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P-STATS3 Inhibition Activates
Endoplasmic Reticulum
Stress-Induced Splenocyte
Apoptosis in Chronic Stress

Manyu Song, Chaoran Wang, Haotian Yang, Yongping Chen, Xiujing Feng, Bei Li and
Honggang Fan*

College of Veterinary Medicine, Northeast Agricultural University, Harbin, China

Chronic stress leads to immunosuppression and induces splenocyte apoptosis. STAT3
is a transcription factor that regulates immunity and apoptosis; however, it is unclear
whether the increased expression of phosphorylated STAT3 (p-STAT3) observed in
chronic stress is related to splenocyte apoptosis. To explore the relationship between
splenocyte apoptosis and STAT3 in chronic stress, we treated rats undergoing a 21-
day chronic restraint stress program with the STAT3 inhibitor S3I-201. This chronic
stress model was verified by observing rats’ behavior and measuring their serum
corticosterone levels. Chronic stress led to increased expression of anti-inflammatory
cytokines, and p-STAT3 inhibition enhanced splenocyte apoptosis in chronic stress.
We detected key proteins in three apoptotic pathways to determine which pathway
mediated increasing splenocyte apoptosis and found that the death receptor pathway
was the main apoptotic pathway that occurred in the spleen during chronic stress.
The unfolded protein response (UPR) was also activated, but the Bcl-2 family was
not involved in chronic stress. P-STAT3 inhibition had no influence on the Bcl-2 family
and the death receptor pathway; however, p-STAT3 inhibition disrupted the pro-survival
function of the UPR by decreasing the expression of ATF6a and p-IRE1a. Furthermore,
p-STATS inhibition activated endoplasmic reticulum stress by promoting the expression
of CHOP, p-JNK, and procaspase-12. Collectively, these findings indicate that the
increased p-STAT3 expression during chronic stress may promote splenocyte survival
by activating the UPR. Consequently, STAT3 and the UPR may be considered as
potential therapeutic targets for chronic stress in the future.

Keywords: chronic stress, STAT3, apoptosis, endoplasmic reticulum stress, unfolded protein response

INTRODUCTION

Stress is the response that occurs when the body is threatened by stressors (Johnson et al., 1992).
It can be divided into acute stress and chronic stress depending on its duration. During chronic
stress, the hypothalamic-pituitary-adrenal (HPA) axis is the main neuroendocrine system that
mediates various physiological and pathological changes (Charmandari et al., 2005). However,
prolonged activation of the HPA axis can inhibit the protective immune responses and/or aggravate
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pathological immune responses, which is one of the factors
by which chronic stress influences the onset and progression
of various clinical diseases (Schneiderman et al, 2005). It
has been reported that chronic stress results in thymic
degeneration, Th1/Th2 imbalance, splenocyte apoptosis, and so
on (Dominguez-Gerpe and Rey-Mendez, 2001).

STATS3 is a critical transcription factor that participates in
the repair of damaged tissues by promoting cell proliferation
(Levy and Lee, 2002) and can also enhance the survival of
cells by increasing the expression of anti-apoptotic proteins.
Programmed cell death is mainly mediated by the death receptor,
mitochondrial, and endoplasmic reticulum (ER) stress pathways.
Multiple studies have shown that STAT3 promotes the expression
of anti-apoptotic proteins of the Bcl-2 family, which play roles
in the mitochondrial pathway to inhibit apoptosis (Haga et al.,
2003; Zaanan et al., 2015; Maji et al., 2019). The overexpression
of STAT3 reduces hepatocyte apoptosis mediated by Fas (Ivanov
et al, 2001), and activation of STAT3 inhibits ER stress to
reduce cardiomyocyte apoptosis (Wang et al., 2014). On the
other hand, many studies have reported that STAT3 also inhibits
cell proliferation, for instance, in mediating breast degeneration
(Morris et al., 2020) and inhibiting proliferation in certain tumor
types (Musteanu et al., 2010; Couto et al., 2012).

