AUTHOR=Ugurel Elif , Piskin Senol , Aksu Ali Cenk , Eser Aysenur , Yalcin Ozlem TITLE=From Experiments to Simulation: Shear-Induced Responses of Red Blood Cells to Different Oxygen Saturation Levels JOURNAL=Frontiers in Physiology VOLUME=10 YEAR=2020 URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2019.01559 DOI=10.3389/fphys.2019.01559 ISSN=1664-042X ABSTRACT=
Red blood cells (RBC) carry and deliver oxygen (O2) to peripheral tissues through different microcirculatory regions where they are exposed to various levels of shear stress (SS). O2 affinity of hemoglobin (Hb) decreases as the blood enters the microcirculation. This phenomenon determines Hb interactions with RBC membrane proteins that can further regulate the structure of cytoskeleton and affect the mechanical properties of cells. The goal of this study is to evaluate shear-induced RBC deformability and simulate RBC dynamics in blood flow under oxygenated and deoxygenated conditions. Venous blood samples from healthy donors were oxygenated with ambient air or deoxygenated with 100% nitrogen gas for 10 min and immediately applied into an ektacytometer (LORRCA). RBC deformability was measured before and after the application of continuous 5 Pa SS for 300 s by LORRCA and recorded as elongation index (EI) values. A computational model was generated for the simulation of blood flow in a real carotid artery section. EI distribution throughout the artery and its relationships with velocity, pressure, wall SS and viscosity were determined by computational tools. RBC deformability significantly increased in deoxygenation compared to oxygenated state both before and after 5 Pa SS implementation (