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Clinical gestational diabetes mellitus (GDM) is frequently associated with hyperlipidemia
comorbidity. Altered human gut microbiome has been linked to GDM and
hyperlipidemia, respectively but not the comorbid condition. We hypothesize that
the occurrence of hyperlipidemia with GDM may be characterized by distinguishable
gut microbiome and blood metabolomic patterns. We presented comprehensive
microbiomic coupled with lipidomics analyses to characterize gut microbiota and
lipometabolism of plasma samples in women with GDM only, hyperlipidemia only and
those with diabetes plus hyperlipidemia, and to explore association of the gut microbiota
composition with blood lipid profiles and clinical parameters of gestational diabetes
with or without commodity. We found that the relative abundance of bacterial taxa
Streptococcus, Faecalibacterium, Veillonella, Prevotella, Haemophilus and Actinomyces
was significantly higher in diabetes plus hyperlipidemia cohorts. Moreover, several
bacteria were correlated with fasting plasma glucose and blood lipid levels of the
participants with GDM and hyperlipidemia. The altered plasma lipidome in subjects
with diabetes plus hyperlipidemia suggested that characteristic blood lipid profiles
were associated with the pathogenesis of gestational diabetes plus hyperlipidemia.
Collectively, this study provides insights on changes in fecal microbiota and plasma
lipidome to predict and characterize the development of gestational diabetes with lipid
metabolic abnormality.

Keywords: gestational diabetes mellitus, hyperlipidemia, gut microbiota, plasma lipidome, omics

INTRODUCTION

The prevalence of gestational diabetes mellitus (GDM) is rapidly increasing worldwide, constituting
an important health problem and a major challenge for obstetrics practice (Ferrara, 2007). Changes
in the lipid metabolism are related to estrogen stimulation and insulin resistance. Hyperlipidemia
is a common comorbidity in pregnancy. In women with GDM, the physiological change of lipids is
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amplified and may indicate underlying metabolic disturbance
during pregnancy (Carpenter, 2007).

Gut dysbiosis plays a vital role in abnormal host metabolism,
as recently demonstrated in studies of type 2 diabetes (T2D)
and obesity (Karlsson et al., 2013). Prevotella and Bacteroides
have been identified as the main species contributing to insulin
resistance and glucose intolerance (Pedersen et al., 2016). While
the impact of gut microbiota on host metabolism and metabolic
diseases is well-documented (Moller, 2001; Ecker et al., 2010),
only recently, studies have focused on microbiota changes to
influence metabolic mechanisms during pregnancy (Koren et al.,
2012). Parabacteroides are significantly more abundant in GDM
women than in healthy pregnant women (Kuang et al., 2017).
Novel relationship between gut microbiome composition and
the metabolic hormonal environment in overweight and obese
pregnant women at the first trimester has also been described
(Gomezarango et al., 2016). These studies suggest that major
shifts in the gut microbiome during pregnancy may play a crucial
part in the development of GDM.

Lipid homeostasis plays a crucial role in T2D (Moller,
2001). The microbiota of T2D patients was negatively correlated
with butyrate biosynthesis (Junjie et al., 2012). Studies based
on 16S rRNA gene amplicon sequencing have revealed a
decline in butyrate-producing bacteria and an increase of lactic
acid-producing bacteria from the first to the third trimesters
of pregnancy (Koren et al., 2012). Although recent studies
have demonstrated changed gut microbiota composition in
individuals with T2D and those with comorbid conditions
such as hyperlipidemia (Suez et al., 2016), the relationship
between the gut microbiota and plasma lipidome in GDM with
hyperlipidemia remains to be clarified.

Here we hypothesized that GDM with hyperlipidemia
comorbidity is associated with distinct gut microbiota
profile and plasma lipidome. To this end, in the current
study, we investigated the changes in gut microbiota profiles
compositions and plasma lipidome of women with GDM only,
hyperlipidemia and those with GDM plus hyperlipidemia, and
the correlations between the profiles and clinical biochemical
parameters of patients.