STAT3 is also widely involved in adaptive and innate
immunity and is activated by multiple cytokines to either
promote or inhibit inflammation (Kortylewski et al.,, 2005; Yu
et al, 2009). Anti-inflammatory cytokines are released into
the blood during chronic stress upon activation of the HPA
axis. Chronic stress was shown to activate STAT3 via IL-
10 in spleens of rats treated with a 3-day restraint process
(Hutchins et al.,, 2013). STAT3 also plays an important part
in the development and function of many immune cells.
Mice lacking the STAT3 gene in macrophages and neutrophils
have been reported to exhibit Thl dominance (Takeda et al.,
1999). Immunosuppression caused by chronic stress often
involves a decrease in Thl cytokine levels with a corresponding
increase in Th2 cytokine levels (Elenkov and Chrousos,
1999). During chronic stress, phosphorylated STAT3 (p-STAT3)
inhibition decreases the expression of IL-12, which mediates
the differentiation of Thl cells (Hutchins et al., 2013). Chronic
stress also results in splenocyte apoptosis. However, whether
and how STAT3 participates in splenocyte apoptosis in chronic
stress remain unknown.

In this work, we investigated the relationship between the
high expression levels of p-STAT3 and splenocyte apoptosis,
using rats treated with a p-STAT3-specific inhibitor, S3I-
201. Furthermore, we explored signaling pathways mediating
splenocyte apoptosis in chronic stress, in particular, the effects of
STATS3 inhibition in the spleen.

MATERIALS AND METHODS

Animals

Adult male Wistar rats (180-220 g) were purchased from the
Experimental Animal Center of Harbin Medical University
(Harbin, China). All rats were bred under a 12 h/12 h light/dark

cycle (lights on from 6:00 to 18:00) at a temperature of 22 £ 1° C
and were given free access to water and food for 7 days. All animal
studies were approved by the Animal Experimental Committee
of Northeast Agricultural University, Harbin, China (IACUC:
SRM-11). The experiments were carried out in accordance with
the National Institutes of Health Guide for Care and Use of
Laboratory Animals.

Experimental Model

Thirty-six rats were randomized to six groups, with six rats in
each group. The control (C) group consisted of untreated rats, the
chronic stress (CS) group was treated with a restraint program,
and the control 4+ S3I-201 (C + S31-201) group was treated with
a p-STAT3 inhibitor every 2 days. In the chronic stress + S3I-
201 (CS + S3I-201) group, rats were treated with a p-STAT3
inhibitor every 2 days while undergoing the 21-day restraint
stress program, the control + DMSO (C + DMSO) group was
treated with 5% dimethyl sulfoxide (DMSO) every 2 days, and
rats in the chronic stress + DMSO (CS + DMSO) group were
treated with 5% DMSO every 2 days while undergoing the 21-day
restraint stress program.

Rats in the CS, CS + S31-201, and CS + DMSO groups were
restrained using fixators with good ventilation for 6 h daily (9:00-
15:00) for 21 days.

The p-STAT3 inhibitor S31-201 was dissolved in 100%
DMSO (BioFroxx, Einhausen, Germany) and diluted with
corn oil (Aladdin, Shanghai, China) to 5%. S3I-201 (5 mg/kg,
MedChemExpress, NJ, United States) was administered
intraperitoneally 1 h before the daily restraint program, every
2 days for 3 weeks (Johnson et al, 2013; Zhou et al., 2015;
Huang et al., 2016).

During the 21-day restraint program, no food or water was
available for any of the rats from 9:00 to 15:00; at other times,
they could eat and drink freely.

