Cell Harvesting and EGF Stimulation
For cell harvest, cells were washed twice with PBS and incubated
with TrypLETM Select 10X (Life Technologies) in PBS at a
1:5 ratio (v/v) for 10 min at 37◦C. Following cell detachment,
cells were mixed and resuspended in serum-free medium and
allowed to recover from detachment for 2 h at 37◦C and 5%
CO2 with periodic shaking to avoid cluster formation. After the
recovery period, samples were taken to establish baselines. EGF
(Peprotech) was then added to a final concentration of 100 ng/ml.
Samples were taken at {−10, −5, 0, 1, 3, 5, 8, 12, 15, 20, 30, 50}
min relative to stimulation (t = 0) with EGF (the 0-min sample
was not stimulated). At the time of sampling, paraformaldehyde
(PFA, from Electron Microscopy Sciences) was added to the cell
suspension to a final percentage of 1.6%, and cells were incubated
at room temperature for 10 min. Crosslinked cells were washed
twice with cell staining medium (CSM, PBS with 0.5% BSA,
0.02% NaN3). After centrifugation, ice-cold methanol was used
to resuspend the cells, followed by a 10-min permeabilization on
ice or long-term storage at−80◦C.

4.4. Metal-Labeled Antibody Conjugation
The MaxPAR antibody conjugation kit (Fluidigm) was used
to generate isotope-labeled antibodies using the manufacturer’s
standard protocol. After conjugation, the antibody yield was
determined based on absorbance at 280 nm. Candor PBS
Antibody Stabilization solution was used to dilute antibodies for
long-term storage at 4◦C.

4.5. Barcoding and Staining Protocol
Formalin-crosslinked and methanol-permeabilized cells were
washed three times with CSM and once with PBS. Cells
were incubated in PBS containing barcoding reagents (102Pd,
104Pd, 105Pd, 106Pd, 108Pd, 110Pd, 113In, and 115In) at a final
concentration of 100 nM for 30 min at room temperature and
then washed three times with CSM (Bodenmiller et al., 2012).
Barcoded cells were then pooled and stained with the metal-
conjugated antibody mix (Supplementary Table 4) at room
temperature for 1 h. The antibody mix was removed by washing
cells three times with CSM and once with PBS. For DNA staining,
iridium-containing intercalator (Fluidigm) diluted in PBS with
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1.6% PFA was incubated with the cells at 4◦C overnight. On the
day of the measurement, the intercalator solution was removed,
and cells were washed with CSM, PBS, and doubly distilled H2O.
After the last washing step, cells were resuspended in doubly
distilled H2O and filtered through a 70-µm strainer.

4.6. Mass Cytometry Analysis
EQ Four Element Calibration Beads (Fluidigm) were added to
cell suspensions in a 1:10 ratio (v/v). Samples were analyzed
on a Helios mass cytometer (Fluidigm). The manufacturer’s
standard operation procedures were used for acquisition at a
cell rate of ∼500 cells per second. After the acquisition, all
.fcs files from the same barcoded sample were concatenated
(Bodenmiller et al., 2012). Data were then normalized, and bead
events were removed (Finch et al., 2013) before doublet removal
and de-barcoding of cells into their corresponding wells using a
doublet-filtering scheme and single-cell deconvolution algorithm
(Zunder et al., 2015). Cytobank (http://www.cytobank.org/) was
used for additional gating on the DNA channels (191Ir and
193Ir) and 139La/141Pr to remove remaining doublets, debris and
contaminating particulates. Data were then exported as .fcs files
for subsequent analysis.

4.7. Gating Epithelial and Mesenchymal
Cells
Epithelial cells were gated as E-cadherinhigh/vimentinlow in
samples without TGF-β treatment.Mesenchymal cells were gated
as E-cadherinlow/vimentinhigh in samples treated for 3 days with
TGF-β . Gating cutoffs are shown in Figure 2A. Treatment with
TGF-β for longer than 3 days increases the percentage of Py2T
population that undergoes EMT. Samples treated with TGF-β for
3 days also contained cells within the E-cadherinhigh/vimentinlow

gate, but these were not considered contextually as epithelial cells.

4.8. Data Normalization and Scaling for
Use in Modeling
Experimental measurements were normalized for comparisons
across independent experiments and measurements. Cell events
with >20 counts for cleaved PARP were removed as dead
or apoptotic. Before using variables in modeling, they were
linearly scaled to satisfy biological constraints, such as the
total units of a protein must be greater than or equal to
the units of the phosphorylated form. Cells used in fitting
were subsampled across experimental replicates to reduce
computational cost. A full description of normalization, scaling,
and subsampling of data before use in modeling is presented in
the Supplementary Material.