MATERIALS AND METHODS

Recruitment of Subjects and Sample
Collection
During September 2017 to March 2018, we selected pregnant
women who were referred to a 75 g oral glucose tolerance
(OGTT) in their third trimester (27–33 weeks) at Wuxi People’s
Hospital. 45 individuals were divided into four cohorts according
to fasting plasma glucose level (FPG), 2-h postprandial glucose
level (2 h PG), triglyceride level (TG) and total cholesterol (TC):
11 were allocated to the control, 11 to the GDM only (HG)
cohort (based on GDM diagnosis standard, FPG ≥ 5.1 mmol/L
or 1 h PG ≥ 10.0 mmol/L or 2 h PG ≥ 8.5 mmol/L), 11
to the hyperlipidemia only (HF) cohort (TG ≥ 1.65 mmol/L
and TC ≥ 5.98 mmol/L), 12 to the GDM plus hyperlipidemia
(M) cohort. The participants had been previously diagnosed as

healthy, with GDM only or with GDM plus hyperlipidemia by
clinicians in local provincial or municipal hospitals in China.
Written informed consent was obtained from the participants
prior to enrollment, and approval for the study was obtained from
the Ethics Committee of the Wuxi People’s Hospital (reference
number: KYLLH2018032). Women with antibiotic use in the
previous 3 months or active smoking were excluded. Most
recent FPG, 2 h PG, TG, TC, high-density lipoprotein (HDL),
high-density lipoprotein (LDL) values of each participants were
obtained from their medical records. Serum aliquots were
stored at −80 C. Refrigerated fecal samples were collected
by nurses and stored within 1 day after collection at −80◦C
until DNA extraction.

DNA Extraction, PCR and HiSeq
Sequence
Total bacterial genomic DNA samples were extracted from all
samples using the PowerMax (stool/soil) DNA isolation kit
(MoBio Laboratories, Carlsbad, CA, United States), following
the manufacturer’s instructions, and stored at −20◦C prior until
further analysis. The quantity and quality of extracted DNAs were
measured using the NanoDrop ND-1000 spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, United States).

16S rRNA Amplicon Pyrosequencing
PCR amplification of the bacterial 16S rRNA gene V3-V4
regions was performed using the forward primer 515F (5′–GTGC
CAGCMGCCGCGGTAA–3′) and the reverse primer 806R
(5′–GGACTACHVGGGTWTCTAAT–3′). Sample-specific 7-bp
barcodes were incorporated into the primers for multiplex
sequencing. The PCR components contained 25 µl of Phusion
High-Fidelity PCR Master Mix, 3 µl (10 µM) of each Forward
and Reverse primer, 10 µl of DNA Template, and 6 µl of ddH2O.
Reactions were conducted under the following conditions:
initial denaturation (98◦C, 30 s), 25 cycles of 98◦C (15 s),
annealing at 58◦C (15 s), extension at 72◦C (15 s) and a final
extension at 72◦C (1 min). PCR amplicons were purified with
Agencourt AMPure XP Beads (Beckman Coulter, Indianapolis,
IN, United States) and quantified using the Pico Green dsDNA
Assay Kit (Invitrogen, Carlsbad, CA, United States). After
the individual quantification step, amplicons were pooled in
equal amounts, and pair-end 2 × 150 bp sequencing was
performed using the Illumina HiSeq4000 platform at GUHE Info
technology, Co., Ltd (Hangzhou, China).

Sequence Analysis
The Quantitative Insights Into Microbial Ecology (QIIME,
v1.9.0) pipeline was employed to process the sequencing data,
as previously described (Caporaso et al., 2010). Briefly, raw
sequencing reads with exact matches to the barcodes were
assigned to respective samples and identified as valid sequences.
The low-quality sequences were filtered through the following
criteria: sequences that had a length of <150 bp, sequences
that had average Phred scores of <20, sequences that contained
ambiguous bases, and sequences that contained mononucleotide
repeats of >8 bp. Paired-end reads were assembled using FLASH.
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Operational taxonomic unit (OTU) picking using Vsearch
v1.11.1, included dereplication (–derep_fulllength), cluster
(–cluster_fast,–id 0.97), detectection of chimeras (–uchime_ref).
A representative sequence was selected from each OTU using
default parameters. OTU taxonomic classification was conducted
by VSEARCH searching the representative sequences set against
the SILVA128 database.

