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Despite significant effort on understanding complex biological systems, we lack a
unified theory for modeling, inference, analysis, and efficient control of their dynamics
in uncertain environments. These problems are made even more challenging when
considering that only limited and noisy information is accessible for modeling, which
can prove insufficient for explaining, and predicting the behavior of complex systems.
For instance, missing information hampers the capabilities of analytical tools to
uncover the true degrees of freedom and infer the model structure and parameters
of complex biological systems. Toward this end, in this paper, we discuss several
important mathematical challenges that could open new theoretical avenues in studying
complex systems: (1) By understanding the universal laws characterizing the asymmetric
statistics of magnitude increments and the complex space-time interdependency within
one process and across many processes, we can develop a class of compact
yet accurate mathematical models capable to potentially providing higher degree of
predictability, and more efficient control strategies. (2) In order to better predict the onset
of disease and their root cause, as well as potentially discover more efficient quality-
of-life (QoL)-control strategies, we need to develop mathematical strategies that not
only are capable to discover causal interactions and their corresponding mathematical
expressions for space and time operators acting on biological processes, but also
mathematical and algorithmic techniques to identify the number of unknown unknowns
(UUs) and their interdependency with the observed variables. (3) Lastly, to improve
the QoL of control strategies when facing intra- and inter-patient variability, the focus
should not only be on specific values and ranges for biological processes, but also on
optimizing/controlling knob variables that enforce a specific spatiotemporal multifractal
behavior that corresponds to an initial healthy (patient specific) behavior. All in all,
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the modeling, analysis and control of complex biological collective systems requires a
deeper understanding of the multifractal properties of high dimensional heterogeneous
and noisy data streams and new algorithmic tools that exploit geometric, statistical
physics, and information theoretic concepts to deal with these data challenges.

Keywords: fractals, time-varying complex networks, cyber-physical systems, network physiology, multifractal
profile optimal control, unknown unknowns, causal predictive modeling, compact mathematical modeling

INTRODUCTION

Genomic, proteomic, and physiological processes are generally
used for medical diagnosis because they encompass the complex
dynamics and multi-scale interactions between the chemical,
electrical, and mechanical components of the human body.
They exhibit higher-order statistical variability from person to
person due to individual biological features (e.g., body mass and
height) while also being highly influenced by a wide web of
environmental factors (e.g., temperature, noise pollution, cultural
traits, and social anxiety levels). Rigorous mathematical analysis
shows that many such genomic, proteomic and physiological
processes possess time dependent, long-range dependence, and
multi-fractal characteristics (Goldberger and West, 1987; Ivanov
et al., 2001; Wink et al., 2008; Bassingthwaighte et al., 2013;
Ghorbani and Bogdan, 2013; Bohara et al., 2017; Akhrif et al.,
2018; Ghorbani et al., 2018; Racz et al., 2018b). For instance,
Lombardi et al. (2019) demonstrated that the existence of long-
range temporal correlations (dependence) is an accurate marker
of “healthy brains.” Moreover, mathematical investigations of
physiological processes collected from the individuals suffering
from various diseases revealed specific patterns, for example, a
decrease in correlation in both temporal and fractal behavior
(Ivanov et al., 1999; Stanley et al., 1999; Kotani et al., 2005;
Gierałtowski et al., 2012). For instance, the ratio between the
short-term and long-term scaling exponents was demonstrated in
Platiša et al. (2019) to discriminate between patients experiencing
heart failure, providing crucial information where the levels of
the cardiac autonomic nervous system control, age, or the left
ventricular ejection fraction could not. Similarly, fractal scaling
has been demonstrated not only to be capable to discriminate
between type 1, type 2 diabetes, and non-diabetic subjects, but
also identify the dynamical instabilities in the glucoregulation
(Kohnert et al., 2018).