Open-Field Test

Rats were individually placed in the corner of a wooden square
arena (100 cm x 100 cm x 40 cm) and allowed to explore freely
for 3 min. On the monitor, the bottom of the box was divided into
25 squares (20 cm x 20 cm); the surrounding area was defined as
the outer area, and the rest was the central area. The behavior of
rats, including total distance of movement, line crossing number
(frequency with which the rats crossed one of the grid lines with
all four paws), center square duration (duration of time the mice
spent in the central area), and number of rearing (frequency of
both forelimbs being off the ground), was recorded using the
SuperMaze software (Shanghai Xinruan Information Technology
Co., Ltd, Shanghai, China) to verify that the model had been
successfully established. The arena was cleaned with 70% ethanol
and thoroughly dried between sessions.

Measurement of Serum Corticosterone

Levels

After the open-field test, all rats were sacrificed to collect blood
and spleen samples for further experiments. Blood samples
were stored at room temperature for 30 min. Blood serum
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was obtained by centrifugation at 3,000 rpm for 10 min at
4° C. The concentration of corticosterone in the blood serum
was measured using a Rat Corticosterone ELISA Kit (Nanjing
Jiancheng Bioengineering Institute, Nanjing, China) according to
the manufacturer’s instructions.

Histopathology

Spleen samples obtained from each group were immersed in
10% buffered formalin for 24 h. After gradient elution using
ethanol and embedding in paraffin, spleens were sliced into
5-pm-thick sections and stained with hematoxylin and eosin
(H&E) after routine dewaxing. Sections were observed under a
light microscope (BX-FM; Olympus Corp, Tokyo, Japan), and
images were captured using the camera (Canon, Tokyo, Japan)
with the software provided.

Detection of Apoptosis by TUNEL Assay
Paraffin-embedded spleen tissue sections were deparaffinized and
rehydrated after warming for 30 min. Terminal transferase-
mediated dUTP nick end labeling (TUNEL) of nuclei was
performed using a TUNEL Apoptosis Assay Kit (11684817910,
Roche, Basel, Switzerland) according to the manufacturer’s
protocol. Images were acquired with a Nikon Eclipse Ni inverted
microscope (TE2000, Nikon, Tokyo, Japan) after antifluorescence
quenching. Five visual fields (magnification: 200x) of each
section were randomly selected, and the number of positive
nuclei in spleens was counted using Image-Pro Plus 6.0 software
(Media Cybernetics, MD, United States). Apoptosis was assessed
using the following formula: apoptosis index = number of
positive nuclei/number of all nuclei x 100%.

Western Blotting

Small sections of the spleens were lysed in RIPA lysis
buffer (P0013B, Beyotime Biotechnology, Shanghai, China)
supplemented with a Roche protease inhibitor tablet
(4906837001, Roche, Basel, Switzerland) and phenylmethyl
sulfonyl fluoride (ST506, Beyotime Biotechnology). After
homogenization with a Tissue Prep instrument, spleen lysates
were centrifuged at 12,000 rpm for 10 min at 4° C, and the
supernatant was collected. Protein quantification was performed
using an Enhanced BCA Protein Assay Kit (P0012, Beyotime
Biotechnology). Lysates were denatured using loading buffer
and heating at 100° C for 10 min. Protein samples were
separated using sodium dodecyl sulfate polyacrylamide gel
electrophoresis and then transferred to polyvinylidene fluoride
membranes (Millipore Sigma, Merck KGaA, Darmstadt,
Germany). After blocking in 5% non-fat milk for 2 h at room
temperature, the membranes were incubated in primary antibody
dilution buffer overnight at 4° C. After washing in TBST
(Tris-buffered saline and 0.1% Tween 20), membranes were
incubated with horseradish peroxidase-conjugated secondary
antibodies (ZDR-5306 and ZDR-5307, 1:10,000, ZSGB-BIO,
Beijing, China) for 2 h at room temperature. Meilunbio fg
super sensitive ECL luminescence reagent (MAO0186, Dalian
Meilun Biotechnology Co., Ltd, Dalian, China) was used as a
chemiluminescence substrate. Immune-reactive protein bands
were captured with a Tanon 5200 imaging system (Biotanon,