To exclude the negative control samples, a blank control
(pure water sample) and a positive control (E. coli DNA
alone) were always included for DNA extraction and PCR
procedures on 96-well plates. If the blank control had a
band in the PCR process suggesting undesired contamination,
the samples would be re-extracted and PCR re-performed.
If there was no band in the blank control, and the E. coli
positive control showed the right band, sequencing could be
performed. After sequencing, if the blank control sample had
more than 1000 reads of sequencing data (100,000 normal
samples), contamination assessment would be performed using1.
If the E. coli sample was sequenced and the OTU ratio of
the non-Enterobacteriaceae sequence exceeded 3%, it indicated
that the whole samples was contaminated, and we would re-
sequence the samples.

To minimize the difference of sequencing depth across
samples, an averaged, rounded rarefied OTU table was generated
by averaging 100 evenly resampled OTU subsets under the 90%
of the minimum sequencing depth for further analysis.

Lipid Extraction
Methanol (0.3 ml) was added to a 40 µl blood sample aliquot,
which was placed into a 1.5 ml tube, and the tube was vortexed.
Then, 1 ml of MTBE was added and the mixture was incubated
for 1 h at room temperature in a shaker. Phase separation was
induced by adding 0.25 ml of MS-grade water. Upon 10 min of
incubation at room temperature, the sample was centrifuged at
1,000 g for 10 min. The upper (organic) phase was collected and
dried in a vacuum centrifuge. Extracted lipids were dissolved in
200 µl of CHCl3/methanol/water (60:30:4.5, v/v/v) for storage
(Matyash et al., 2008).

Lipid Analysis by Gas Chromatography
and Mass Spectrometry
The lipids were analyzed by LC-MS/MS using a Thermo
Vanquish HPLC (Thermo Fisher Scientific, Germering,
Germany). MS was performed with heated ESI source in
positive and negative mode, respectively. The spray voltage
was set to 3.5 kV for positive and −2.8 kV for negative mode,
and ion transfer capillary was 325◦C. Nitrogen was used as
both sheath gas and auxiliary gas and was set to 35 and 15
arbitrary units, respectively, and the auxiliary gas temperature
was 250◦C. For MS/MS, higher-energy collision dissociation
(HCD) with nitrogen gas and step collision energy (NCE) of
20, 30, 50 for positive mode, and 20, 30, and 50 for negative
mode were used to present a broader range of fragment ions and
collected as much informative data as possible. MS data were

1https://github.com/benjjneb/decontam

acquired in the scan range of m/z 80–1200 and were processed
using Xcalibur software version 4.0 (Thermo Scientific, San Jose,
CA, United States).

Lipidomics Data Processing
LipidSearch software (Thermo Fisher Scientific, San Jose, CA,
United States) was used to identify lipid molecular species
and extractability evaluation was assessed by comparing peak
abundances. Parent and product search mode for ceramides
(CER), cholesteryl esters (Che), diacylglycerols (DG), dimethyl-
phosphatidylethanolamine (dMePE), fatty acids (FA), lysophos-
phatidylcholines (LPC), lysophosphatidylethanol (LPEt), lyso-
phosphatidylglycerol (LPG), lysophosphatidylinositol (LPI),
monoglyceride (MG), (o-acy)-1-hydroxy fatty acid (OAHFA),
platelet-activating factor (PAF), phosphatidylcholines (PC), phos-
phatidylethanolamines (PE), phosphatidylethanol (PEt), phos-
phatidylglycerols (PG), sphingomyelin (phSM), phosphatidyl-
inositol (PI), phosphatidylinositol (PIP), phosphatidylinositol 3
(PIP3), sphingomyelins (SM), sphingoshine (So), and triacyl-
glycerols (TG) were used in the current study. Parent search
mode was identified based on accurate mass of precursor ions,
and product search mode was identified based on the accurate
mass of precursor ions and MS/MS spectral pattern.

