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Cilia-induced flow of fractional Burgers fluid is studied in an inclined tube for both

symplectic and antiplectic wave patterns. The solution of the problem is persued

under the long wave length limitation. The fractional Adomian decomposition method

is employed to evaluate the pressure gradient. Mathematical expressions for the axial

velocity, frictional force, pressure gradient, and stream function are obtained and the

influence of the main operating parameters is discussed in detail. It is noted that the

velocity profile is more dominant in the case of antiplectic metachronal waves compared

to symplectic ones, which confirms former results on the better capability of antiplectic

waves to transport mucus, obtained with more complex numerical solvers.

Keywords: burgers fluid, cilia, fractional Adomian decomposition method, inclined tube, long wave length

approximation

1. INTRODUCTION

Dutch light microscopist Antoni was the first to discover cilia in 1675 and Sharpey was the first
to discuss cilia in English language in 1835. Exhaustive studies on the ciliary structures have been
carried out during the nineteenth century (Sleigh et al., 1988). Cilia and flagella oscillate in a waving
fashion during motion to transport fluids and propel cells (Vélez-Cordero and Lauga, 2013). Cilia
motion constitutes a pivotal role in a wide variety of physiological processes, such as alimentation,
circulation, locomotion, respiration, and reproduction (Maiti and Pandey, 2017). Ciliated cells can
indeed be found in many human organs e.g., photoreceptor cells in retina, in hair bundles on ear,
epithelial cells in the respiratory tract, in Fallopian tubes (Ashraf et al., 2018), in kidney (Guirao
and Joanny, 2007), in the ependymal cells of the brain that generate cerebrospinal flow among few
examples (Lieberstein, 1975). Malfunctioning of the ciliary activity may be responsible of many
respiratory diseases (Rubin, 2014), like severe asthma.

As the amalgamated motion of cilia occurs, the cilia’s upper layer can be seen to have a
metachronal wave generated as a result of a small phase lag between neighboring cilia. This
collective motion of cilia supports many physiological processes (Lieberstein, 1975; Murakami
and Takahashi, 1975; Takahashi and Shingyoji, 2002). Different types of metachronal waves are
classified depending upon the dynamics and strokes of the moving cilia. Symplectic beat patterns
are produced if the directions of the propagative metachronal waves and the main flow are the same
and antiplectic patterns are recognized when the directions of the wave propagation and the flow
are opposite (Knight-Jones, 1954; Blake, 1972).
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To date, many efforts have been made mathematically to
understand the involvement of ciliary motion related to different
biofluids, such as bronchial mucus, semen . . . in humans which
are represented by Newtonian and non-Newtonian fluid models.
Maiti and Pandey (2017) applied a numerical approach to
study the flow of a power-law fluid representing semen in
an axisymmetric tube (representing the efferent ducts of the
male human reproductive channel) due to cilia motion and
concluded that, more than only the ciliary activity, there are
several other factors like the smoothness of muscles, the constant
fluid secretion or the vacuum created during ejaculation, which
may be responsible for the semen flow. Siddiqui et al. (2010,
2014) obtained exact solutions of cilia induced flow problems
of viscous fluid and power-law fluid models representing semen
in a cylindrical tube and infinite channel under the long
wavelength approximation.

Mucus plays a significant role in individual’s health, therefore
many researchers discussed the bronchial mucus transportation
due to ciliary activity (see for examples in Barton and Raynor,
1967; Ross and Corrsin, 1974; Fulford and Blake, 1986; Maqbool
et al., 2016). Norton et al. (2011) developed a transport model,
where the mucus, considered successively as a Doi-Edwards,
Jeffrey, and Maxwell fluid, is transported as a rigid body and
the metachronal wave exhibits a symplectic behavior. Vélez-
Cordero and Lauga (2013) applied the regular perturbation
method to solve a problem in which the tracheobronchial mucus
is considered as a Carreau fluid. This solution only portrays
the Newtonian effects when second-order perturbations are
considered and non-Newtonian effects are captured when the
perturbation analysis is pushed up to the fourth-order. Maqbool
et al. (2016) considered the geometry of Siddiqui et al. (2014)
and studied the mucus flow treating mucus as a Jeffrey fluid.
Smith et al. (2008) noted that the most advanced model to
investigate the mucociliary clearance process is the Maxwell
viscoelastic model and proposed a fluid-structure interaction
model to examine the complex fluid flow problem arising due to
ciliary activity.