Shanghai, China). The immunoblots were quantified and
analyzed using Image] software. Antibodies to Phospho-
STAT3™Y1705 (#9145, 1:1,000), STAT3 (#9139, 1:1,000), cleaved
caspase-3 (#9664, 1:1,000), caspase-3 (#9662, 1:1,000), and
phospho-eIF2a5¢™! (#3398, 1:1,000) were obtained from Cell
Signal Technology (Danvers, USA). Antibodies to caspase-8
(sc-81656, 1:500), CHOP (sc-166682, 1:500), caspase-12 (sc-
21747, 1:500), phospho-JNKTPrI83&Tyr185 (e 6254, 1:500),
JNK (sc-7345, 1:500), and ATF6a (sc-166659, 1:750) were
obtained from Santa Cruz (Dallas, USA). Phospho-IRE1aS7%*
(AP0878, 1:2,000) was obtained from Abclonal Technology
(Wuhan, China). Antibodies to IL-10 (WL03088, 1:500),
IL-6 (WL02841, 1:1,000), Bax (WL01637, 1:1,000), Bcl-2
(WL01556, 1:1,000), and Bcl-xL (WL03353, 1:1,000) were
obtained from Wanleibio (Shenyang, China). The antibody
to B-actin (TA-09, 1:10,000) was obtained from ZSGB-BIO
(Beijing, China).

Statistical Analysis

All data were analyzed using PASW Statistics 18 software
(SPASS, IL, United States) and expressed as mean =+ standard
error of the mean (SEM). Poisson regression was performed
when the dependent variable was the count variable (line
crossing number and rearing number). Unpaired Students
t-test was used to compare two sets of data. One-way
analysis of variance (ANOVA) testing was performed
with Tukey’s post hoc analysis to compare multiple sets
of data. Graphs were generated using GraphPad Prism 5
(GraphPad Software for Windows Inc., San Diego, CA,
United States). In all analyses, p < 0.05 was considered to
indicate statistical significance and p < 0.01 to indicate extremely
significant results.

RESULTS

Chronic Restraint Stress Induces
Anxiety-Like Behaviors and Affects HPA
Axis Activity

To verify successful establishment of our chronic stress model,
we tested the behavior of rats using an open-field test after
21 days of restraint. Figure 1A shows motion trails of rats in
the C and CS groups. As shown in Figure 1B, rats in the C
group demonstrated excitement-like behaviors in the open-field
test. Compared with those in the C group, stressed rats showed
decreased center square duration and lower total distance of
movement. The rearing number and line crossing number were
also significantly reduced after exposure to chronic stress.

To examine whether chronic restraint stress affected HPA
axis activity, we measured corticosterone levels in blood serum
samples. As shown in Figure 1C, the level of corticosterone in
the CS group increased significantly compared with that of the
C group (90.94 £ 4.90 and 50.75 + 4.59 ng/ml, respectively;
p < 0.01). These results demonstrate that 21 days of restraint
stress successfully induced biochemical and behavioral features
consistent with chronic stress.
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FIGURE 1 | Chronic stress significantly changes open-field test results and corticosterone levels in rat serum. (A) The rats’ motion trails of the C and CS groups in
the open-field test. (B) After 21 days of restraint stress, the center square duration, the total distance of movement, the rearing number, and the line crossing number
were all significantly decreased compared with the C group. (C) Serum corticosterone levels increased significantly after 21 days of chronic stress compared with the
C group. Data are presented as the mean + SEM. *p < 0.05, **p < 0.01 compared with the C group, n = 6, Poisson regression or Student’s t test.