Bioinformatics and Statistical Analysis
Gut microbiota sequence data analyses were mainly performed
using QIIME and R packages (v3.2.0). OTU-level alpha
diversity indices, such as Chao1 richness estimator, ACE
metric (Abundance-based Coverage Estimator), PD_whole_tree,
Shannon diversity index, and Simpson index, were calculated
using the OTU table in QIIME. Beta diversity analysis was
performed to investigate the structural variation of microbial
communities across samples using UniFrac distance metrics and
visualized via non-metric multidimensional scaling (NMDS).
Significant differences in the UniFrac distances for pairwise
comparisons among four groups were determined using Student’s
t-test and the Monte Carlo permutation test with 1000
permutations, and visualized through the box-and-whiskers
plots. The significance of differentiation of microbiota structure
among groups was assessed by PERMANOVA (Permutational
multivariate analysis of variance) using R package “vegan”.
The taxonomy compositions and abundances were visualized
using MEGAN (Huson et al., 2011) and GraPhlAn (Zaura
et al., 2009). Venn diagram was generated to visualize
the shared and unique OTUs among samples or groups
using R package “Venn Diagram”, based on the occurrence
of OTUs across samples/groups regardless of their relative
abundance (Zaura et al., 2009). Taxa abundance at the phylum,
class, order, family, genus and species levels was statistically
compared among samples or groups by Kruskal test from
R stats package.

Based on the relative intensities of the lipids from the
normalized profiling data, One-Way Analysis of Variance
(ANOVA) followed by Post Hoc Tests were used to reveal the
significant differences of the lipids among each group. Results
were considered statistically significant when P < 0.05.
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TABLE 1 | Characteristics of the NC, HG, HF, and M cohortsa.

Characteristics NC HG HF M P-value

Age 28.2 ± 0.0.8 29.3 ± 0.9 27.3 ± 0.6 29.1 ± 0.7 0.2

Gestational week at examination 32.7 ± 0.3 31.2 ± 0.5 32.2 ± 0.8 31.8 ± 0.8 0.4

BMI (kg/m2) 26.7.0 ± 0.6 26.6 ± 1.1 26.9 ± 0.7 25.5 ± 0.8 0.6

Ethnicity,%

Xanthoderm 11 11 11 12

Other 0 0 0 0

FPG (mmol/L) 4.5 ± 0.08∗‡ 5.0 ± 0.09∗§ 4.6 ± 0.1§¶ 5.1 ± 0.2‡¶ 0.0006

2-h PG (mmol/L) 6.6 ± 0.37∗‡ 8.3 ± 0.4∗¥ 6.1 ± 0.3¥¶ 8.1 ± 0.4‡¶ < 0.0001

TC (mmol/L) 5.1 ± 0.2†‡ 5.6 ± 0.1§¶ 6.6 ± 0.3†§ 7.2 ± 0.2‡¶ < 0.0001

TG (mmol/L) 2.1 ± 0.08†‡ 2.4 ± 0.08¶ 2.7 ± 0.1† 3.3 ± 0.3‡¶ < 0.0001

HDL (mmol/L) 1.8 ± 0.08‡ 1.9 ± 0.05¶ 1.7 ± 0.1 1.5 ± 0.07‡¶ 0.02

LDL (mmol/L) 2.1 ± 0.2†‡ 2.4 ± 0.1§¶ 3.6 ± 0.2†§ 3.5 ± 0.2‡¶ < 0.0001

Data are mean ± SEM, unless otherwise stated. Clinical characteristics and biochemical variables of four cohorts at 24–28 weeks’ gestation. aNC, control; HG, gestational
diabetes; HF, hyperlipidemia; M, gestational diabetes mellitus with hyperlipidemia. b Independent ANOVA analysis was used to test for significant differences (P < 0.05) in
each variable between the four cohorts. ∗, †, ‡, §, and ¶ indicate significant differences between the NC and HG cohorts, between the NC and HF cohorts, between the
NC and M cohorts, between HG and HF cohorts, and between HG and M cohorts, respectively.

RESULTS

Cohort Description
The baseline characteristics of the participants in each cohort
are displayed in Table 1. The mean age of the pregnant women
showed no difference among NC, HG, HF and M cohorts. The
women diagnosed with GDM had higher plasma glucose (0 h
or 2 h, P < 0.001) than the control cohort and HF cohort
during OGTT. The group of women with hyperlipidemia only
or plus GDM showed significantly higher levels of TC and TG
(P < 0.001) than control cohort and HG cohort. Levels of HDL
(P < 0.05) and LDL (P < 0.001) were significantly different
between HF cohort, M cohort and control cohort, HG cohort.

