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Respiratory sinus arrhythmia (RSA) represents a physiological phenomenon of

cardiopulmonary interaction. It is known as a measure of efficiency of the circulation

system, as well as a biomarker of cardiac vagal and well-being. In this article, RSA is

modeled as modulation of heart rate by respiration in an interactive cardiopulmonary

system with the most effective system state of resonance. By mathematically modeling

of this modulation, we propose a quantitative measurement for RSA referred to

as “Cardiopulmonary Resonance Function (CRF) and Cardiopulmonary Resonance

Indices (CRI),” which are derived by disentanglement of the RR-intervals series into

respiratory-modulation component, R-HRV, and the rest, NR-HRV using spectral

G-causality. Evaluation of CRI performance in quantifying RSA has been conducted

in the scenarios of paced breathing and in the different sleep stages. The preliminary

experimental results have shown superior representation ability of CRF and CRI

compared to Heart Rate Variability (HRV) and Cardiopulmonary Coupling index (CPC).

Keywords: heart rate variability, respiratory sinus arrhythmia, spectral G-causality, cardiopulmonary interaction,

coupled resonance

INTRODUCTION

There is an urgent need for quantitative assessment of autonomic nervous function. Heart rate
variability (HRV) is widely used as a non-invasive method. Particularly, low-frequency (LF, 0.04–
0.15Hz) and high-frequency (HF, 0.15–0.4Hz) spectral components of HRV are used as the
separate metrics of sympathetic and vagal(parasympathetic) functions (Appel et al., 1989). But as
a simplified framework, HRV lacks solid physiological foundation, is not able to accommodate
varieties of clinical cases (Hayano and Yuda, 2019). For example, HRV measures will change
significantly in different physiologic states such as wake and sleep, exercise and rest, circadian
rhythms, as well as with pathologic conditions (Task Force of the European Society of Cardiology
the North American Society of Pacing Electrophysiology, 1996).

Cardiopulmonary interaction plays important role in the circulation system, and physiologically
presents as respiratory sinus arrhythmia (RSA) phenomenon. RSA is regarded as a non-invasive
measure of parasympathetic cardiac control (Katona and Jih, 1975; Topcu et al., 2018). The vagal
origin of RSA can be found in the vagal synapses, which are faster than the sympathetic ones
and are therefore able to translate central respiratory oscillations present in the brainstem to
changes of cardiac sinus node discharge rate, which is not capable for slow sympathetic synapses.
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Tracking the autonomic regulation in RSA using the
electrocardiogram and respiratory measurements is a feasible
and important approach to gain our knowledge toward
autonomic nervous system and its clinical applications.

The quantitative study of RSA has profound significance
in physiology and pathology, as well as extensive clinical
applications. Some studies have shown that RSA reaches a
relatively stable state in deep sleep (Bernston et al., 1997) and
a study of the hibernation of 37 polar bears in the University
of Minnesota found that RSA reached their peak during the
hibernation. At the same time, as a vagal inflammatory reflex
was discovered (Tracey, 2002), quantification of the HRV
components, which are not directly related to respiration, is
important for the analysis of long-range and scaling properties
of the cardiac dynamics (Ivanov et al., 1999; Schmitt and Ivanov,
2007). Examples of application of RSA analysis include clinical
psychology (Wielgus et al., 2016), treatment of substance use
disorder (Price and Crowell, 2016), prediction of the course of
depression (Panaite et al., 2016), quantification of cardiac vagal
tone and its relation to evolutionary and behavioral functions
(Grossman and Taylor, 2007), quantification of vagal activity
during stress in infants (Ritz et al., 2012), and even in cancer
patients (Moser et al., 2006), to name just a few.

A variety of data analysis techniques quantifying RSA have
been proposed in the literature, for a discussion of commonly
used metrics and their advantages and drawbacks see, e.g.
(Lewis et al., 2012). The techniques quantifying RSA can be
divided into two categories, the time domain and the frequency
domain. In time domain, continuous wavelet transform (WTC)
is used for its advantage to analyze transient and non-linear
signals. This method demonstrates the dynamic behavior of
respiration sinus arrhythmia through the analysis of the WTC
between heart rate and respiration signals (Jan et al., 2019).
Phase analysis technique could help to disentangling respiratory
sinus in heart rate variability records, but the final HRV index
obtained by this technique is complex to calculate in time
domain, and its physiological significance is not clear (Topcu
et al., 2018). There are works which use respiratory and RR
sequences to calculate G-causality and system gain as the
measure of RSA. Much further work is needed to make these
produced measures useful in clinical research and applications
(Fonseca et al., 2013). In the frequency domain, HF of HRV
indicators quantifies RSA on specific frequency bands, while
Cardiopulmonary Coupling (CPC) measures the correlation
between RR interval and respiratory sequence in the frequency
domain. Both are empirical, without solid theoretical foundation
and systematic design, therefore serious clinical applications are
not seen so far (Thomas et al., 2005).