More recently, the immersed boundary (IB) method (Hao
and Zhu, 2010) has been extensively applied to study biofluid
flows representative of humans/animals. Dillon et al. (2007) used
the IB method to examine the two dimensional flow of three
cilia in a mucus layer such that the mucus layer is treated as
an elastic solid instead of a viscoelastic fluid. Dauptain et al.
(2008) used the IB method to examine the motion of fluid due
to one row of cilia on a ctenophore Pleurobrachia pileus, which
is commonly known as a sea gooseberry for Reynolds numbers
Re within the range [50 − 200]. They found that as the beating
of cilia increases, it spreads more power to the interacting fluid
and this work may be considered as a guideline for solving the
fluid-structure interaction problem. Very recently, Chatelin and
Poncet (2016) investigated by 3D simulations the influence of the
mucus viscosity, fluid height, cilia length, and beating frequency
on the mucociliary process in a two-phase environment. Chateau
et al. (2018) performed 3D simulations of the transport and
mixing induced by beating cilia at Re up to 20 in a two-phase
environment composed of Newtonian fluids using a coupled
IB/lattice Boltzmann method.

All reported studies (Barton and Raynor, 1967; Ross and
Corrsin, 1974; Fulford and Blake, 1986; Dillon et al., 2007; Smith
et al., 2008; Vélez-Cordero and Lauga, 2013;Maqbool et al., 2016)
confirmed the fact that more efforts are still required in terms of
scientific research to better understand the internal flow structure
due to cilia motion and their interaction with the surrounding
fluid. In the present work, one will focus on the mucociliary
clearance process. It is well-known now that bronchial mucus
exhibits complex rheological properties: stress relaxation, tensile
stresses, shear thinning, yielding stress, and thixotropic behavior
(see in Lafforgue et al., 2017, 2018). Though the advanced
numerical solvers developed by Chatelin and Poncet (2016) and
Chateau et al. (2018) considered the two-phase character of the
problem and the behavior of each single cilium, such approaches
do not account for the rheology of mucus. Moreover, simulating
themucociliary clearance process in human airways remains very
challenging for such methods due to the multiscale character of
the problem: from the micrometer scale when considering each
individual cilium to the decimeter scale when looking at the main
air flow within the trachea. So analytical approaches or simplified
models like the envelope model are still deemed necessary
if one wants to simulate the complete problem. The present
paper is an attempt to demonstrate that analytical solutions
obtained by the Adomian decomposition method can provide
useful informations regarding the mucociliary clearance process.
Momani and Odibat (2006) used successfully the Adomian
decomposition method to solve a time-fractional Navier–Stokes
equation in a tube and demonstrated both the efficiency and
simplicity of its method. In this paper, bronchial mucus is
considered as a fractional Burgers fluid. Motion is generated by
linear pressure produced by the tips of the moving cilia under
the long wavelength and low Reynolds number approximations
(Shapiro et al., 1969). Various illustrations highlighting the effects
of the most important parameters are also sketched. Another
motivation of the present paper is that the literature is scarce
on fractional fluid models (see the monograph of Oldham and
Spanier, 1974 for example).

2. MATHEMATICAL MODEL

The fluid motion characteristics of an incompressible fractional
Burgers fluid in a ciliary tube having an inclination angle θ are
considered. The metachronal wave and inclined tube move with
the same speed c to the right as shown in Figure 1.

The cilia tips follow an elliptical path as suggested byMaqbool
et al. (2016) and Siddiqui et al. (2010, 2014), which can be
represented by

l̂(̂Z,̂ t) = R̂ = a+ aǫ cos

[
2π

η
(̂Z − ĉt)

]
, (1)

k̂(̂Z,Z0 ,̂ t) = Ẑ = Z0 + aǫα∗ sin

[
2π

η
(̂Z − ĉt)

]
, (2)

where Equations (1, 2) are the parametric equations representing
the cilia motion in which a is the mean tube radius, c is the wave
speed, t̂ is time, Z0 is the reference position of cilia, α∗ is the
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FIGURE 1 | Schematic view of the inclined tube with cilia.