Sequencing Data
To analyze the gut bacterial profiles, the overall microbiota
from control non-diabetic pregnant women (NC), women with
GDM, women with hyperlipidemia and women with GDM
plus hyperlipidemia were sequenced. The mean read length was
262 bp (ranging from 209 to 290).

As shown in Supplementary Table S1, the number of tags and
OTUs was significantly higher in the healthy cohort compared
to those in HG, HF and M cohorts (Supplementary Figure S1).
The diversity of the fecal microbiota was determined by the
α-diversity analysis. It showed significantly lower diversity for
HG, HF and M cohorts than that for the control group. The
α-diversity differences were consistent across different metrics
between the control group and HG, HF and M cohorts, i.e.,
chao1, Shannon index, phylogenetic diversity (PD) whole tree,
and observed species (Supplementary Figure S2).

Comorbid Conditions With GDM Were
Associated With Alterations in the Gut
Microbiota Profiles
Further Spearman correlation analysis was performed to detect
whether and how the gut microbiota could be attributed to blood

glucose and serum lipid levels. Strong correlations (P < 0.01)
were found between FPG and α-diversity indices (Shannon index,
Chao1 index and Ace index) (Table 2). The Spearman correlation
coefficients revealed several significant linkages, including a
negative association between FPG (P < 0.01), TG (P < 0.01) and
TC (P < 0.05) and the Shannon index; a negative association
between FPG (P < 0.01), TG (P < 0.01), TC (P < 0.001) and
LDL (P < 0.01) and the Chao1 index; a negative association
between FPG (P < 0.01), TG (P < 0.01), TC (P < 0.001) and
LDL (P < 0.01) and the ace index (Table 2).

The microbiota analysis with NMDS identified differentially-
abundant fecal bacterial taxa of the four cohorts (Figure 1).
Our results showed that the diversity of fecal microbiota
was mainly related to 6 phyla: Firmicutes, Proteobacteria,
Bacteroidetes, Actinobacteria, Verrucomicrobia and Tenericutes
(Supplementary Figure S3). The predominant genera in the
NC and HF cohorts were Faecalibacterium, Bacteroides and
Roseburia; in the HG cohorts were Roseburia, Bacteroides and
Lachnospiraceae; in M cohorts were Bacteroides, Roseburia and
Prevotella (Figure 2).

The Kruskal test revealed the relative abundance of two
dominant fecal phyla differed significantly among the four
groups, with a higher relative abundance of Actinobacteria
in the HF group and Verrucomicrobia in the HG group
(Figure 3 and Supplementary Table S2). Relative abundance
at class, order and family levels was similar among the four

TABLE 2 | α diversity indices and their correlation with clinical characteristics and
biochemical variables in in the NC, HG, HF, and M cohorts.

α diversity FPG 2hPG TG TC HDL LDL

Shannon −0.3968∗∗ 0.2441 −0.4205∗∗ −0.3059∗ −0.01552 −0.2603

chao1 −0.409∗∗ −0.2366 −0.4081∗∗ −0.5089∗∗∗ 0.2382 −0.41∗∗

ace −0.407∗∗ −0.2515 −0.4011∗∗ −0.5146∗∗∗ 0.2422 −0.4151∗∗

Data are Spearman correlation coefficients. Significant correlations shown in
boldface. ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.
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FIGURE 1 | Distribution of gut microbiota according to different gestational
status, related to Supplementary Figure S1. Microbial communities
clustered using NMDS analysis. Each point represents one sample of NC
(purple, n = 11), HG (green, n = 11), HF (red, n = 11) and M (blue, n = 12)
pregnant women. The distance among different samples reflects the
comparability of four cohorts.

groups. At the genus level, NC cohorts had a significantly
higher abundance of Faecalibacterium, while M cohorts were
significantly enriched for Streptococcus, Veillonella, Prevotella,
Haemophilus and Actinomyces (Supplementary Table S3).