Despite this significant body of work, current diagnosis
methods and medical devices (e.g., pacemakers, artificial
pancreas, anesthesia systems, and brain-machine-body
interfaces) do not account for these mathematical characteristics,
thus perpetuating a superficial understanding and deciphering
of the unknown unknowns (UUs) governing their complex
dynamics and possibly leading to a lower quality-of-life (QoL).
Consequently, through this position statement, we aim to
catalyze a shift of paradigm by calling for a mode of personalized
and precise medicine that is more patient (and physiological
complexity aware) centered and which does not rely on generic
signal reference values that are patient independent. This new
rigorous mathematical and algorithmic paradigm needs to
be integrated into future smart medical cyber-physical systems
(MCPS) in order to facilitate effective patient-centered healthcare

to improve current delivery of care and cut down on its high
costs. The MCPS design (Lee et al., 2012) – integrating sensors
for assessing (computing/mining) individual physiological state,
communicating this information via a network infrastructure
from home-to-hospital to medical experts, and controlling
vital health signals (e.g., cardiac pacing, insulin level, blood
pressure, and brain activity) to prevent health complications,
maintain good health, and/or avoid fatal conditions – require a
cross-disciplinary approach.

Toward achieving the design of these genomic, proteomic,
and physiological complexity-aware MCPS architectures, in this
paper, we briefly review a list of urgent mathematical challenges
and advocate for (1) a comprehensive understanding of
individual complexity of genomic, proteomic and physiological
processes in order (2) to establish compact yet accurate
mathematical models (Xue and Bogdan, 2017) to predict
abnormal behavior corresponding to disease precursor patterns,
and (3) to optimize the dynamics of human physiology in
accordance with observed complexity (minimize detrimental
effects on homeostasis that potentially minimizes also the
healthcare costs) and improve the patients QoL. These envisioned
complexity-aware MCPS are bound to exploit the fractal
geometry, non-linear dynamics, fractional calculus, fractal
statistics, and stochastic fractal optimal control for maximizing
the impact of prevention, treatment, and QoL, while minimizing
health care costs related to hospitalization or side-effects. Also,
these MCPS should prevent misuse, overuse or underuse of
medical care based on robust mathematical analysis, thus cutting
down on healthcare costs, and improving efficiency.

BIOLOGICAL (GENOMIC, PROTEOMIC,
PHYSIOLOGICAL) COMPLEXITY:
MODELING, ANALYSIS, AND CONTROL

Genomic, Proteomic, and Physiological
Signals Display Asymmetric
Non-Gaussian Dynamics
While many pioneering and recent studies have demonstrated
that genomic, proteomic and physiological processes possess
self-similar, long-range dependence (memory), and fractal
characteristics (Goldberger and West, 1987; Shlesinger, 1987;
Ivanov et al., 1999, 2001; Stanley et al., 1999; Eke et al., 2006;
Bassingthwaighte et al., 2013; Ghorbani et al., 2018; Racz et al.,
2018b), an intriguing mathematical observation is that many such
physiological processes display an asymmetric non-Gaussian
dynamics. From a mathematical perspective, this implies that
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FIGURE 1 | Blood glucose analysis. (A) Empirical value of the survival function (i.e., the probability that the positive increment exceeds a threshold τ) is better
represented by an α-stable distribution than a Gaussian counterpart. (B) Similarly, the empirical survival function for absolute value of negative increments with
varying threshold τ is better represented by an α-stable than a Gaussian distribution.

the dynamics of the process under investigation is governed by
two components (see Figure 1): the magnitude of positive and
negative increments and the inter-event (waiting times between
events) of a biological process.

The statistics of the magnitude of positive and negative
increments of a process can encode information about the
degree of asymmetry, non-linearity, and the influence of other
variables on its dynamics. Many complex (biological) processes
exhibit positive (growth) and negative (decline/loss) jumps or
bursts characterized by different distributions (e.g., stretched
exponential and asymmetric α-stable distributions). For instance,
Figure 1 illustrates that most often the positive and (absolute
values of) negative increments in blood glucose are better
fitted by an α-stable distribution family than exponential or
Gaussian distributions. Within this context, a number of open
questions arise: (1) From a medical perspective, can the observed
asymmetric α-stable statistical behavior represent a universal
behavior of a healthy dynamics for specific biological processes?
If yes, can the potential deviations in the asymmetric α-stable
statistical behavior (e.g., decrease in the degree of asymmetry,
decrease/increase in the α-stable parameter) be linked with
the disease precursors? Along the same lines, how does the
observed asymmetric α-stable statistical behavior evolve with
aging? For example, as pointed out in Ferrucci et al. (2018),
aging contributes to the stiffening of heart ventricles and
large arteries, which leads not only to detrimental changes in
cardiovascular performance and physical capacity, but could also
influence the statistics of many physiological processes (e.g., heart
rate, blood glucose, and brain activity processes). (2) From a
mathematical perspective, one can wonder whether the statistics
of the magnitude increments can shed light not only on the
mathematical expressions (e.g., linear, quadratic, and fractional
order) describing the rate of change of one state variable, but
also on the causal influence and its corresponding mathematical