eccentricity of ellipse, ǫ is a dimensionless varying parameter and
η is the wavelength of the metachronal wave. One assumes that
the fluid and adjacent cilia tips have the same velocity resulting
in a no-slip condition. Therefore, the axial and radial velocities
can be written as

Ŵ =
∂Ẑ

∂̂t

∣∣∣∣∣
Z=Z0

=
∂ k̂

∂̂t
+
∂ k̂

∂Ẑ

∂Ẑ

∂̂t
=
∂ k̂

∂̂t
+
∂ k̂

∂Ẑ
Ŵ, (3)

and

Û =
∂R̂

∂̂t

∣∣∣∣
Z=Z0

=
∂̂ l

∂̂t
+
∂̂ l

∂Ẑ

∂Ẑ

∂̂t
=
∂̂ l

∂̂t
+
∂̂ l

∂Ẑ
Ŵ. (4)

Introducing Equations (1, 2) into Equations (3, 4) yields

Ŵ =

−( 2π
η
)
[
acα∗ǫ cos

{
( 2π
η
)(̂Z − ĉt)

}]

1− ( 2π
η
)
[
acα∗ǫ cos

{
( 2π
η
)(̂Z − ĉt)

}] , (5)

and

Û =

( 2π
η
)
[
acα∗ǫ sin

{
( 2π
η
)(̂Z − ĉt)

}]

1− ( 2π
η
)
[
acα∗ǫ cos

{
( 2π
η
)(̂Z − ĉt)

}] , (6)

where Û and Ŵ are the radial and axial velocity components. The
wave and fixed frames are related through the transformations

R̂ = r̂, Û = û, Ŵ = ŵ− c, Ẑ = ẑ − ĉt, (7)

and

P̂(̂Z, R̂, T̂) = p̂(̂z, r̂), (8)

where P̂
(
p̂
)
, R̂ (̂r), and Ẑ (̂z) are the pressure, radius, and axial

position in the fixed (wave) frame. The extra stress tensor for
fractional Burgers’ fluid is given as

(
1+ λα1

∂α

∂tα
+ λ2α2

∂2α

∂t2α

)
Ŵ =

(
1+ λ

β
3

∂β

∂tβ

)
·
̹ , (9)

where Ŵ is the shear stress tensor,
·
̹ is the strain rate,

λi (i = 1, 2, 3) are constitutive parameters, α and β are the
fractional derivative and integral defined as Hilfer (2000)

Dα
[
q(p)

]
=

1

Ŵ(1− α)

∫ p

0
q(t)

(
p− t

)−α
dt, 0 < α < 1, (10)

and

Jα
[
q(p)

]
=

1

Ŵ(α)

∫ p

0
q(t)

(
p− t

)α−1
dt, 0 < α < 1. (11)

with 0 ≤ α ≤ 1. The fractional Burgers fluid model reduces to
fractional Oldroyd B model for λ2 = 0 and the classical viscous
model can be obtained if λi = 0 (i = 1, 2, 3) .

The velocity components for the fractional Burgers’
fluid model for an inclined tubular flow should satisfy the
following equations

ρ

(
û
∂ŵ

∂̂r
+ ŵ

∂ŵ

∂̂z

)
= −

∂ p̂

∂̂z
+

1

r̂

∂

∂̂r
(̂rτrz)+

∂τzz

∂̂z
−ρg sin θ , (12)

ρ

(
û
∂ û

∂̂r
+ ŵ

∂ û

∂̂z

)
= −

∂ p̂

∂̂r
+

1

r̂

∂

∂̂r
(̂rτrr)−

τθθ

r̂
+
∂τzr

∂̂z
−ρg cos θ .