In the rest of this article, our contributions in developing
quantitative measures for RSA are described as follows:

In section Cardiopulmonary Resonance Model (CRM), we
model RSA as modulation of heart rate by respiration in an
interactive cardiopulmonary system with the most effective
system state of resonance. Mathematically, it is described by
bivariate autoregressive model of respiration series and RR
intervals, and quantitatively it is assessed by Granger causality
function. The whole model is referred to as Cardiopulmonary
Resonance Model (CRM).

In section Cardiopulmonary Resonance Indices (CRI), based
on the cardiopulmonary resonance concept, and Granger
causality function which is referred to as cardiopulmonary
resonance function (CRF) after, a set of quantitative measures
for RSA is proposed, and named as Cardiopulmonary Resonance
Indices (CRI).

In section Applications Scenarios, to show the effectiveness of
CRM and CRI, two application scenarios, paced breathing and
sleep stage discrimination, are studied. It has been shown that
CRF and CRI provide ideal visual interpretation and numerical
measures for cardiopulmonary interactions toward resonance
state in paced breathing scenario as the paced breathing rate
coming down to 0.1Hz. The same is true as the sleep stage moves
to deep sleep.

CARDIOPULMONARY RESONANCE
MODEL (CRM)

We are committed to building a cardiopulmonary resonance
model for the purpose of quantitative assessment of RSA with
hypothesis that cardiopulmonary interaction is important
in circulation system to ensure efficient delivery of oxygen
and nutrient, and that the efficiency is optimized at the
state of cardiopulmonary resonance. Mathematically, we
present a bivariate autoregressive model of respiration series
and RR intervals, calculate respiratory and non-respiratory
related component on RR intervals in the frequency domain
using Granger-causality.

Bivariate Autoregressive Model of
Respiration Series and RR Intervals
The cardiopulmonary interaction can be interpreted as
functional connectivity analysis such as synchrony (Engel and
Singer, 2001) and phase coherence (Nunez et al., 2001) and so
on. Our model takes direct central respiratory modulation of
the parasympathetic cardiac signal as the main mechanism for
RSA. A powerful technique for extracting directed functional
connectivity from data is Granger causality (G-causality)
(Granger, 1969). According to G-causality, X2causes X1 if the
inclusion of past observations of X2 reduces the prediction error
of X1 in a linear regression model of X1 and X2, as compared to a
model which includes only previous observations of X1.

The change process of RR can be regarded as a Markov
process, ignoring other factors affecting heart rate in
short term, we described the RR intervals(X1(t)) and
respiration signal(X2(t)) (both of length T) by a bivariate
auto-regressive model:

X1(t) =
p

∑

j=1
A11,jX1(t − j)+

p
∑

j=1
A12,jX2(t − j)+ ξ1(t)

X2(t) =
p

∑

j=1
A21,jX1(t − j)+

p
∑

j=1
A22,jX2(t − j)+ ξ2(t)

where p is the maximum number of lagged observations included
in the model (the model order, p< T). A contains the coefficients
of the model, and ξ1, ξ2 are the residuals for each time series.
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In order to ensure RR intervals in the normal range and
without amutation, we use interpolation as a substitute for points
that do not meet the following conditions:

|RRIi − RRI| < 1.5 ∗ Std(RRI)
0.7 ∗ RRIi−1 < RRIi < 1.3 ∗ RRIi−1

where RRI is the RR intervals, RRIi−1and RRIi are
adjacent intervals.

For each record around 120 s, under the assumption of
stationary property of signals, and for efficiency of computation,
we normalize the RR intervals and respiration series to zero-
mean and unit variance. The magnitude of RSA can be measured
by the log ratio of the prediction error variances for the restricted
(R) and unrestricted (U) models:

G2→1 = ln
var(ξ1R(12))

var(ξ1U)

where ξ1R(12) is derived from the model omitting the A12,j(for
all j) coefficients in the first equation and ξ1U is derived from the
full model.

The estimation of the model of each record requires as
a parameter the number of time-lags (p) to include, i.e., the
model order. A principle means to specify the model order is
to minimize a criterion that balances the variance accounted
for by the model, against the number of coefficients to be
estimated. We chose the Akaike information criterion (Akaike,
1974) for n variables in which the

∑

denotes the noise
covariance matrix:

AIC(p) = ln(det(
∑

))+
2pn2

T

Spectral G-causality of Respiration Series
and RR Intervals
For the dynamics of the cardiopulmonary system are easier to
understand and interpret in the frequency domain, we calculate
the Spectral G-causality of respiration series and RR intervals.