terms characterizing the coupling among the state variables of
the physiological systems. In other words, rather than postulating
possibly unjustifiable mathematical expressions and using these
postulates for formulating inverse problems, a more rigorous
mathematical analysis of physiological complexity would require
to carefully analyze the statistics of the positive and negative
magnitude increments and encapsulate the statistical findings
into generative mathematical models [e.g., generalized master
equations (Kenkre et al., 1973; Klafter et al., 1987; Balescu, 1997;
Akhrif et al., 2018)].

Moreover, the statistics of time-intervals at which a process
changes its value (inter-event or waiting times) dictates
whether the process under investigation is possessing short-
range dependence (Markovian) or long-range dependence (non-
Markovian) characteristics. For exponential inter-event times,
the rate of change in the variable can be described by a
first order time derivative. In contrast, for single power law
distributed inter-event times, the rate of change in one state
variable requires the introduction of a fractional order derivative
(Shlesinger, 1987; West, 2010; Svenkeson et al., 2016). Of note,
as demonstrated in Lombardi et al. (2019), the distribution
of inter-event times (among successive events) can not only
shed light on the nature of the operator governing the rate of
change (dynamics), but also allow us to study the hierarchical
temporal organization of the neuronal avalanches (i.e., an
ensemble of neurons that fire close-in-time) and the existence
of a critical behavior. Nevertheless, the set of critical exponents
characterizing the neuronal spontaneous activity in control
conditions and in the presence of folic acid are different
(Yaghoubi et al., 2018) suggesting the existence of different
universality classes. Consequently, a more challenging problem
is whether for a process with multi-modal power law distributed
inter-event times, the rate of change in the state variable can
be accurately described by a combination of fractional order
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derivatives [i.e., dα x(t)/dtα = Dα x(t), α being the fractional
exponent of the fractional derivative] in order to capture the
complex memory structure, and how this is connected with
criticality (Xue and Bogdan, 2017). Concomitantly, there is
a need for mathematical and medical research to understand
the statistical complexity of such inter-event times: From a
mathematical and bio-physics perspective, we need to better
understand the phase transition phenomena characterized by
the emergence of multi-modal power law distributed inter-event
times and correlate there observations with the degree of the
robustness, self-organization, biological intelligence/adaptivity,
stability, resiliency, and efficiency of a dynamical system. From
a medical perspective, we need to elucidate the relationship
between a single or a multi-modal power law distributed inter-
event times and the healthy critical or pathological brain states.
Future research needs to investigate the relationship between the
statistical properties of the magnitude increment and inter-event
times and correlate it with the specific mathematical structure
of the dynamical equations. Moreover, a more comprehensive
cyber-physical systems research is required to analyze genomic,
proteomic, and physiological processes in order to elucidate
the effect of aging on the relationship between the statistical
properties of the magnitude increments and inter-event (waiting)
times and determine if changes in these statistical properties
can be associated with precursors of diseases. Understanding
the universal statistical properties of healthy biological systems
as well as healthy aging, could contribute to identifying the
disease markers (e.g., detecting genomic instability, epigenetic
alterations, mitochondrial dysfunction, and loss of proteostasis),
and defining new molecular-based or cellular-based control
strategies to correct unhealthy courses and potentially delay or
avoid the onset of diseases (Ferrucci et al., 2018).