(13)

∂ û

∂̂r
+

û

r̂
+
∂ŵ

∂̂z
= 0, (14)

where g is the gravitational acceleration, û and ŵ are the radial
and axial velocity components, τij are the shear stress tensor
components and ρ is the fluid density. To solve the problem, the
following non-dimensional parameters are introduced

z∗ =
ẑ

λ
, r∗ =

r̂

a
, u∗ =

û

βc
, w∗

=
ŵ

c
, h∗ =

ĥ

a
, p∗ =

aβ

cµ
p̂,

β∗ =
a

η
, τ ∗rz =

a

µc
τrz, Re =

ρca

µ
, Fr =

c2

ga
,

λ1 =
cλ1

η
, λ2 =

c2λ2

η2
, λ3 =

cλ3

η
, t∗ =

ĉt

η
, (15)

where η, a, c, and µ denote the wavelength, tube radius,
wave speed, and dynamic viscosity, respectively, Re and Fr
are the Reynolds and Froude numbers while β∗ is the wave
number. Under the long wavelength and low Reynolds number
approximations, the flow may be considered as a Stokes flow.
Thus, during the non-dimensionalizing of Equations (12, 13)
with the help of Equation (15), we have ignored the terms
involving β∗, β∗2, β∗3, and Re, Re2, Re3 . . . but terms involving
Re/Fr are retained as the orders of Re and Fr numbers are the
same. Equations (8–14) (after dropping hats) simplify to the
following non-dimensional forms

∂p

∂r
=0, (16)
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(
1+ λα1

∂α

∂tα
+ λ2α2

∂2α

∂t2α

) (
∂p

∂z
+

Re

Fr
sin θ

)
=

(
1+ λ

β
3

∂β

∂tβ

) (
∂2w

∂r2
+

1

r

∂w

∂r

)
, (17)

with appropriate boundary conditions given as

u = u(h) = 2πε sin(2πz)+ β∗(2πε)2α∗ sin(2πz) cos(2πz)

at r = ±h, (18)

w = w(h) = −1− 2πεα∗β∗ cos(2πz), at r = ±h, (19)

where

h(z) = 1+ ε cos(2πz) (20)

∂w

∂r
(r = 0) = 0, (21)

The following two equations are used to determine the initial
guesses required by the Adomian decomposition method

∂p

∂z
= 0, (22)

d

dt

(
∂p

∂z

)
= 0 at t = 0. (23)

Integrating Equation (17) with respect to r and using the
boundary condition (Equation 21), one gets

(
1+ λα1

∂α

∂tα
+ λ2α2

∂2α

∂t2α

) (
∂p

∂z
+

Re

Fr
sin θ

)
r2

2

= r

(
1+ λ

β
3

∂β

∂tβ

)
∂w

∂r
. (24)

Further integrating Equation (24) and applying the boundary
conditions (Equations 18, 19) will yield

(
1+ λ

β
3

∂β

∂tβ

)
w (r) =

1

4
(r2 − h2)

(
1+ λα1

∂α

∂tα
+ λ2α2

∂2α

∂t2α

)

×

(
∂p

∂z
+

Re

Fr
sin θ

)
+

(
1+ λ

β
3

∂β

∂tβ

)
w(l). (25)

The results for a Newtonian fluid in a horizontal tube can be
deduced using the limits λi → 0 for i = 1, 2, 3 and θ → 0,
therefore one gets

w (r) =
1

4
(r2 − h2)

∂p

∂z
+ w(h) (26)

The volume flow rate is defined as

q = 2

∫ h

0
rwdr, (27)

which, in light of Equation (24), becomes

(
1+ λ

β
3

∂β

∂tβ

)
q = +h2

(
1+ λ

β
3

∂β

∂tβ

)
w(l)

+
−h4

8

(
1+ λα1

∂α

∂tα
+ λ2α2

∂2α

∂t2α

) (
∂p

∂z
+

Re

Fr
sin θ

)
, (28)

so that q the dimensional volume rate and Q the dimensionless
volume flow rate in the fixed frame are related as

Q = 2

∫ l

0
wrdr = 2

∫ l

0
(w− 1) rdr = q− h2. (29)

The mean volume flow rate Q can be calculated using the time
period T in Equation (30)

Q =
1

T

∫ T

0
Qdt∗ = q− 1− 0.5ǫ2. (30)

Equation (26) in view of Equation (29) gives

∂2α

∂t2α
(
∂p

∂z
)+

λα1

λ2α2

∂α

∂tα
(
∂p

∂z
)+

1

λ2α2
(
∂p

∂z
) =

−
Re

Fr
sin θ

(
1

λ2α2
+
λα1

λ2α2

t−α

Ŵ(1− α)
+

t2α

Ŵ(1− 2α)

)