The Fourier transform of the bivariate auto-regressive model
in time domain gives:

(

A11(f ) A12(f )
A21(f ) A22(f )

) (

X1(f )
X2(f )

)

=

(

E1(f )
E2(f )

)

in which the components of A are

Alm(f ) = δlm −

p
∑

j=1

Alm(j)e
(−i2π fj),

δlm = 0(l = m), δlm = 1(l 6= m)

E is the Fourier transform of the residual matrix.

For the sake of calculation, we rewrite it as

(

X1(f )
X2(f )

)

=

(

H11(f ) H12(f )
H21(f ) H22(f )

) (

E1(f )
E2(f )

)

where H is the transfer matrix. The spectral matrix S can now be
derived as

S(f ) =
〈

X(f )X∗(f )
〉

=
〈

H(f )
∑

H∗(f )
〉

in which the
∑

denotes the noise covariance matrix.
A split of U into sub-processes X and Y includes

a decomposition

S(f ) =

(

Sxx(f ) Sxy(f )
Syx(f ) Syy(f )

)

of the cross-power spectral density and a similar decomposition
for the transfer function H(f).
Then Sxx(f ) is the spectral density of X, which is given by

Sxx(f ) = Hxx(f )
∑

xxH
∗
xx(f )+ 2 Re{Hxx(f )

∑

xyH
∗
xy(f )} +Hxy(f )

∑

yyH
∗
xy(f )

Thus, we can get the Spectral G-causality of respiration series and
RR intervals:

GY→X(f ) = ln

(

|Sxx(f )|

|Sxx(f )−Hxy(f )
∑

y|xHxy(f )
∗|

)

∑

y|x ≡
∑

yy −
∑

yx

∑

−1
xx

∑

xy

where
∑

denotes the residual covariance matrix.
For the non-respiratory components, we get:

GN−RESP(f ) = 1-GY→X(f )

Now we have both the measurement of respiratory and the non-
respiratory components effects on RR intervals in the frequency
domain, R-HRV and NR-HRV, respectively. Here we focus on
the spectral G-causality of respiration series and RR intervals,
GY→X(f). For convenience, we simply write it as G(f), and
rename it as Cardiopulmonary Resonance Function (CRF) in the
rest of this article.

CARDIOPULMONARY RESONANCE
INDICES (CRI)

With cardiopulmonary resonance function (CRF), we are now
able to establish a quantitative measurement for RSA, referred
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to as Cardiopulmonary Resonance Indices (CRI), with the hope
that it will be able to play a role in quantifying cardiopulmonary
system efficiency, and as a biomarker for cardiac vagal tone
and well-being, on the basis of CRF and key concept of
cardiopulmonary resonance.

Figure 1A shows the power spectral curves of RR interval
series and respiration series, as well as the corresponding
cardiopulmonary resonance function, G(f). G(f) represent the
strength of RSA, the modulation of respiration to heart rate.
G(f) is a monotonic function of frequency f with single peak
around the main respiration frequency, can be considered as
the spectral energy distribution function of cardiopulmonary
resonance system. The cardiopulmonary resonance indices (CRI)
consists of the following numerical measure:

A) Cardiopulmonary Resonance Amplitude (CRA) is defined
as the maximum of Cardiopulmonary resonance function G(f):

CRA ≡ MaxCRF

Refer to Figure 1B, in consideration of the main frequency
bands of heart rate variability and respiration rate, G(f) is
plotted in the frequency range of 0.0033–0.5Hz. Denote the
frequency where the maxima ofG(f) appears as cardiopulmonary
resonance frequency fA. CRF is around main respiration rate.

FIGURE 1 | Illustration of Cardiopulmonary Resonance Function (CRF) and

Cardiopulmonary Resonance Indices (CRI). (A) the power spectral curves of

RR interval series and respiration series, as well as the corresponding

cardiopulmonary resonance function, G(f). (B) the schematic diagram of CRA

and CRW. CRA is taken from the maximum point of G(f) (CRF); CRW, the

bandwidth of CRF as indicated by the bi-directional arrow line.

In free breathing, respiration rate is around 0.20–0.30Hz, in the
range of HRV high frequency. That is the point of consistence
between HRV_HFmeasure and RSA strength in representing the
regal level. As we will see in the next section paced breathing
experiments, as paced breathing frequency down to 0.1Hz, both
RSA energy and HRV energy shall move and focus around 0.1Hz
as well. In this case, the hypothesis of HRV_HF representing regal
activity may not hold.

B) Cardiopulmonary Resonance bandWidth (CRW). As
shown in Figure 1B, CRW is defined as the CRF bandwidth, the
degree of RSA energy concentration. CRA and CRW are related.
While CRW is narrow, CRA is big.