Biological Systems Display a Complex
Spatio-Temporal Interdependent
Dynamics Subject to Unknown
Unknowns
The ability to efficiently (in real-time) analyze and extract
information from large-scale biological datasets is essential
for inferring the complex interdependency and corresponding
multi-variable functional dependency among various genomic,
proteomic and physiological processes, determining the types,
and number of required operators (i.e., spatiotemporal integer or
fractional order integrals or derivatives) to describe the observed
dynamics, incorporating realistic features into compact dynamic
models and for endowing MCPS with cognition and intelligence.
Current mathematical approaches (e.g., machine learning and
system identification) build such dynamic models on simplistic
or unverified assumptions (e.g., Markovian dynamics) and
achieve good accuracy/fidelity by increasing the number of
parameters and the modeling complexity. Such methodologies
may pose not only computational challenges, but also impede our
understanding of complex biological systems and the design of
accurate MCPSs (e.g., brain-machine interfaces, bionic systems)
(Pequito et al., 2015; Gupta et al., 2019). One simple approach
to account for the spatial complex time-varying interdependency

between biological processes and for their short- or long-range
memory properties is to construct mathematical models of the
following form (Xue et al., 2016b):

dα1 x1(t)
dtα1

...

dαn xn(t)
dtαn

 =
M∑

p=1

Ap

 x1(t − τp)
...

xn(t − τp)

+ E(t) (1)

where x1(t), . . . , xn(t) denote a set of biological processes,
Ap represents a coupling matrix encoding the linear
interdependencies at previous time points t − τp and E(t)
denotes an n-dimensional error term (Xue et al., 2016b). In
Eq. (1), the dynamics of a biological process xk(t) is governed
by a general operator dα x(t)/dtα = Dα x(t) and based on the
observed dynamics xk(t) can be coupled to all other dependent
processes x1(t), . . . , xn(t) or a subset of those. The time operator
can either reduce to an integer order derivative for capturing
short-range memory dynamics or a fractional order derivative
for capturing long-range memory dynamics. For instance,
Figure 2 shows a comparison between two dynamic models
of the type summarized in Eq. (1) for the case of considering
a memoryless (integer order) example and a fractional order
one. As one can notice the multi-dimensional fractional order
dynamical model of the type summarized in Eq. (1) provides
a better prediction when compared to the multidimensional
integer order counterpart.

Consequently, one computational benefit of dynamic models
represented in Eq. (1) is that by exploiting up to n fractional
order coefficients and one coupling matrix, we can achieve a more
compact mathematical representation of complex biological
systems with better prediction accuracy than considering higher
order autoregressive integrated moving average models. An
alternative data-driven mining of the complexity of stochastic
processes can be achieved by investigating and estimating the
entropy, conditional entropy and information storage of their
realizations (Xiong et al., 2017). Although the analysis in Xiong
et al. (2017) highlights the importance of non-stationarities
(i.e., trends, spikes, and local variance change) and the long-
range correlations on the complexity of stochastic autoregressive
processes, it also demonstrates that appropriate preprocessing is
critical for employing the entropy-based algorithms for mining
physiological states, discriminating among various degree of
disease, and identifying urgent clinical conditions. Consequently,
there is an urgent need for developing algorithmic tools that
combine the compact yet accurate mathematical modeling
(as the one above-mentioned) with entropic measures for
quantifying the complexity of multi-dimensional dynamical
systems. From a multiscale multi-dimensional perspective, the
multiscale Granger causality was introduced in Faes et al. (2017)
to quantify the information transfer across multiple time scales
and assess the directed lagged interactions among joint processes
(represented by time series). These pioneering works make
fundamental contributions toward understanding the multiscale
causal relationships among coupled stochastic processes that
could be further investigated and extended within the context of

Frontiers in Physiology | www.frontiersin.org 4 December 2019 | Volume 10 | Article 1452

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-01452 December 3, 2019 Time: 12:12 # 5

Bogdan Taming the Unknown Unknowns in Complex Systems

0 50 100 150 200 250 300 350 400 450 500
sample ID

-3

-2

-1

0

1

2

3

4

5
N

eu
ra

l A
ct

iv
it

y
observed
Unknown Unknowns
AR(1)

0 50 100 150 200 250 300 350 400 450 500
sample ID

-3

-2

-1

0

1

2

3

N
eu

ra
l A

ct
iv

it
y

observed
Unknown Unknowns
AR(1)