−8

λ2α2

(
1+ λ

β
3

∂β

∂tβ

)
Q̄+ 1+ 0.5ǫ2 − l2w(h)

h4
(31)

The stream function ψ in the wave frame is computed with the
help of Equations (25, 28, 31) as

ψ =
r4 − 2r2h2

2h4

(
h2w

(
h
)
− Q̄− 1− 0.5ǫ2

)
−

r2

2
w

(
h
)
. (32)

3. SOLUTION METHODOLOGY

Equation (31) can be simplified as

∂2α l

∂t2α
+
λα1

λα2

∂α l

∂tα
+

1

λ2α2
l =

−
Re

Fr
sin θ

(
1

λ2α2
+
λα1

λ2α2

t−α

Ŵ(1− α)
+

t2α

Ŵ(1− 2α)

)

(
1+ λ

β
3

∂β

∂tβ

)
A, (33)

where l(z, t) =
∂p
∂z with the initial conditions

l(z, 0) = 0,

∂ l(z, 0)

∂t
= 0, (34)

and

A =
−8

λ2α2

Q̄+ 1+ 0.5ǫ2 − h2w(h)

h4
, (35)

so that Equation (32) will take the form

l(z, t) = −l2α
(
λα1

λ2α2

∂α f

∂tα
+

1

λ2α2
f − φ(t)

)
, (36)
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where

φ(t) = A

[
1+ λ

β
3

t−β

Ŵ(1− β)

]
−

Re

Fr
sin θ

(
1

λ2α2
+
λα1

λ2α2

t−α

Ŵ(1− α)
+

t2α

Ŵ(1− 2α)

)
(37)

An infinite series solution for l (z, t) by using the Adomian
decomposition method (Adomian, 1994; Babolian and Biazar,
2002) is given by

l(z, t) =

∞∑

n=0

ln(z, t). (38)

where l0, l1, l2, l3,...ln+1 are determined as

l0 = 0, (39)

l1 = A
t2α

Ŵ(1+ 2α)
+ λ

β
3

t2α−β

Ŵ(1+ 2α − β)
+

Re

Fr
sin θ

(
1

λα2

t2α

Ŵ(2α + 1)
+
λα1

λα2

tα

Ŵ(α + 1)
+ 1

)
, (40)

l2 = A

[
t2α

Ŵ(1+ 2α)
+ λ

β
3

t2α−β

Ŵ(1+ 2α − β)

]

−A
λα1

λ2α2

[
t3α

Ŵ(1+ 3α)
+ λ

β
3

t3α−β

Ŵ(1+ 3α − β)

]

−A
1

λ2α2

[
t4α

Ŵ(1+ 4α)
+ λ

β
3

t4α−β

Ŵ(1+ 4α − β)

]

+
λ1

λ2α2

Re

Fr
sin θ

[
1

λ2α2

t3α

Ŵ(1+ 3α)
+
λα1

λ2α2

t2α

Ŵ(1+ 2α)
+

tα

Ŵ(α + 1)

]

+
1

λ2α2

Re

Fr
sin θ

1

λ2α2

t4α

Ŵ(1+ 4α)
+
λα1

λ2α2

t3α

Ŵ(1+ 3α)
+

t2α

Ŵ(2α + 1)
+

−
Re

Fr
sin θ

[
1

λ2α2

t2α

Ŵ(1+ 2α)
+
λα1

λ2α2

tα

Ŵ(α + 1)
+ 1

]
, (41)

l3 = A

[
t2α

Ŵ(1+ 2α)
+ λ

β
3

t2α−β

Ŵ(1+ 2α − β)

]

−A
λα1

λ2α2

[
t3α

Ŵ(1+ 3α)
+ λ

β
3

t3α−β

Ŵ(1+ 3α − β)

]

+A(
λ2α1

λ3α2
−

1

λ2α2
)

[
t4α

Ŵ(1+ 4α)
+ λ

β
3

t4α−β

Ŵ(1+ 4α − β)

]

+2A
λα1

λ3α2

[
t5α

Ŵ(1+ 5α)
+ λ

β
3

t5α−β

Ŵ(1+ 5α − β)

]

+A

[
1

λ3α2

t6α

Ŵ(1+ 6α)
+ λ

β
3

t6α−β

Ŵ(1+ 6α − β)