IL-10 Mediates STAT3 Phosphorylation in
Chronic Restraint Stress

The HPA axis influences immunologic function through
glucocorticoid secretion. Our study measured the expression of
IL-10, an anti-inflammatory cytokine, and IL-6, an inflammatory
cytokine; the function of both cytokines requires STAT3
activation. As shown in Figure 2, chronic stress promoted splenic
IL-10 expression, which was not affected by p-STAT?3 inhibition
or vehicle treatment. IL-6 expression remained stable in response
to chronic stress, p-STAT3 inhibition, and vehicle treatment. We
also examined the expression of p-STAT3 in the spleen and found
that chronic stress significantly increased p-STAT3 expression
compared with that in the C group. Treatment with S3I-201
before initiation of restraint stress significantly attenuated the
increase in p-STAT3 expression in response to chronic stress.

P-STATS3 Inhibition Promotes Spleen
Damage Caused by Chronic Stress

H&E staining was used to evaluate histopathological alterations
in the spleen in response to chronic stress. As shown in Figure 3,
spleens in the C group showed typical histological architecture
characterized by round or oval white pulp and red pulp, with a
prominent marginal zone located between them, in the C group.
White pulp, the main site of immunological function in the
spleen, is mostly composed of lymphocytes and macrophages,
whereas red pulp is made up of venous sinuses and a large variety

of cell types. In response to chronic stress, spleens showed a
reduction in white pulp and partial disappearance of the spleen
marginal zone. Spleens of rats in the CS + S3I-201 group had
more severe atrophy of white pulp and more loss of the marginal
zone compared with those in the CS group. No changes to spleen
histological structure were observed in normal rats treated with
5% DMSO or S31-201.

P-STATS Inhibition Promotes Splenocyte
Apoptosis

We confirmed apoptosis in spleens by TUNEL assay and western
blotting. As shown in Figures 4A,B, TUNEL-positive staining of
nuclei was observed in splenic tissues of rats exposed to chronic
stress. However, the splenic tissues of rats treated with S31-201
before initiation of stress showed more TUNEL-positive nuclei
staining compared with those of the untreated or vehicle-treated
chronic stress group.

Furthermore, the ratio of cleaved caspase-3/caspase-3
(Figure 4C) supported the finding that p-STAT3 inhibition
aggravated splenocyte apoptosis in response to chronic
stress. Neither vehicle nor S31-201 treatment induced splenic
apoptosis in normal rats.

P-STAT3 Inhibition Activates the ER

Stress Pathway in Chronic Stress
To investigate the mechanism of enhanced splenic apoptosis
following p-STAT3 inhibition in chronic stress, we measured
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reducing p-STAT3 levels, p-STAT3 inhibition did not affect IL-10 and IL-6 expression levels. (A) Western blot showing the relative protein levels of IL-10 and IL-6.
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the expression of key proteins in the three classical apoptotic
pathways: the mitochondrial apoptotic pathway, the death
receptor pathway, and the ER stress pathway. As shown in
Figure 5, Bcl-2, Bax, and Bcl-xL expression did not significantly
change in response to chronic stress or p-STAT3 inhibition. The
expression of procaspase-8 was significantly increased in the
CS group compared with the C group. However, procaspase-8

expression in the CS + S3I-201 group was similar to that of the
CS group. The expression of Grp78, which dissociates from three
ER transmembrane receptors to trigger ER stress, was higher in
the CS + S3I-201 group than in the C group.

Based on these findings, we examined the expression of
key proteins in ER stress-mediated apoptosis. As shown in
Figure 6A, rats in the CS 4 S31-201 group exhibited significantly
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FIGURE 4 | p-STAT3 inhibition enhances splenocyte apoptosis induced by chronic stress. (A) TUNEL assay on the splenic tissue of rats (magnification: 200 x).
TUNEL-positive splenocytes are stained green, and DAPI-stained nuclei are blue. (B) Quantitative results of TUNEL analysis. (C) Western blot showing relative
protein levels of cleaved caspase-3/caspase-3. Data are presented as the mean + SEM. *p < 0.05, **p < 0.01 compared with the C group; *p < 0.05, #p < 0.01
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increased expression levels of p-JNK, procaspase-12, and CHOP
compared with those in the other five groups. Chronic stress
alone did not affect the expression of these proteins. To further
investigate the effects of chronic stress and p-STAT3 inhibition
on ER stress, we assessed the expression of key proteins in
each of the three distinct branches of the ER stress pathway
(Figure 6B). Notably, the expression levels of p-elF2a, ATF6a,
and p-IREla were increased in the CS group, but the chronic
stress-induced increased expression levels of ATF6a and p-IREla
were attenuated in the CS + S3I-201 group.