0 50 100 150 200 250 300 350 400 450 500
sample ID

-4

-3

-2

-1

0

1

2

3

4

5

N
eu

ra
l A

ct
iv

it
y

observed
Unknown Unknowns
AR(1)

0 50 100 150 200 250 300 350 400 450 500
sample ID

-4

-3

-2

-1

0

1

2

3

4

5

N
eu

ra
l A

ct
iv

it
y

observed
Unknown Unknowns
AR(1)

A B

C D

FIGURE 2 | Unknown unknowns (UUs). Twenty step prediction comparison of two models, a multi-dimensional fractional dynamic model with UUs and a
multi-dimensional memoryless dynamic model (termed one leg autoregressive AR(1). (A,B) shows comparison of one channel across different time windows, with
AR(1) always overshooting the prediction. Similarly, (C,D) are representing the comparison of another channel with two time windows and as it can be noticed the
AR(1) exhibits several overshoot/undershoot events in the prediction as compared to the multidimensional fractional dynamic model with UUs.

Eq. (1) or develop data-driven learning strategies for identifying
the structure of Eq. (2).

Along these lines, a major mathematical challenge is
how to optimally sense spatio-temporal interdependent cyber-
physiological processes exhibiting both short- and long-range
memory properties (mainly concerning the dynamics) or
short- and long-range cross-dependence properties (concerning
the interdependence structure among processes). Alternatively
stated, the critical sensing deployment problems seek to
determine the minimum number of sensors and their spatial
deployment in order to minimize the state estimation error
and the process disturbance (Pequito et al., 2015; Xue et al.,
2016a; Tzoumas et al., 2018). These problems are even more
challenging when considering the intra- and inter-patient
variability. For instance, a compact dynamical model as the
one in Eq. (1) can be exploited not only for studying such
observability related problems, but can also provide new
insights into the poorly understood neuro-activation dynamics
of motor-related tasks or can suggest design strategies for
MCPS (such as the EEG-wearable systems). It is required
that such algorithmic strategies are capable of not only
capturing the intrinsic spatiotemporal fractality of MCPS
through compact mathematical models (with fewest number
of parameters), but also allow us to retrieve and predict the
states of complex biological systems from small collection of
measurements. Although determining the smallest number of

sensors required to ensure the observability and retrieve the
overall evolution of a coupled fractional and integer order
dynamical systems [e.g., collections of electroencephalogram
(EEG), electromyogram (EMG), or electrocardiogram (ECG)
signals] relied on submodular optimization (Pequito et al., 2015;
Xue et al., 2016a; Tzoumas et al., 2018), further studies should
investigate non-submodular optimization strategies.

While dynamic models of the type in Eq. (1) can provide
compact mathematical representation of complex brain activity
and brain-muscle interdependent networks, a much more general
mathematical representation may take the following form:

αmax
∫

αmin
h(αk)

dαk xk(t)
dtαk

dαk = F(x1, . . . xk, . . . xn; t)+ E(t) (2)

where h(αk) represents a distribution of fractional order
exponents for a specific range αmin ≤ αk ≤ αmax. Such a
distribution h(αk) may be introduced to model biological
processes that display a multi-fractal behavior requiring multiple
fractional order derivatives for modeling their dynamic behavior.
The function F(x1, . . . xk, . . . xn; t) in Eq. (2) encodes the
interactions among various processes and can be used to obtain a
complex network representation of the physiological systems. For
instance, pioneering efforts (Ivanov and Bartsch, 2014; Bartsch
et al., 2015; Liu et al., 2015; Ivanov et al., 2016) have demonstrated
that various physiological processes can be described through a
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complex network approach (i.e., the network physiology; Bashan
et al., 2012). By exploiting the time delay stability concept, the
authors in Ivanov and Bartsch (2014) and Ivanov et al. (2016)
quantified the dynamic links among physiological systems and
demonstrated a robust relation between the network structure
and the physiological states. Moreover, despite numerous studies
demonstrating the multi-fractal behavior of various biological
processes (Goldberger and West, 1987; Stam and de Bruin, 2004;
Wink et al., 2008; Bassingthwaighte et al., 2013; Delignières
et al., 2016; França et al., 2018; Mukli et al., 2018; Racz
et al., 2018a; Wendt et al., 2018), we lack mathematical and
algorithmic tools for identifying the causal interdependence
structure and the parameters of dynamical models of the
type in Eq. (2). Identifying the mathematical expressions
of the functions F(x1, . . . xk, . . . xn; t) and reconstructing the
physiological networks may be challenging not only because we
are required to process heterogeneous, multimodal, and noisy
time series (representing various complex multi-component
dynamical systems with their own regulatory mechanisms)
corresponding to different types of nodes (Ivanov and Bartsch,
2014; Ivanov et al., 2016), but also due to missing samples
or scarce observations. Traditional regression techniques may
not prove useful and new inverse problems [that may consider
extensions of time delay stability concept (Ivanov and Bartsch,
2014; Ivanov et al., 2016)] need to be formulated and solved for
identifying the true compact yet accurate mathematical models of
biological systems. However, developing rigorous mathematical
techniques for identifying the universal behavior encoded in the
functions F(x1, . . . xk, . . . xn; t) from multimodal heterogeneous
time series can not only help decipher the functionality
associated with specific physiological network structures, but
also develop strategies to detect the spatiotemporal emergence
of phase transitions in physiological networks and identify early
precursors of diseases and frailty.