]

−
Re

Fr
sin θ

[
1

λ2α2

t2α

Ŵ(1+ 2α)
+
λα1

λα2

tα

Ŵ(1+ α)
+ 1

]

+
λα1

λ2α2

Re

Fr
sin θ

[
1

λ2α2

t3α

Ŵ(1+ 3α)
+
λα1

λ2α2

t2α

Ŵ(1+ 2α)

+
tα

Ŵ(1+ α)

]

−(
λα1

λ3α2
−

1

λ2α2
)
Re

Fr
sin θ

[
1

λ2α2

t4α

Ŵ(1+ 4α)
+
λα1

λ2α2

t3α

Ŵ(1+ 3α)

+
t2α

Ŵ(1+ 2α)

]

−2
Re

Fr
sin θ

λα1

λ2α2

[
1

λ2α2

t5α

Ŵ(1+ 5α)
+
λα1

λ2α2

t4α

Ŵ(1+ 4α)

+
t3α

Ŵ(1+ 3α)

]
. (42)

From ln(z, t) (n > 0), the other components can also be obtained.
Finally an approximate solution of Equation (37) by truncating
the series can be written as

l(z, t) = lim
N→∞

φn(z, t), (43)

where

φn(z, t) =

N−1∑

n=0

ln(z, t). (44)

The pressure difference 1p and friction force F across one
wavelength are given by

1p =

∫ 1

0

∂p

∂z
dz, (45)

F =

∫ 1

0

(
−h

∂p

∂z

)
dz (46)

4. RESULTS AND DISCUSSION

In order to evaluate the pressure rise1p, pressure gradient dp/dz,
frictional force F, and streamlines ψ , the software Mathematica
8.0 has been used. The flow characteristics of Burgers fluids

TABLE 1 | Pressure rise, pressure gradient, and frictional force for the four rheological models considered here.

Fluid models Rheological properties 1p dp/dz F

Fractional burgers λ1 = λ2 = λ3 = 1,α = β = 0.5 3.62293 −1.9542 3.46156

Burgers λ1 = λ2 = λ3 = 1,α = β = 1 7.90151 −0.624569 0.209561

Fractional Oldroyd-B λ1 = λ3 = 1, λ2 = 0,α = β = 0.5 7.75994 0.251982 0.0889968

Oldroyd-B λ1 = λ3 = 1, λ2 = 0,α = β = 1 −7.27648 0.794008 −0.814099

Results obtained for r = 0.1 and z = 0.5 at t = 0.1.
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in an inclined ciliated tube are presented by controlling the
fractional parameters α and β , the cilia length ǫ, and the angle
of inclination θ . The Reynolds number Re and the Froude
number Fr have been both fixed to 0.1. The Reynolds number

based on the cilia tip speed is usually around 10−5 in human
airways but Chateau et al. (2018) recently demonstrated that
there is no significant influence of Re as long as it remains
lower than 1.

FIGURE 2 | Pressure drop 1p as a function of the flow rate Q̄ for α* = β* = 0.4, Fr = 0.1 and Re = 0.1: (A) influence of the fractional parameter α for ǫ = 0.3,

β = 0.6, λ1 = 5, λ2 = λ3 = 1, θ =
π
3 ; (B) influence of the fractional parameter β for ǫ = 0.3, α = 0.6, λ1 = 5, λ2 = λ3 = 1, θ =

π
3 ; (C) influence of the cilia length ǫ

for α = β = 0.6, λ1 = 5, λ2 = λ3 = 1, θ =
π
3 ; (D) influence of the inclination angle θ for ǫ = 0.3, α = β = 0.6, λ1 = 5, λ2 = λ3 = 1.