The relationship between the fecal microbiome composition
and individual characteristics such as FPG, 2 h PG, TG,
TC, HDL, and LDL was also assessed. At phylum, both
TC and TG were positively correlated with the relative
abundance of Proteobacteria (P < 0.05). 2 h PG was negatively
correlated with the relative abundance of Actinobacteria
(P < 0.05) (Supplementary Table S4). There were no significant
associations of FPG, TG, and HDL with the gut microbiota.
At genus, by the Kruskal test, we identified that lower relative
abundance of Faecalibacterium was associated with increased
TG (P < 0.01). In addition, increased relative abundance of
Streptococcus and Actinomyces genus was positively associated
with higher TC levels (P < 0.01). The genus Veillonella
(P < 0.01) and Haemophilus (P < 0.05), which were positively
correlated to TC levels, were negatively correlated with HDL
levels (P < 0.05) (Table 3).

Abnormal Lipid Metabolism in GDM and
Association of Lipid Classes With
Gut Microbiota
In the present study, whole plasma lipidomics was used to
determine the differences between M cohort and the other three
groups. Numerous lipid classes were identified by LipidSearch,

including CER, Che, cPA, DG, dMePE, FA, LPA, LPC, LPG, LPI,
PE, PI, PS, PG, PA, SM, So, TG, and more than 3000 lipid species
were detected and identified.

To further evaluate the difference among these four cohorts,
peak areas of lipid classes were compared. Comparison of
compositions of lipid classes in cohorts in positive and negative
ion mode was presented in Figure 4 (P < 0.01) (Supplementary
Table S5). This lipidomics study indicates the abnormal lipid
metabolism in M cohorts. Compared with the other three groups,
most lipid classes were up-regulated in M cohorts.

The interactions between gut microbiota and the significantly
changed lipid profiles, obtained by combining datasets from
both ion modes were further evaluated in M cohorts. At
phylum level, the lipidomics datasets were significantly associated
with Firmicutes, Bacteroidetes, Actinobacteria and Tenericutes
(Supplementary Table S6). At genus level, we found that
Faecalibacterium was positively associated with LdMePE, LPEt
and PG, while Prevotella was positively correlated with LPG and
negatively correlated with PIP3 (Figure 5).

DISCUSSION

In addition to recent report on changes in microbial
compositions of pregnant women with GDM (Kuang et al.,
2017; Crusell et al., 2018), our study has provided a more
comprehensive analysis of the gut microbial changes of
pregnant women with GDM, hyperlipidemia and GDM plus
hyperlipidemia, coupled with multi-omics analysis of serum and
gut samples to determine the relationship and differences of gut
microbiota and lipid metabolism. By using LC-MS/MS-based
untargeted lipidomics analysis, this is the first large-scale study
to explore the alterations in plasma lipid patterns of individuals
with GDM and hyperlipidemia.

Our results suggest that GDM, hyperlipidemia and GDM
plus hyperlipidemia lower the diversity of the microbiota, as
the M cohort had lower numbers of tags and OTUs compared
to the HG cohorts. Among the four cohorts, subjects with
hyperlipidemia had lower bacterial abundance than NC, HG,
and M cohorts. It implies that hyperlipidemia has a stronger
impact on gut microbiota than hyperglycemia. It has been
shown that a reduced richness of gut microbiota is associated
with elevated pro-inflammatory markers and insulin resistance
(Le Chatelier et al., 2013).

In this study, we analyzed gut microbiota profile with
highlighted differential bacteria taxa composition in relation to
clinical characteristics of the four cohorts. Similarly to Luisa F
and Kuang Y (Gomez-Arango et al., 2016; Kuang et al., 2017),
our results identified the top four most abundant bacteria in
the four cohorts were composed of non-pathogenic commensal
microbiota from Firmicutes, Bacteroidetes, Proteobacteria, and
Actinobacteria, with the proportion of Actinobacteria was higher
of HF cohort. Moreover, M cohorts were associated with a higher
proportion of the bacterial genus Streptococcus, Faecalibacterium,
Veillonella, Prevotella, Haemophilus and Actinomyces.

As an important butyrate-producer, Faecalibacterium
prausnitzii is known for anti-inflammatory properties
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FIGURE 2 | Summary of bacterial genera detected in the four cohorts (A–D) indicate the top five most abundant genera detected in the NC (A), HG (B), HF (C), and
M (D) cohorts, respectively.