C) Cardiopulmonary Resonance Quality factor (CRQ). CRQ
is defined to measure the merit of the cardiopulmonary
resonance system by adopting the quality factor measure
for inductor, capacitor, and resistor LCR oscillator where
interaction between lung and heart resemble the energy flow
between inductor and capacitor, while non-respiration factors are
equivalent to resistor, damping the resonance. Mathematically,
CRQ is defined as

CRQ =
fA

CRW

Considering the physiological functions, RSA serves to minimize
the energy expenditure of the heart while keeping arterial
CO2 levels at physiological tensions. CRQ measures the
energy conversion of the system. The lower the dissipation
energy, the higher the quality factor and metabolic efficiency.
High CRQ indicates high efficiency of cardiopulmonary
metabolic system and relatively healthy physiological and
psychological state.

APPLICATIONS SCENARIOS

In this section, two application scenarios are presented to
demonstrate the descriptive power of CRF and CRI, as well as
the application potentials.

Paced Breathing
Experiment Design
HRV biofeedback has been used for the treatment of depression
and other autonomic related problems. HRV biofeedback uses

TABLE 1 | Baseline Demographic Characteristics of 30 Participants and p-value

between 15 men and 15 women.

Characteristics Men(15) Women(15) p

Age (y) 24.40 ± 2.830 23.50 ± 2.134 0.631

Height (cm) 175.53 ± 4.872 163.31 ± 4.457 0.035

Weight (kg) 68.33 ± 8.205 57.81 ± 6.304 0.025

SBP (mm Hg) 110.50 ± 9.375 109.90 ± 6.845 0.302

DBP (mm Hg) 68.30 ± 6.521 64.40 ± 8.347 0.413

Data presented as mean ± standard deviation.
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HRV measures, mainly time domain and frequency domain,
as feedback cues to guide the subject performing slow paced
breathing in order to reach resonance state. The objectives
of paced breathing in HRV biofeedback is to gain level of
parasympathetic nerves activity and improve the autonomic
balance. As such, the measures of current status of the subject
play most important role in biofeedback process. So far in
the HRV biofeedback HRV measures are used, while HRV
measures have problems in representing autonomic regulation
status (Vaschillo et al., 2006).

The essential physiological phenomenon of the slow and
deep paced breathing in HRV biofeedback is respiration sinus
arrhythmia (RSA). The level of RSA should be the natural
measure as biofeedback cues. As the quantitativemeasure of RSA,
CRF and CRI provide the best visual cue and numerical cues
for biofeedback.

During the paced breathing, Cardiopulmonary Resonance
Amplitude (CRA) could help us find the optimal respiratory
rate for individuals which is usually around 0.1Hz. The process
of training is the process of making CRA keep approaching
1. As we go from the resting state to paced breathing rate
coming down to 0.1Hz, with the frequency decreases, CRA gets
bigger and the bandWidth CRW gets smaller. The frequency
of obtaining the maximum value of CRA is the personalized
resonance frequency of the subject and also the frequency
of biofeedback. As an indicator of cardiopulmonary system
metabolism, cardiopulmonary resonance quality factor (CRQ)

indicates efficiency of cardiopulmonary metabolic system and
relatively healthy physiological and psychological state.

This study was carried out in accordance with the
recommendations of guidelines of ethical review of clinical
research ethics committee of China-Japanese Friendship
Hospital. The number is 2019-GZR-138. The protocol was
approved by the clinical research ethics committee of Beijing
China-Japanese Friendship Hospital. All participants signed
informed consent forms. We collected data from 30 healthy
adults in ages of 20–30. The baseline demographic characteristics
of 30 participants are shown in Table 1. The subjects’ age, height,
weight, and mean systolic and diastolic blood pressure were
counted and presented as mean ± standard deviation. The
paired t-test showed there were no significant differences in
age, systolic and diastolic blood pressure between the male and
female groups.

The data is collected using one intelligent hardware, worn on
the wrist (Figure 2). We collected one-lead ECG and respiratory
signals of everyone from resting to biofeedback status. The
whole process is recorded. During the process of paced breathing
rate down to about 0.1Hz, we use our method to find the
individual resonant frequency for every trainee: Starting from
the resting state of the subjects, the breathing rate was gradually
reduced at 0.01Hz intervals guided by voice and image on the
computer. Each breathing rate was maintained for at least 1min.
It can be seen that Cardiopulmonary Resonance Amplitude
(CRA) gradually increases as the respiratory rate decreases

FIGURE 2 | The wearable hardware device used to collect ECG and respiration signals.

FIGURE 3 | G(f) (CRF) and corresponding HRV, R-HRV, and NR-HRV in frequency domain.
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and reaches its maximum value around 0.1Hz. The frequency
of obtaining the maximum value of CRA is the personalized
resonance frequency of the subject and also the frequency
of biofeedback.