FIGURE 3 | Axial pressure gradient dp/dz as a function of the axial position z for α* = β* = 0.4, Fr = 0.1 and Re = 0.1: (A) influence of the fractional parameter α for

ǫ = 0.3, β = 0.6, λ1 = 5, λ2 = λ3 = 1, θ =
π
3 ; (B) influence of the fractional parameter β for ǫ = 0.3, α = 0.6, λ1 = 5, λ2 = λ3 = 1, θ =

π
3 ; (C) influence of the cilia

length ǫ for α = β = 0.6, λ1 = 5, λ2 = λ3 = 1, θ =
π
3 ; (D) influence of the inclination angle θ for ǫ = 0.3, α = β = 0.6, λ1 = 5, λ2 = λ3 = 1.
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Table 1 depicts that the flow of the fractional Burgers fluid
model gives the larger magnitude of the frictional force: typically
F is 16.5 and 38.9 times higher for the fractional Burgers fluid
model compared to the Burgers and the fractional Oldroyd-
B models, respectively. The pressure difference 1p for the
Oldroyd-Bmodel is greater than for the fractional Burgersmodel,
meaning that this last fluid is more ease to be transported by the
mucociliary clearance process.

The variations of 1p with Q̄ are examined in Figure 2

for different values of α, β , ǫ, and θ . It is found that the
pressure rise 1p decreases with an increase of the fractional
parameter α, cilia length ǫ in the pumping expanse region
(1p > 0) of the tube and an opposite trend is noted
in the copumping expanse region (1p < 0) of the tube.
Also in the pumping (resp. copumping) expanse region, the
pressure rise increases (resp. decreases) for increasing values
of the fractional parameter β . As expected increasing the cilia
length or decreasing the tube radius provide similar results in
terms of pressure variations but the effect is more pronounced
by changing the tube radius. The ratio β/ǫ may be the
relevant geometric parameter governing the transport of fluid
by the mucociliary clearance process. The influence of the
inclination angle θ on 1p is more straightforward as shown in
Figure 2D.1p increases by increasing θ in the pumping expanse
region and an opposite trend is reported in the copumping
expanse region. Larger pressure differences are observed for a
vertical tube.

The variations of the pressure gradient
dp
dz

are examined in
Figure 3 for different values of α, β , ǫ, and θ . It is noted that

dp
dz

remains small and the fluid can flow smoothly without the
application of a large pressure gradient in the expanse regions
0 ≤ z ≤ 0.2 and 0.8 ≤ z ≤ 1. On the other hand, for 0.2 < z <
0.8, a large amount of pressure gradient is required to maintain
the flow. The magnitude of the pressure gradient increases by
increasing the parameters β , ǫ, and θ . These parameters provide

the resistive force to the flow thus a larger value of
dp
dz

is required
to maintain the fluid flow, whereas the parameter α provides the

deriving force to the flow thus a smaller value of
dp
dz

is required to
maintain the fluid flow.

It is observed through Figure 4 that the frictional force F
varies linearly by increasing α, β , and ǫ and it tends to increase in
magnitude by increasing β and ǫ. The magnitude of the resistive
force decreases by increasing α, in the expanse region Q̄ > 0.5.
On the contrary, its magnitude increases in the same region when
increasing β and/or ǫ. The magnitude of the frictional force
increases in the expanse Q̄ < 1 by increasing the tube inclination
θ but an opposite trend is noted for Q̄ > 1. The inclination
of the tube provides then a large magnitude of F to oppose
the flow.

Figure 5 displays the streamline patterns and trapping for
α∗ = β∗ = 0.7 and Q̄ = 1.5 by increasing the dimensionless
cilia length ǫ. The center line symmetry bifurcates the boluses
of the fluid particles circulating along the closed stream lines.
The boluses are confined and move with the velocity of the
metachronal waves. In Figures 5A–C, keeping all the other
parameters constant, the number and size of the boluses increase
by increasing ǫ. Thus, the cilia length significantly affects the flow
dynamics by generating boluses in the inclined tube.

FIGURE 4 | Variations of F as a function of the flow rate Q̄ for Fr = 0.1 and Re = 0.1: (A) influence of the fractional parameter α for α* = β* = 0.4, ǫ = 0.3, β = 0.6,

λ1 = 5, λ2 = 1, λ3 = 1, θ =
π
3 ; (B) influence of the fractional parameter β for α* = β* = 0.4, ǫ = 0.3, α = 0.6, λ1 = 5, λ2 = 1, λ3 = 1, θ =

π
3 ; (C) influence of the

cilia length ǫ = 0.2 for α = β = 0.6, α* = β* = 0.6, λ1 = 5, λ2 = 1, λ3 = 1, θ =
π
3 ; (D) influence of the inclination angle θ for ǫ = 0.3, α = β = 0.6, α* = β* = 0.6,

λ1 = 5, λ2 = 1, λ3 = 1.
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FIGURE 5 | Streamline patterns for (A) ǫ = 0.2, (B) ǫ = 0.3, and (C) ǫ = 0.4. Results obtained for α* = β* = 0.7 and Q̄ = 1.5.