DISCUSSION

Physical or psychological stressors trigger pressure-sensitive
baroreceptor signaling that can activate the HPA axis (Johnson
et al, 1992). Activation of HPA axis signaling, which has
profound effects on the brain, is involved in the regulation
of behavior and emotions (Naert et al, 2011). Here, we
validated the successful establishment of a chronic restraint
stress model by demonstrating changes in serum hormone
levels and rat behavior. The open-field test is a common
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FIGURE 5 | p-STAT3 inhibition activated the ER stress pathway instead of the mitochondrial apoptotic pathway or death receptor pathway. Western blot showing
the relative protein levels of BAX/Bcl-2, Bcl-xL, procaspase-8, and Grp78. Data are presented as the mean + SEM. *p < 0.05, *p < 0.01 compared with the C
group; *p < 0.05, #p < 0.01 compared with the CS group, n = 6, one-way ANOVA with Tukey’s post hoc test.

method to evaluate autonomous behavior, inquiry behavior,
and tension among experimental animals in new environments.
Although the total distance of movement and rearing number
are typically used as measures of locomotor activity, they are also
measures of exploration. Higher distance and rearing frequency
measurements indicate more locomotion and exploration. Center
square duration and line crossing number are measures of
exploratory behavior. Accordingly, high center square duration
and crossing frequency indicate high levels of exploratory
behavior. The rats in the CS group showed less locomotor
activity and lower levels of exploratory behavior in the open-field
test, consistent with anxiety-like behaviors induced by chronic
restraint stress.

Prolonged activation of the HPA axis not only affects the
behavior of rats but also influences their immune homeostasis.
High glucocorticoid levels promote the secretion of anti-
inflammatory cytokines while inhibiting the secretion of pro-
inflammatory cytokines. The elevated expression of IL-10, a
classical anti-inflammatory cytokine, is caused by chronic stress
and is considered a biomarker of immunosuppression. STAT3
can be activated by a variety of cytokines. However, blockade
of IL-10 receptor in chronic stress decreases the expression
of p-STAT3 (Hu et al, 2014), suggesting that the elevation
expression of p-STAT3 in chronic stress is mediated, at least
partially, by IL-10.

The spleen has an integral role in cellular and humoral
immunity in adult rats. Damage to the spleen caused by chronic