Multi-scale multi-physics interactions lead to complex
spatiotemporal interdependency and pose significant challenges
for MCPS observability and their compact mathematical
modeling. In many practical settings, the sensing of time-varying
complex networks can only observe a small subset of nodes.
Consequently, a major research challenge is on developing
mathematical and algorithmic strategies that can tackle the
following problems: (i) How to infer the number of unknown
unknowns and the interdependency structure not only between
the observed variables, but also between the observed and the
inferred (unobserved) ones? (ii) How to identify the minimal
subset of variables that need to be measured in order to retrieve
the unknown CPS states and unknown inputs triggering the
overall evolution? For instance, the necessary and sufficient
conditions for ensuring the retrieval of state and unknown
stimuli and an efficient algorithm to determine a small subset
of variables that need to be measured for recovering the states
and inputs while establishing sub-optimality guarantees with
respect to the smallest possible subset were discussed in Gupta
et al. (2018a,b). Exploiting these theoretical tools for identifying
compact mathematical modeling while dealing with UUs, a
rethinking of the design of EEG-based non-invasive brain
machine interfaces (BMIs) was described in order to endow

these BMI systems with new algorithmic strategies that identify
the parameters of a fractal time-varying complex network
for describing the interactions between various brain regions
(Gupta et al., 2018a,b, 2019). The parameters of the compact
mathematical model are used to decode the spatio-temporal
fingerprints of human decision-making processes and classify
specific cognitive states (e.g., motor task or its imagination) based
on measurements collected from a brain in action and in context.
The classification performance on real brain activity motor tasks
datasets is on average 85.7% (Gupta et al., 2018b). Thus, this
compact mathematical modeling provides excellent features for
differentiating among various brain imagined motor movements.

Although promising, in general, the model structure dictated
by the biological systems and the environmental influences are
unknown. Future research needs to either develop strategies to
account for the situation in which each physiological process
is characterized by a distribution of fractional order coefficients
or determine tradeoff laws that characterize the minimum
number of fractional order coefficients that are required for
accurate observability and prediction of the overall complex
system dynamics. From a medical perspective, we need to
investigate whether the above-mentioned compact mathematical
modeling enables the definition of robust strategies to detect
and identify the hallmarks of aging, or how aging phenotypes,
age-related diseases and functional limitations (Ferrucci et al.,
2018) influence the structure, fractal profiles and parameter
ranges of this compact mathematical model. Similarly, a
crucial step toward developing multiscale (long-term) control
methodologies with minimal effort or intervention requires
compact mathematical models extracted from scarce, sparse,
heterogeneous and noisy data, and yet capable of predicting the
likelihood of frailty and disability.