FIGURE 6 | (A) Axial and (B) radial components of the velocity vector for ǫ = 0.2, α* = β* = 0.7, and Q̄ = 1.5.

Figure 6 displays a 3D view of the axial and radial velocity
components for ǫ = 0.2, α = 0.7, β = 0.7, and Q̄ = 1.5. It is
observed that the waves are elliptic waves and the fluid velocity
is in both forward and backward directions with a symmetric
behavior due to metachronism of the ciliary motion.

Figure 7 displays the radial distributions of the axial and radial
velocity components for four flow rates Q̄ and both antiplectic
and symplectic waves formed by the cilia tips. As expected,
both components increase by increasing the flow rate. More
interestingly, at any value of Q̄, the axial velocity produced
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FIGURE 7 | Comparison in terms of the (A) axial and (B) radial velocity components plotted at z = 0.75 for both antiplectic and symplectic waves. Results obtained

for ǫ = 0.2, α* = β* = 0.7, and Q̄ = 1.5.

by antiplectic waves is larger than the one due to symplectic
waves. The increase in the velocity profiles is also faster for
antiplectic waves compared to symplectic waves. Regarding the
radial velocity component, the two types of metachronal waves
provide symmetric profiles in the radial direction. All in all, it
confirms the former results of Chateau et al. (2018) obtained
using amore advanced numerical model but for a twoNewtonian
fluid configuration. For a single layer of fractional Burgers fluid,
antiplectic waves are also more efficient to transport fluid than
symplectic waves.

5. CONCLUSIONS

In this paper, fractional Burgers’ fluid flow in an inclined ciliated
tube is examined. Using the long wavelength approximation,
a semi-analytic solution is developed. Frictional force, pressure
rise, pressure gradient and streamlines are plotted for different
values of the main operating parameters and the main results can
be summarized as follows:

• 1p decreases by increasing α and ǫ in the pumping region and
an opposite trend is noted in the copumping region of the tube.

• 1p increases in the pumping region and decreases in the
copumping region when increasing β .

•
dp
dz

is insignificant for 0 ≤ z ≤ 0.2 and 0.8 ≤ z ≤ 1. On the

contrary, for 0.2 < z < 0.8, a higher value of
dp
dz

is required to
maintain the flux.

• The magnitude of
dp
dz

increases by increasing β , ǫ, and θ .
• It is noticed that the parameters β , ǫ, and θ greatly influence

the pressure gradient whereas the parameter α provides a
smaller amount of the pressure gradient to the fluid flow.

• The frictional force varies linearly when increasing α, β ,
and ǫ and its magnitude increases by increasing β and ǫ
but it decreases in magnitude by increasing α and θ in the
pumping region.

• The magnitude of the frictional force increases in the region
Q̄ < 1 by increasing the tube inclination θ but an opposite
trend is noted in the region Q̄ > 1.

• The magnitude of the pressure difference is larger for
fractional generalized Burgers model in comparison to the
generalized Burgers model for Q̄ < 0.6 and a reverse trend
is observed for Q̄ > 0.6.

• A greater magnitude of the pressure gradient is needed to the
fluid flow for fractional generalized Burgers fluid as compared
with the generalized Burgers fluid to pump the same amount
of fluid.

• The fractional generalized Burgers fluid provides a greater
amount of frictional force in comparison to the generalized
Burgers fluid.

• The number and size of boluses increase by increasing ǫ.
• Themagnitude of the velocity profile increases significantly for

antiplectic waves as compared to symplectic waves confirming
that they are more efficient to transport mucus.

The fractional Adomian decompositionmethod appears then as a
valuable tool to get useful and realistic results for the mucociliary
transport process. Such method provides much faster results
compared to more complex solvers (Chatelin and Poncet, 2016;
Chateau et al., 2018) and could be associated to 3D flow solvers
to solve the multiscale problem of the mucus clearance in
the airways.
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