stress was observed by H&E staining in our study. Increased
splenic damage was accompanied with the elevated expression of
p-STAT3. The p-STAT3 inhibitor S31-201 was administered to the
rats to determine whether elevated p-STAT3 expression mediated
splenic damage. Unexpectedly, S31-201 enhanced splenic damage
due to chronic stress but caused no spleen abnormality in
unstressed rats. TUNEL assays and western blotting results also
demonstrated that chronic stress caused splenocyte apoptosis,
which was enhanced by p-STAT3 inhibition. Similarly, p-STAT3
inhibition in unstressed rats did not influence apoptosis. Our
findings may be explained by the role of STAT3 in inhibiting
apoptosis. STAT3 has been shown to be overactivated in a
variety of tumors (Epling-Burnette et al., 2001; Siddiquee et al.,
2007; Bollrath et al., 2009; Chen and Zhang, 2017), including
solid tumors and hematological malignancies. Persistent STAT3
signaling leads to uncontrolled nuclear gene expression, which
results in the growth and survival of tumor cells (Yu and Jove,
2004). STAT3 gene knockdown or p-STAT3 inhibition activates
the expression of pro-apoptosis proteins to mediate apoptosis of
cancer cells (Guha et al., 2019). Activation of STAT3 in normal
cells can also result in the activation of anti-apoptotic signals,
which potentially indicates a mechanism by which chronic
psychological stress promotes tumorigenesis (Feng et al., 2012).
Our results demonstrate that S3I-201 injection did not cause
damage to the spleen; however, STAT3 deficiency resulted in
embryonic lethality (Takeda et al., 1997), possibly owing to the
low expression of p-STAT3 in adult rats.
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FIGURE 6 | p-STATS inhibition activated ER stress by inhibiting the expressions of ATF-6a and p-IRE1a to disturb UPR. (A) Western blot showing the relative protein
levels of p-UJNK/UNK, procaspase-12, and CHOP. (B) Western blot showing the relative protein levels of p-elF2a, ATF-6a, and p-IRE1a. Data are presented as the
mean = SEM. *p < 0.05, **p < 0.01 compared with the C group; #p < 0.05, #p < 0.01 compared with the CS group, n = 6, one-way ANOVA with Tukey’s
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We examined key proteins in each of the three apoptotic
pathways to identify the pathway that mediates enhanced
apoptosis in response to S3I-201 treatment in chronic stress.
Members of the Bcl-2 family are important regulators of the
mitochondrial apoptotic pathway that sense abnormalities in
cellular or mitochondrial function and terminate the injury
process or initiate apoptosis accordingly (Murphy et al., 2005).
Western blotting results indicated that Bcl-2, Bax, and Bcl-xL
expressions were not influenced by chronic stress, suggesting that
splenocyte apoptosis in response to chronic stress is not mediated
by the Bcl-2 family. Furthermore, our findings indicate that the
enhanced apoptosis in response to p-STAT3 inhibition in chronic
stress is not mediated by the Bcl-2 family either. Although many
studies have demonstrated that the Bcl-2 family is regulated by
STAT3 (Niss et al., 2015; Liu et al., 2017), our results suggest that
the Bcl-2 family members were not targets for STAT3 under the
present conditions.

The formation of a death-inducing signaling complex (DISC),
consisting of procaspase-8, Fas-associated with death domain
protein (FADD), and tumor necrosis factor receptor (TNFR),
is required for apoptosis mediated by the death receptor
pathway (Tummers and Green, 2017). After formation of the
DISC, procaspase-8 is auto-activated through autoproteolytic
cleavage to form caspase-8, which triggers the execution phase of
apoptosis (Elmore, 2007). Our western blotting results indicated
that chronic stress led to an increased procaspase-8 expression,
which was not influenced by p-STAT3 inhibition. Therefore,
splenocyte apoptosis in our chronic stress model was mediated
by the death receptor pathway, consistent with the finding
of Yin et al. (2000), who reported CD95-mediated splenocyte
apoptosis in response to chronic stress. The data suggest that
STAT3 did not influence the death receptor pathway directly
in our model, although it has been previously reported that
STAT3 overexpression significantly inhibits caspase-8 activation
to reduce liver damage (Haga et al., 2003). STAT3 is also known to
cooperate with ¢c-JUN to inhibit Fas transcription (Ivanov et al.,
2001). Whether the overexpression of STAT3 in chronic stress
influences the death receptor pathway remains to be determined.