Statistical Analysis
To demonstrate the advantage of CRI in paced breathing
compared to HRV, we calculated the Cardiopulmonary
Resonance Indices (CRI) and HRV in different statues. In order
to represent CRF and CRA visually, we draw the CRF curves
in the frequency domain with HRV in four status of paced
breathing from resting status to biofeedback status. The repeated
one-way ANOVA, followed by Dunnett’s post hoc test was used
to represent the significant difference from resting state to
biofeedback state of CRI in the breathing training.

CRF and CRI in Paced Breathing
CRF measures the effect of respiration on current heart rate
changes in the frequency domain. CRF and corresponding HRV,
R-HRV, and NR-HRV in the frequency domain are shown in
Figure 3.

Respiratory effects in different physiological states have
different effects on heart rate. These effects can be directly seen
from the power spectrum calculated by spectral G-causality,
which is closely related to the current breathing rate of the
subjects. CRF expresses the cardiopulmonary interaction at the
current time in the frequency domain.

To demonstrate the advantage of CRI in paced breathing
compared to HRV, the CRF, HRV, and respiratory power
spectral density of one subject of the 30 participants in the
experiment from resting to biofeedback status are illustrated
in Figure 4. The blue lines show respiratory power spectral

FIGURE 4 | A typical power spectral density curves of respiratory, HRV and corresponding cardiopulmonary resonance function CRF in the frequency domain of a

subject for 4 cases of breathing at resting state. From the top: free breathing, paced breathing at frequency of 0.33, 0.26, and 0.12Hz. It can be seen that paced

breathing increases the strength of RSA, and that as the frequency of paced breathing coming down toward, the cardiopulmonary resonance phenomenon becomes

stronger, which is very well-captured by the cardiopulmonary resonance function. It can also seen that as the paced breathing frequency approaches 0.1Hz, around

which there is an optimal resonance state for the subject, where HRV_HF is small. That is to say that CRI do represent level of parasympathetic nervus activity at

various cases, while HRV do not.
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density, orange lines show HRV and black lines show CRF.
From the top: free breathing, paced breathing at frequency of
0.33, 0.26, and 0.12Hz. It can be seen that paced breathing
increases the strength of RSA, and that as the frequency of paced
breathing coming down toward, the cardiopulmonary resonance
phenomenon becomes stronger, which is very well-captured by
the cardiopulmonary resonance function. We can also see that
as the paced breathing frequency approaches 0.1Hz, around
which there is an optimal resonance state for the subject, where
HRV HF is small. That is to say that CRI do represent level
of parasympathetic nervus activity at various cases, while HRV
do not.

The higher degree of cardiopulmonary coupling during paced
breathing, the respiration accounts for a higher proportion
of HRV. In the resting state, HRV produced by breathing
is weak, then NR-HRV can reflect the influence of other
physiological activities on heart rate through autonomic
nervous activity.

As can be seen from the figure, with the change of
respiratory rate, the distribution of CRF and HRV both shift
in the corresponding frequency bands. The distribution of
the frequency band of HRV is closely related to the change
of respiratory frequency, so the degree of biofeedback can
be observed from respiration frequency shift (Vaschillo et al.,
2006). However, there is no quantitative measure between
the peak value of HRV and the respiratory frequency within
HRV biofeedback to describe the intensity and depth of
cardiopulmonary interaction. Meanwhile, HRV cannot be used
as a measure of RSA due to its low repeatability and large
individual differences.

On contrary, CRF show a clear trend in paced breathing.
Generally, we calculated CRI in four different states from
resting to biofeedback status (from 1 to 4) in Table 2. The
repeated one-way ANOVA was used to test the differences of
CRI in the four states (p < 0.05). In Table 2, the p-values
of CRA, CRW and fAare smaller than 0.05, and the p-value
of CRQ is bigger than 0.05. The results showed that CRA,
CRW and fA have significant differences in the four status.
CRQ is defined to measure the merit of the cardiopulmonary
resonance system, and did not change significantly at different
respiratory rates. In order to confirm the significance and stability
of the differences between CRA and CRW in the four states
further, we performed Dunnett’s post hoc test shown in Table 3.
As we can see, CRA increases and CRB decreases during the
training. In the most of the pairwise comparisons of state
1, 2, 3, and 4, CRA and CRW show significant differences.
These two indicators together represent the intensity of a
person’s cardiopulmonary interaction and reflect the activity and
regulatory capacity of the human vagus nerve with repeatability
and stability.

We can see that CRF and CRI could provide ideal visual
interpretation and numerical measures for cardiopulmonary
interactions toward resonance state in paced breathing scenario.
CRF can be used to analyze the human body in different
physiological states, get cardiopulmonary coupling value
accurately, and analyze the regulation process of human
sympathetic and parasympathetic nerves.