Controlling Physiological Complexity
The goal of a MCPS is not only to monitor and construct a
dynamical model of complex biological systems, but also to
find adequate control strategies that maintain the physiological
state within predefined healthy range while minimizing the
adversarial effect of the control signal and so improve the QoL
of patients (Bogdan et al., 2013; Ghorbani and Bogdan, 2013).
For instance, the control algorithm of an artificial pancreas
utilizes the model describing the blood glucose to insulin
dynamics to determine the minimum amount of insulin to be
injected at the prescribed times over a finite horizon of time
such that the risk of hypo- or hyperglycemia is minimized
(Ghorbani and Bogdan, 2013, 2014). Of note, it is important
to find the insulin amount with respect to QoL constraints,
because injecting too much too soon or too frequently can
affect other organs and can have a detrimental health effect
over longer periods of times (months and years). Given the
observed physiological variability and taking into account recent
findings that associate the loss in the degree of multi-fractal
properties with a signature of frailty and departure from
homeostasis toward a disease state, one naturally asks how the
physiological control problems should be formulated within
the healthcare CPS architectures. Alternatively stated, given
the intra- and inter-patient variability, enforcing a specific
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physiological reference value without considering the multi-
fractal characteristics may sometimes do more harm than good.
It is becoming well accepted that the physiological control
should obey a stealthy intervention or influence on the time-
varying complex physiological networks (i.e., sparsest in time and
minimum amount of actuation signal) such that the control effort
does not destabilize the healthy functional feedback (regulatory)
loops or contribute to a form of adaptation of the complex
biological systems to the therapeutic agent. From this perspective,
the physiological control in MCPS should not only consider
healthy physiological ranges for state and control variables, but
should also ensure that the healthy degree of multi-fractality
of an individual is restored. While this mathematical problem
remains to be carefully studied, it can be realized that one natural
way to control the degree of multi-fractality and implicitly the
physiological complexity measure is to optimize over the space
of higher statistical moments and cross-moments associated with
physiological networks.

To take into account the above-mentioned challenges, we
hypothesize a physiological-aware control of complexity problem
as a finite horizon stochastic optimization problem of the
following form:

minu(t)

tfinal
∫

tinitial

xmax
∫

xmin
C(t, 〈|x|〉, 〈|x|〉2, . . . , 〈|x|〉k, u, r) dt dx (3)

∂β(t)
〈|x|〉k

∂tβ(t) =

αmax
∫

αmin
{A(k, α)〈|x|k−α

〉 + B(k, α)〈|x|k−2α
〉}g(α)dα

+m(u, t)+ h(〈|x|〉, 〈|x|2〉, . . . , 〈|x|k〉, t)η(t) (4)

umin(t) ≤ u(t) ≤ umax(t)

〈|x|k〉(tinitial) = mk
initial k = 1, 2, . . . N (5)

where C(t, 〈|x|〉, 〈|x|2〉, . . . , 〈|x|k〉, u, r) denotes the cost
objective as a function of the higher (first k-th) order moments
[whose dynamics can be described by stochastic differential
equations of the type in Eq. (4)], the control signals u(t) and the
healthy physiological reference values r(t), umin and umax are the
lower and upper bounds on the acceptable control signals u(t)
in Eq. (5), β(t) is the time dependent fractal profile exhibited
by the physiological process x(t), α and g(α) are the fractal
exponent and distribution of fractal exponents characterizing the
changes in the magnitude of stochastic (physiological) process
x(t), g(u,t) denotes a function capturing the dependency between
the k-th order moments and the control signals u(t), and h
is a function meant to capture the additive or multiplicative
nature of the noise sources η(t). The reason for accounting
for various noise types is motivated by either measurement
errors due to variations in the body posture and sensor transient
malfunctioning, or communication failures and delays that can
occur between various MCPS components. In Eq. (5), we denote
by 〈|x|k〉(tinitial) = mk

initial the initial values of the k-th order
moments. Depending on the medical condition, the clinicians
would not only enforce a specific mean for the physiological
process, but also minimize the chances of rare events by
considering the fourth-order moment or other related metrics.

To account for the inter-patient variability, this framework
allows us to characterize the statistical properties of a healthy
person, derive a stochastic profile in terms of the k-th order
moments, and use these models for maintaining an adequate
physiological state.