4.9. Partial Correlation-Based Network
Inference
Given two random variables X and Y and a set of controlling
variables Z = Z1, ...,Zn, the partial correlation ρXY·Z is a
measure of the relationship between X and Y when the effects
of the Z = Z1, ...,Zn random variables have been accounted
for. Mathematically, ρXY·Z is the correlation of the residuals eX
and eY that result from a linear regression of X and Y with
Z, respectively.

To determine the cutoff for partial correlation-based network
representations, thresholds were used to define a minimum p-
value or correlation coefficient. In order to focus on stronger
relationships, we used a threshold based on the partial correlation
values. The choice of |ρXY·Z| ≥ 0.1 as the threshold was made
as a qualitative boundary between maximizing canonical and
minimizing non-canonical signaling relationships in epithelial
cells. Most notably, this setting captured the edge between
the ERK pathway and pS6 as well as some form of crosstalk
between the ERK andAKT pathways. The addition or subtraction
of edges based on other thresholds may be readily calculated
from the heatmaps provided in Figure 2, and in the context
of both total and phosphoproteins, in Supplementary Figure 2.
Supplementary Figure 2 illustrates the relationship between the
partial correlation threshold and network edge number. Heatmap
labels were ordered by hierarchical clustering the epithelial
population values using single-linkage clustering and Euclidean
distance. All partial correlations were calculated using log
transformed data values of the form log(1+ X) .

4.10. Mechanistic Model of ERK/AKT
Pathway Response to EGF
Tomodel EGF signaling dynamics, we used theDistribution-Free
Single-Cell modeling (DISCO) (Wade et al., 2020) approach
described elsewhere in detail. Briefly, cells were assumed to
have the same population-level kinetic parameters, which were
determined by minimizing the maximum mean discrepancy
(MMD) (Gretton et al., 2012), a statistical two-sample test of
similarity for n-dimensional distributions, between simulated
and experimentally measured distributions. Cell-to-cell
variation in unmeasured components was captured in a
subset of rate constants that were algebraically determined by
a combination of model structure, population-level parameters,
and steady-state measurements. To fit individual parameter
sets for epithelial and mesenchymal cell populations, we
subsampled 500–1,000 cells across the three replicates for
each time point. Model equations may be found in the
Supplementary Material.

4.11. Parameter Optimization
Parameter optimization was performed using a combination
of global and local search methods. First, 50,000 initial
parameter sets were sampled from a user-input parameter
range (see Supplementary Table 5). Next, the 200 parameter
sets associated with minimum cost were selected. Finally,
each parameter set was refined through multiple rounds of
optimization using the unconstrained local search algorithm
fminsearch in the Matlab Optimization Toolbox (The
MathWorks, Inc., Natick, MA). The fminsearch algorithm
begins with a broad search perspective before focusing on
a more precise local area. As regular re-initialization of the
search improved results, each round of optimization was run
for 300 iterations. If, at the end of a round, the cost value
had improved by at least 2%, another round was initialized
using the parameter set output by the algorithm. Otherwise, the
optimization was terminated. After this local search approach,
fminsearch was initialized a final time with the parameter
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set corresponding to the lowest cost among the 200 solutions
and was run until the model cost stabilized. Point estimates of
epithelial and mesenchymal model parameter sets are shown in
Supplementary Table 5.

4.12. Sensitivity Analysis of Mechanistic
Model Parameters
A grid-based sensitivity analysis was performed in the context of
the population parameter vector 2. The cells sampled for model
fitting, either epithelial or mesenchymal, and the model structure
were held constant. Given the best-fit point estimate of the
parameter set for epithelial cells 2∗

E = θE,1, ..., θE,m, sensitivities
were calculated as the change1 in cost function F given a change

1 in the jth parameter θE,j:
1F

1θE,j
where 1θE,j was defined using

a log2 fold-change of increments of 0.25 in the range of [−8,
3] when applied to the best parameter θ∗E,j for epithelial cells.

Notably, this definition implies that parameter sensitivities for
the epithelial and mesenchymal models were calculated using the
same set of values.

4.13. Reconciliation of Mechanistic Model
Parameters Across EMT
Reconciliation between the best points estimates for epithelial
and mesenchymal population parameter sets 2∗

E and 2∗
M ,

respectively, was performed by finding the minimum difference
between all corresponding population parameters θE and θM
that did not increase the cost F associated with either best-fit
parameter set:

{2̂E∗ ,j, 2̂M∗ ,j} = minj |2
∗
E,j − 2∗

M,j| (1)

subject to

F(2̂E∗ ) ≤ F(2∗
E)

F(2̂M∗ ) ≤ F(2∗
M)

Point estimates of epithelial and mesenchymal model
parameters after reconciliation (2̂E∗ , 2̂M∗ ) are shown in
Supplementary Table 5.
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