TABLE 2 | Cardiopulmonary Resonance Indices for the 4 cases of breathing: free

breathing and 3 paced breathing at frequency of 0.33, 0.26, and 0.12Hz.

1 2 3 4 p

CRA 0.640 ± 0.004 0.710 ± 0.003 0.810 ± 0.005 0.991 ± 0.004 0.003

CRW 0.250 ± 0.030 0.170 ± 0.021 0.130 ± 0.020 0.075 ± 0.021 0.004

fA 0.360 ± 0.030 0.301 ± 0.030 0.201 ± 0.021 0.110 ± 0.020 0.002

CRQ 1.440 ± 0.375 1.760 ± 0.313 1.541 ± 0.240 1.470 ± 0.304 0.146

The p-value represents the result of the a repeated measures one-way ANOVA. P values

show that there is a significant difference between the groups in CRA, CRW and fA

(P < 0.05).

TABLE 3 | Dunnett’s post-hoc test of CRA and CRW for the 4 cases of breathing:

free breathing (1), and 3 paced breathing at frequency of 0.33Hz (2), 0.26Hz (3),

and 0.12Hz (4).

Comparative CRA CRW

group

Difference of LSR (p = 0.05) Difference of LSR(p = 0.05)

the mean the mean

4 and 1 0.351 0.097 0.175 0.047

4 and 2 0.281 0.096 0.095 0.045

4 and 3 0.181 0.096 0.055 0.045

3 and 1 0.170 0.095 0.120 0.042

3 and 2 0.100 0.095 0.040 0.040

2 and 1 0.070 0.095 0.080 0.040

If the value of Difference of the mean > LSR, there is a significant difference between the

groups being compared (p < 0.05).

Sleep Stage Discrimination
Experiment Design
Cardiopulmonary Coupling index (CPC) was proposed by
Thomas et al. (2005) in 2005, which measures the spectral
correlation between heart rate sequence and respiratory signal.
Therefore, CPC can be a candidate providing measures for RSA.
CPC is defined as the product of the average cross-spectral power
divided by the average power of each signal as below.

CPC(fn) =
〈

Ŵn(R,E)
〉2

3n

3n =
〈Ŵn (R,E)〉2
〈

R̂2n

〉 〈

Ê2n

〉

in which Ŵn(R,E) denotes the cross spectrum of RR intervals
and respiratory signals. CPC reflects the degree of sleep and
respiratory rhythm disorder through the high frequency, low
frequency and very low-frequency parts with a different energy.
It overcomes the shortcomings and defects of the HRV method
used in the analysis alone. At present, this method has been
widely used in the field of evaluating sleep quality and judging
sleep and breathing disorders (Yang et al., 2011).
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In sleep stage discrimination, we used data from the MIT-
BIH database (Ichimaru and Moody, 1999) which has sleep
stage labels from polysomnography (PSG). CRI in different sleep
stage was calculated and a comparative study was conducted by
using Cardiopulmonary Coupling index (CPC) in sleep stage
classification. Except for the heart rate, HRV, and respiratory
rate, CRA, CRW, and fA extracted from CRF, meanwhile LF, HF,
and LF/HF extracted from CPC are, respectively, used in the
classification task to test sleep stage of the subject.

In the experiment, the classifier needs to identify four different
sleep stages, including awake, REM, light sleep, and deep

FIGURE 5 | DTB-SVM model for classifying the sleep stages. First, a classifier

is used to separate the awake phase and the sleep phase, and then within the

sleep phase, the REM phase and the NREM phase are separated, and finally

the light sleep and deep sleep are separated by the last classifier.

sleep. SVM is not able to solve multi-category classification
problems directly, but the combination of SVM and decision tree
(called DTB-SVM) can be used to solve multi-class classification
problems. Based on the structural characteristics of the sleep
cycle and the physiological features used in sleep classification,
we used three SVM models to classify the sleep stages. As shown
in Figure 5, firstly, a classifier is used to separate the awake phase
and the sleep phase, and then within the sleep phase, the REM
phase and the NREM phase are separated, and finally the light
sleep and deep sleep are separated by the last classifier. RBF
kernel was used in the model. In order to prevent over-fitting,
we selected the optimal parameters in the way of K-fold cross-
validation and grid search. For the features of CPC and CRI,
classifiers of same structure were used to classify the sleep stages.

Statistical Analysis
The confusion matrix was used to explain the accuracy of sleep
classification results and to compare the performance of CRI and
CPC in classification tasks. Each row of the matrix represents the
prediction category, and the total number of each row represents
the number of data predicted for that category. Each column

TABLE 4 | Cardiopulmonary Resonance Indices of one subject in different sleep

stages of a whole night.