The mathematical expression of the cost C in Eq. (3)
depends on the physiological processes to be controlled, the
coupled (interdependent) dynamics between the physiological
and control signals and the medical condition to be treated.
For instance, the cost function of the controller of an AP will
have very different expressions when considering diabetes type or
the lifestyle conditions such as blood glucose regulation during
either nighttime or intensive exercise. From this perspective,
there is an urgent need for developing mathematical and
algorithmic control strategies for dealing with observed non-
linear, time-varying, and inter- and intra-patient variability
and encapsulate them into real-time physiological controllers.
For example, it is important to determine how to best
select a subset of control variables (e.g., single vs. dual
hormone controllers for artificial pancreas) for regulating the
physiological network in order to achieve the QoL control
with minimal intervention (e.g., smooth BG). Equally important
is the development of artificial intelligence and machine
learning techniques for identifying the optimal risk indices
to be optimized in order to provide quality-of-care control
(prevent insulin overdose). Given the observed intra- and
inter-patient physiological variability, the intelligence of MCPS
should also be able to account for time-varying parameter
uncertainty and modeled dynamics (unknown sensitivities to
control variables), measurement and actuation delays, as well
as the distributed nature of MCPS (distributed sensors and
controllers). Having knowledge of the healthy physiological
complexity of an individual (described through multi-fractal
(Delignières et al., 2016), emergence (Balaban et al., 2018), self-
organization (Balaban et al., 2018), and robustness metrics), can
the MCPS controllers accurately determine (estimate) or retrieve
the physiological state when facing sensor noise, adversarial
events or actuator errors? Alternatively, can the MCPS controllers
distinguish between sensor/actuator faults, abnormal medical
conditions and external disturbances (e.g., mean, exercise,
and stress levels)? While fractal research has contributed
to solving anomaly detection problems in other application
domains, we also need to consider how MCPS algorithms
can exploit the genomic, proteomic and physiological multi-
fractal and complexity to detect changes in the physiological
state early on by correlating the mathematical characteristics
with particular disease patterns. For instance, there is an
urgent need for a comprehensive analysis of functional and
phenotypic aging, as well as the development of algorithms
for identifying the accelerated aging (Ferrucci et al., 2018),
which can enable new control methodologies for delaying
or avoiding frailty states. Preliminary research on the fractal
physiology promises the design of future MCPS architectures
that can determine the type of activity in which the patient is
involved, monitor major physiological processes, locally regulate
the multiscale physiological dynamics, and remotely inform
clinicians via smart alerts.
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CONCLUSION AND SUMMARY

While complex networks have been recognized to model
biological complexity and decipher medical therapeutics
(Barabási et al., 2011; West, 2014; Udrescu et al., 2016), we still
lack robust and rigorous data science and analytics techniques
for mining the incomplete, heterogeneous and noisy biological
data streams and extract their spatiotemporal interdependency.
Relying on simplifying assumptions such as memoryless
dynamics for either modeling biological processes or linearity
for inferring the directionality of causal interactions can provide
inaccurate inference strategies of the time-varying complex
networks that govern the healthy dynamics of anatomical
(biological) systems, which in turn can derail medical therapies.
In contrast, by carefully investigating the fractal time properties
of neural dynamics one can gain a better understanding and
more accurate decoding of the human intent from EEG brain
activity (Gupta et al., 2018b, 2019). At the same time, by
carefully understanding the potential universal asymmetric
statistical characteristics and their implications on the types of
fractal (feedback) control architectures, that govern the healthy
dynamics of biological processes, can not only provide a more
accurate definition of homeostasis, but also open the avenue for
new medical control strategies. However, these mathematical
problems are made even more difficult when considering that
some measurements may be incomplete (e.g., consist of missing
contiguous sequences of measurements, measurements affected
by noise, many important variables cannot be measured or are
not known in order to be measured) or that we have access only
to a few partially observable snapshots of the biological network
that may suffer from environmental (malicious) interventions
(e.g., manifestation of psychological stress and multiscale
viral influences) (Xue and Bogdan, 2019; Gupta et al., 2019).
Consequently, there is an urgent need for developing rigorous
data science approaches that can accurately and efficiently
mine the complex spatiotemporal interdependency among
biological processes not only for constructing compact accurate
mathematical models that can detect and predict abnormality
but also for enabling more efficient control strategies to delay (or
even avoid) frailty.
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