Long stays in space require countermeasures for the degrading effects of weightlessness on the human body, and artificial gravity (AG) has been proposed as an integrated countermeasure. The aim of this study was to assess the cardiorespiratory and neuromuscular demand of AG elicited via daily centrifugation during 60 days of bed rest.
Twenty four participants (33 ± 9 y, 175 ± 9 cm, 74 ± 10 kg, 8 female) were subjected to 60 days of strict six-degree head-down tilt (HDT) bed rest and were randomly allocated to one of three experimental groups: 30 min of daily centrifugation with an acceleration of 1 g at the center of mass and 2 g at the feet applied continuously (cAG) or intermittently in 6 epochs of 5 min each, separated by 3 min breaks (iAG), or non-centrifuged control (CTRL). Cardiorespiratory demand during centrifugation was assessed at the beginning (HDT3) and end (HDT60) of the bed rest phase via spirometry and heart rate monitoring, leg muscle activation was monitored via electromyography.
On average, analyses of variance revealed that heart rate during centrifugation increased by 40% (iAG) and 60% (cAG) compared to resting values (
Daily 30 min bouts of artificial gravity elicited by centrifugation put a substantial demand on the heart as a pump without increasing oxygen consumption. If centrifugation is to be used as a countermeasure for the deteriorating effects of microgravity on physical performance, we recommend combining it with strenuous exercise.