Wake REM Light Deep

CRA 0.648 ± 0.004 0.674 ± 0.004 0.734 ± 0.003 0.993 ± 0.004

CRW 0.280 ± 0.011 0.231 ± 0.011 0.163 ± 0.010 0.053 ± 0.013

fA 0.300 ± 0.020 0.290 ± 0.017 0.25 ± 0.016 0.230 ± 0.010

CRQ 1.071 ± 0.230 1.255 ± 0.227 1.534 ± 0.161 4.340 ± 0.102

Data presented as mean ± standard deviation.

FIGURE 6 | G(f) (CRF), CPC, power spectral density of HRV and respiration. By definition, cardiopulmonary resonance function CRF, reflects the strength of RSA, with

the peak near the mean of the respiration rate, while CPC is the correlation between HRV and respiration with respect to their power spectrum, having multiple peaks.

As the name indicated, CRF well capture the resonance nature of cardiopulmonary system.
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represents the true category to which the data belongs, and the
total number of data in each column represents the number of
data instances in that category.

The effectiveness of the features was measured by the ratio
of intra-class divergence and inter-class divergence. The ratio
between intra-class divergence and inter-class divergence is
defined and calculated as follows (Zhou et al., 2010):

Let (X, y)ǫ(Rn × y) be a sample, where Rn is an n-dimensional
feature space and y = {1,2,....,s} is the label set. Li is the number
of samples in the ith class, and l is the total number of samples.
Let Xij denote the jth sample in the ith class,mi the sample mean
of the ith class, and m the sample in the ith class, mi the sample
mean of the ith class, and m the sample mean of all class. The
within-class scatter matrix SW , between-class scatter matrix SB
are defined as

Sw =

s
∑

i=1

li
∑

j=1

(Xij −mi)(Xij −mi)
T

SB=

s
∑

i=1

li(mi −m)(mi −m)T

Large class separability means small within-class scattering and
large between-class scattering. A combination of two of them can
be used as a measure, |SW |/|SB|, where |·| denote the determinant
of a matrix. The smaller the ratio, the better the effect of the
feature on classification.

In order to demonstrate the good performance of CRI in sleep
classification task, we compared the confusion matrix of CRI and

TABLE 5 | The divergence analysis of the features of CPC and CRI in the sleep

classification task.

LF_CPC HF_CPC CRW CRA fA_CRI

|SB |/|SW | 7.290 5.365 0.302 1.930 2.311

LF_CPC and HF_CPC are the LF and HF features of CPC, CRW, CRA, and fA_CRI are

the features of CRI.

CPC classification results. Then, in order to express the role of
features further, we conducted the divergence analysis on the
features of CRI and CPC. The results showed that CRI was more
effective than CPC in sleep classification task, especially in the
deep sleep recognition.

CRI in Different Sleep Stages Compared to CPC
To visually compare the difference between CRI and CPC,
Figure 6 shows the CPC, HRV, and CRF of one subject.
It contains HRV (0.14Hz as the demarcation line between
high frequency and low frequency), respiration power spectral
density, CPC index and G(f), which are all discussed in the
frequency domain.

CPC represents the correlation of RR intervals and respiratory
signal. It shows that CPC has multiple peaks in the full
frequency band. In low-frequency band, for HRV analysis, people
usually think sympathetic nerve and parasympathetic nerve
interact together, and CPC also shows a spike which indicates
a high correlation between respiration and RR intervals, such
as blood pressure, etc. It is difficult to find an exact indicator
representing the cardiopulmonary coupling state from CPC.
Physiologically, RSA, the strength of respiration modulation
of heart rate should appear as CRF, cannot be multiple
peaks as CPC.

The indices of one subject in four different sleep stage of
one night are shown in Table 4. It shows that our indices could
express the cardiopulmonary interaction phenomenon and the
degree of cardiopulmonary coupling resonance in different sleep
stages.Table 5 shows the performance of CRI indicators and CPC
indicators on the whole data set in the classification task. CRW,
CRA, fAare smaller than LF_CPC and HF_CPC. The results

TABLE 7 | The divergence analysis of the features of CPC and CRI in the deep

sleep and light sleep.

LF_CPC HF_CPC CRW CRA fA_CRI

|SB |/|SW | 8.312 5.432 0.530 1.106 2.867

LF_CPC and HF_CPC are the LF and HF features of CPC, CRW, CRA, and fA_CRI are

the features of CRI.

TABLE 6 | Confusion matrix of sleep stage classification using CPC and CRI.

