AUTHOR=Plekhanova Olga , Parfyonova Yelena , Beloglazova Irina , Berk Bradford C. , Tkachuk Vsevolod TITLE=Oligonucleotide Microarrays Identified Potential Regulatory Genes Related to Early Outward Arterial Remodeling Induced by Tissue Plasminogen Activator JOURNAL=Frontiers in Physiology VOLUME=10 YEAR=2019 URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2019.00493 DOI=10.3389/fphys.2019.00493 ISSN=1664-042X ABSTRACT=

Constrictive vascular remodeling limiting blood flow, as well as compensatory outward remodeling, has been observed in many cardiovascular diseases; however, the underlying mechanisms regulating the remodeling response of the vessels remain unclear. Plasminogen activators (PA) are involved in many of the processes of vascular remodeling. We have shown previously that increased levels of tissue-type PA (tPA) contributes to outward vascular remodeling. To elucidate the mechanisms involved in the induction of outward remodeling we characterized changes in the expression profiles of 8799 genes in injured rat carotid arteries 1 and 4 days after recombinant tPA treatment compared to vehicle. Periadventitial tPA significantly increased lumen size and vessel area, encompassed by the external elastic lamina, at both one and 4 days after treatment. Among 41 differentially expressed known genes 1 day after tPA application, five genes were involved in gene transcription, five genes were related to the regulation of vascular tone [for example, thromboxane A2 receptor (D32080) or non-selective-type endothelin receptor (S65355)], and eight genes were identified as participating in vascular innervation [for example, calpain (D14478) or neural cell adhesion molecule L1 (X59149)]. Four days after injury in tPA-treated arteries, four genes, regulating vascular tone, were differentially expressed. Thus, tPA promotes outward arterial remodeling after injury, at least in part, by regulating expression of genes in the vessel wall related to function of the nervous system and vascular tone.