(Sokol et al., 2008). It has been reported that healthy pregnant
women have a lower abundance of Faecalibacterium in the
third trimester (Koren et al., 2012). Reduced abundance of
F. prausnitzii has been reported in non-pregnant adults with
metabolic abnormalities and T2D (Zhang et al., 2013; Haro
et al., 2016). Accordantly with these studies, we also found
that Faecalibacterium was reduced in the HF, HG and M
cohorts. Furthermore, we observed a negative correlation of
Faecalibacterium with TG in pregnant women. Several earlier
studies showed contrasting results in gut microbiome of GDM

(Crusell et al., 2018) or urinary microbiota in T2D plus hyper-
lipidemia (Liu et al., 2017). It could be attributed to the different
species or strains of Faecalibacterium involved, which could be
further verified by shot-gun sequencing-based metagenomics.

Interestingly, the present microbiological assessment was
that M cohort exhibited significantly higher abundance of
Actinomyces than did HG, HF and NC cohorts, which was
positively correlated with TC. Actinomyces are typically found
in oral microbiota. Previous studies have reported that the
relative abundance of Actinomyces was higher in individuals with
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FIGURE 3 | Phylum-level relative abundance of bacteria that in fecal samples was significantly different between the four cohorts NC, HG, HF, and M cohorts.
Kruskal–Wallis test was used to compare the differences in the relative abundance of bacterial phylum between the four cohorts. (A,B) Indicate the significant
differences (P < 0.05) between the four cohorts.

a glucose diet (Matee et al., 1993) and contributed to plaque
related diseases (Moore and Moore, 1994). In addition, recently,
Actinomyces have been implicated in gastric Actinomycosis for
causing morbid obesity after gastric bypass (Baierlein et al., 2007).
Notably, we found a positive relationship between Actinomyces,
Streptococcus, Haemophilus, Veillonella and TC. These bacteria
could be potential targets for intervention for patients with
diabetes and hyperlipidemia.

There was a significantly higher relative abundance of
Prevotella in M cohort compared to that in the other three
cohorts. Previous studies have reported that the relative
abundance of Prevotella was positively associated with T2D and
obesity (Zhang et al., 2009; Fugmann et al., 2015). Pedersen
et al. identified Prevotella as one of the main species driving the
association between biosynthesis of branched-chain amino acids
and insulin resistance (Pedersen et al., 2016). As mucin degrading
bacteria, Prevotella may contribute to increased gut permeability
(Brown et al., 2011). Similar to what happens in new-onset
rheumatoid arthritis (Scher et al., 2013) and obesity (Furet et al.,
2010), Prevotella should have a strong modulatory influence on
the immune system and be related to low-grade inflammation.
Therefore, the high relative abundance of Prevotella may be

TABLE 3 | Gut microbiota abundance (genus) and their correlation with clinical
characteristics and biochemical variables in in the NC, HG, HF, and M cohorts.

FPG 2hPG TG TC HDL LDL

Faecalibacterium −0.2132 −0.2190 −0.4022∗∗ −0.1568 −0.03149 −0.2607

Streptococcus 0.0667 0.1028 0.2035 0.3875∗∗ −0.2192 0.2644

Veillonella 0.1285 0.1494 0.1062 0.3862∗∗ −0.3353∗ 0.1829

Haemophilus 0.1568 0.2083 0.1382 0.3631∗ −0.3271∗ 0.1957

Actinomyces 0.2293 0.1945 0.2176 0.3510∗ −0.2472 0.2499

Data are Spearman correlation coefficients. Significant correlations shown in
boldface. ∗P < 0.05; ∗∗P < 0.01.

a causal factor in the development of hyperglycemia plus
hyperlipidemia during pregnancy.

Analysis on the relative abundance of bacteria across the four
cohorts led us to a surprising discovery of Akkermansia genus,
which belongs to the Verrucomicrobia phylum, both being higher
in HG cohort. Akkermansia is known to be positively associated
with better metabolic health and insulin sensitivity and inversely
correlated to FPG (Hansen et al., 2012; Dao et al., 2016). In
rodents, probiotic supplementation with Akkermansia improved
glucose tolerance and insulin sensitivity (Zhao et al., 2017). Our
results suggest thatAkkermansiamight have additional impact on
host metabolism in pregnant women with GDM than previously
described or that some unknown subspecies of Akkermansia play
a role here, which could be further analyzed by whole-genome
sequencing at a deeper taxonomic resolution.

