AUTHOR=Lheureux Alexis , Lebleu Julien , Frisque Caroline , Sion Corentin , Stoquart Gaëtan , Warlop Thibault , Detrembleur Christine , Lejeune Thierry TITLE=Immersive Virtual Reality to Restore Natural Long-Range Autocorrelations in Parkinson’s Disease Patients’ Gait During Treadmill Walking JOURNAL=Frontiers in Physiology VOLUME=11 YEAR=2020 URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2020.572063 DOI=10.3389/fphys.2020.572063 ISSN=1664-042X ABSTRACT=
Effects of treadmill walking on Parkinson’s disease (PD) patients’ spatiotemporal gait parameters and stride duration variability, in terms of magnitude [coefficient of variation (CV)] and temporal organization [long range autocorrelations (LRA)], are known. Conversely, effects on PD gait of adding an optic flow during treadmill walking using a virtual reality headset, to get closer to an ecological walk, is unknown. This pilot study aimed to compare PD gait during three conditions: Overground Walking (OW), Treadmill Walking (TW), and immersive Virtual Reality on Treadmill Walking (iVRTW). Ten PD patients completed the three conditions at a comfortable speed. iVRTW consisted in walking at the same speed as TW while wearing a virtual reality headset reproducing an optic flow. Gait parameters assessed were: speed, step length, cadence, magnitude (CV) and temporal organization (evenly spaced averaged Detrended Fluctuation Analysis, α exponent) of stride duration variability. Motion sickness was assessed after TW and iVRTW using the Simulator Sickness Questionnaire (SSQ). Step length was greater (