ER stress is a relatively newly discovered pathway that has
been shown to mediate apoptosis (Yang et al., 2015). Under
certain physiological and pathophysiological conditions, the
accumulation and aggregation of unfolded proteins affect the
normal physiological function of the ER, which results in
ER stress (Novosyadlyy et al, 2008). The unfolded protein
response (UPR), which is mediated by three ER transmembrane
receptors (PERK, ATF6, and IRE1), is a pro-survival response
to reinstate normal ER function against the deleterious effects
of ER stress. If the accumulation and aggregation of unfolded
protein persist, signaling switches from pro-survival to pro-
apoptotic (Liu et al., 2015). Increased expression levels of
CHOP, procaspase-12, and JNK are indicative of apoptosis
mediated by ER stress. Our western blotting results indicate
that chronic stress does not promote the expression of
those three proteins. However, p-STAT3 inhibition during
chronic stress activated ER stress-mediated apoptosis by
enhancing the expression levels of CHOP, procaspase-12,
and p-JNK.

Following this finding, we measured the expression levels of
p-elF2a, ATF6a, and p-IREla. In the UPR, elF2a slows down
protein translation via phosphorylation to prevent oxidative
stress and apoptosis (Tabas and Ron, 2011). ATF-6a is the
key protein that regulates ER quality control (Yamamoto et al.,
2007). IREla, which exists in all cells, is the last branch
to be activated during the UPR in the decision of whether
to initiate pro-survival or pro-apoptotic downstream signaling
(Tabas and Ron, 2011). These three proteins each represent
one branch in the UPR. Chronic stress significantly enhanced
the expression of these three proteins, in contrast to CHOP,
procaspase-12, and p-JNK, which were unaffected. A similar
finding was observed in tumor-associated macrophages, in which
IL-4 synergized with IL-10 to activate the UPR via STAT3
(Yan et al., 2016). Remarkably, p-STAT3 inhibition did not
influence the expression of p-eIF2a, whereas both ATF6a and
p-IREla showed the reduced expression in response to p-STAT3
inhibition. In our view, these results suggest that STAT3 regulates
the latter two branches of UPR signaling to disrupt the pro-
survival function of the UPR.

Notably, in the C and CS groups, upstream and downstream
proteins of the UPR showed the totally different expression
tendencies. We hypothesize that p-STAT3 inhibition blocks the
UPR-mediated compensatory cell survival mechanism. During
chronic stress, IREla and ATF6 cooperate with PERK in pro-
survival roles to degrade improperly folded proteins and increase
the folding capacity of the ER. After treatment with S3I-
201, generation of ATF6a and p-IREla may be suppressed,
which disrupts the pro-survival function of the UPR and
leads to ER stress-mediated apoptosis. Yoshikawa et al. (2015)
demonstrated that ATF6a-deficient mouse brains exhibited
higher rates of neuronal death after cerebral ischemia. Zhang et al.
(2015) reported that IREla deficiency resulted in the increased
expression of CHOP, which induced apoptosis in intestinal
epithelial cells. Although it has been demonstrated that ATF6a
(Yoshikawa et al., 2015) and IRE1a (Kimura et al., 2012; Liu et al.,
2015) influence the expression of STAT3, it remains unknown
how STAT3 influences the expression of ATF6a and IREla. No
STAT3-specific agonists are available for administration in vivo;
therefore, we were unable to overexpress p-STAT3 to verify
whether the UPR was enhanced and apoptosis was attenuated.
The next step will be to determine the relationship between
STAT3 and the UPR in an in vitro model of chronic stress.

Our results elucidate in part the role of STAT3 and the
activation of the UPR in chronic stress. These data also confirm
the relationship between STAT3 and ER stress. To our knowledge,
this is the first report of the activation of the UPR and the
relationship between STAT3 and ER stress in chronic stress. Our
preclinical study provides new evidence regarding the function of
STATS3 in chronic stress and identifies potential new therapeutic
targets for the development of anti-stress drugs.

CONCLUSION

Our results indicate that splenocyte apoptosis in response to
chronic stress is mediated by the death receptor pathway. In
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particular, the spleen activates the UPR in response to chronic
stress, and p-STAT3 inhibition enhances splenocyte apoptosis by
inhibiting the UPR and activating ER stress.
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