Indeed, abnormal lipid metabolism readily occurs in diabetes.
In this study, the abnormal lipid metabolism was characterized
by a significant increase in GDM with hyperlipidemia, such
as LPCs, SM and Cer. Plasma levels of the LPC classes have
been demonstrated to be correlated with plasma level of LDL
(Goncalves et al., 2012). Sphingomyelin (SM) was up-regulated
in M cohort. Sphingolipid metabolism may be influenced by
glucocorticoids, which can increase membrane sphingomyelin
(Cohen et al., 1986). Indeed, glucocorticoids levels are found
to be increased in diabetes patients. These earlier data are
in agreement with our observation of increased SM with the
development of GDM. The role of ceramides in insulin resistance
has been intensively investigated. It has been reported that
exogenous ceramide administration induces apoptosis of the islet
cells in the absence of fatty acids (Shimabukuro et al., 1998).
Ceramides play a vital role in TLR4-dependent insulin resistance
in obesity (Shi et al., 2006). Here, we found that the alterations
of Firmicutes and Bacteroidetes were associated with serum levels
of ceramides. It has been found that LPG was significantly
increased in T2D patients (Lu et al., 2016). Moreover, increase
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FIGURE 4 | Clusters of M cohort lipid classes revealed by abundance covariation. A heatmap illustrating that the 31 lipid classes clearly segregate NC cohort and M
cohort (A), 27 lipid classes clearly segregate HG cohort and M cohort (B), 30 lipid classes clearly segregate HF cohort and M cohort (C). Each colored cell on the
map corresponds to a relative concentration value in the data table, with samples in columns and features/compounds in rows. The heatmap was used to identify
samples/features that are unusually high/low. The metabolite annotation is listed in Supplementary Table S5. Red lines represent metabolites that are increased
and blue lines represent metabolites that are reduced relative to M cohort.

FIGURE 5 | Gut microbiota (genus) associated with significantly changed lipids during pregnancy with GDM plus hyperlipidemia (M cohort). Dot Plot of correlations
between bacteria genus and LdMePE, LPEt, LPG, PG, PIP3. The size of each point represents the correlation coefficient and the color represents positive (blue) or
negative (red) relationship.

or decrease in production of PIP3 can result in obesity and
diabetic phenotypes (Manna and Jain, 2015). As expected, we
found that the two lipid metabolites were significantly associated
with Prevotella. Our data provide strong evidence that gut
microbiome has a hand to play in the lipid metabolic mechanisms
of GDM with hyperlipidemia. However, metagenomics could be
done to identify the specific species. Our results indicate that
plasma lipid classes might reflect some of abnormal changes
during GDM development. Various biomarkers identified may
worth further evaluation in prevention and treatment of GDM
with hyperlipidemia.

Several limitations were present in our study. Firstly the
cohort sizes were relatively small, partly due to the stringent
inclusion criterion. Furthermore, patient samples were analyzed
one time per participant, which were collected in the third
trimester of pregnancy. As immune and metabolic changes occur
throughout pregnancy, the maternal microbial composition
could be substantially- different comparing the third trimesters
to the 1st months postpartum (Koren et al., 2012; Crusell et al.,
2018). Here, we were unable to clarify the causal relationship
between the microbiome and the development of GDM due to
the cross-sectional design. In addition, environmental factors,
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e.g., nutrient intake and life style may affect blood glucose,
lipid and fecal microbiota composition. To circumstantiate
the diversification of fecal microbiota and blood lipidome
observed in the current study, a larger prospective cohort with
standardized food and nutrient intake to eliminate the dietary
effect could be more persuasive.

Together, this study allows a better understanding on the
relationship of gut microbiota and plasma lipids associated with
the metabolic conditions of pregnant women. Future studies
combining metagenomics, lipidomics and proteomics should be
conducted to describe detailed variations in patients with GDM
and comorbid hyperlipidemia and to support precise prevention
and intervention strategies for GDM with hyperlipidemia.
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