Actual predicted Wake REM Light Deep

CPC CRI CPC CRI CPC CRI CPC CRI

Wake 1557 1561 44 44 305 307 50 25

REM 27 30 356 355 97 100 8 12

Light 219 220 88 89 3994 4034 115 87

Deep 13 5 5 5 77 32 259 308

Total 1816 1816 493 493 4473 4473 432 432

Accuracy 85.74% 85.96% 72.21% 72.01% 89.29% 90.19% 59.95% 71.30%

Each value in the table represents the number of samples. At each position in the obfuscation matrix, the values on the left represent the results of CPC, and the values on the right

represent the results of CRI. CRI shows superiority in identifying deep sleep, more than 11% higher than CPC.
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FIGURE 7 | G(f) (CRF) and CPC in light sleep (top) and deep sleep (bottom).

show that the CRI features including CRW, CRA, fA performed
better than CPC features including LF_CPC and HF_CPC in the
classification task.

The classification results of CRI and CPC were statistically
analyzed, respectively, in Table 6. It shows that CRI shows
superior in distinguishing deep sleep stage than CPC. The overall
accuracy of the classification went up 1.28%. Particularly shown
in Table 6, great progress has been made in distinguishing
between deep sleep and light sleep, and the recognition rate
of deep sleep has been increased by 11.35%. It shows that
CRF performances better than CPC, especially in the distinction
between light sleep (NREM_1 and NREM _2) and deep sleep
(NREM_3 and NREM _4).

The performance of CPC and CRF in deep sleep and light
sleep is shown in Figure 7. In the deep sleep stage, CRF
shows more concentrated and indicators we proposed are good
indications of this phenomenon. It provides meaningful features
for the distinguishing of the two. To illustrate the role of CRI
in deep sleep recognition, divergence analysis of the features of
CPC and CRI in the deep sleep and light sleep was performed
in Table 7. It shows the performance of CRI indicators and
CPC indicators for distinguishing the deep sleep stage. CRW,
CRA, fAare much smaller than LF_CPC and HF_CPC. It shows
that CRI features CRW, CRA, fA performed much better than
CPC features LF_CPC and HF_CPC. In the deep sleep, the
cardiopulmonary system has the highest metabolic efficiency and
the smallest dissipated energy, and the body and mind of the
human body can fully rest and recover. This suggests that CRI
is a good indicator for different sleep status especially the deep
sleep of human body.

The shortcomings of the CPC are obvious. CPC calculates
the correlation between RR interval and respiratory signal,
with the shape of multiple peaks. Physiologically, RSA, the

strength of respiration modulation of heart rate should appear
as CRF, cannot be multiple peaks as CPC. Through the study
of CRI and Cardiopulmonary Coupling (CPC) in distinguishing
deep sleep stage, we got the conclusion that CRI does capture
physiologically meaningful characteristics of RSA, therefore, well
reflect autonomic status in sleep stages. CRI represents the degree
of cardiopulmonary resonance, and reflects parasympathetic
nerve activity level well.

CONCLUSION

Respiratory sinus arrhythmia (RSA) represents a physiological
phenomenon of cardiopulmonary interaction. It is known
as a measure of efficiency of the circulation system, and a
biomarker of cardiac vagal and well-being. In this article,
we model RSA as modulation of heart rate by respiration
in an interactive cardiopulmonary system with the most
effective system state of resonance. Mathematically, it is
described by bivariate autoregressive model of respiration
series and RR intervals, and quantitatively it is assessed by
Granger causality function. The whole model is referred to
as Cardiopulmonary Resonance Model (CRM). This method
has significant physiological significance in the frequency
domain and is convenient for us to explain the experimental
results. We suggest using this approach as a universal
prepossessing technique which allows a researcher to concentrate
on particular properties of the HRV data. Then based on
the cardiopulmonary resonance concept, and Granger causality
function which is referred to as cardiopulmonary resonance
function (CRF) here after, a set of quantitative measures for
RSA is proposed, and referred to as Cardiopulmonary Resonance
Indices (CRI).
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To show the effectiveness of CRM and CRI, two application
scenarios, paced breathing and sleep stage discrimination, are
studied. It is shown that CRF and CRI provide ideal visual
interpretation and numerical measures for cardiopulmonary
interactions toward resonance in paced breathing scenario
as the paced breathing rate coming down to biofeedback
status, and as the sleep stage moves to deep sleep. We
draw the conclusion that CRI well represents the degree of
cardiopulmonary resonance, and reflects parasympathetic nerve
activity level.We think it’s a good explanation of the physiological
function of RSA and it is also good way to quantify the well-being
of human body.

This study has certain limitations. As a measure of RSA under
static conditions, CRI was not compared with sympathetic and
parasympathetic activity indexes obtained by tilt experiment, nor
was it tested under different pathological conditions. We plan to
carry out relevant research in the future. In addition, we plan
to explore the clinical significance of CRQ and the effects of
other physiological activities on heart rate based on NR-HRV
data in time and frequency domain. We will gradually accurately
analyze the regulatory effects of the autonomic nervous system
on various physiological organs and activities through the
regulation activities of the autonomic nervous system. It is
of great significance for us to understand and monitor the
regulation process of the autonomic nervous system in different
physiological states.
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