This study investigated the periodization of elite swimmers’ training over the 25 weeks preceding the major competition of the season.
We conducted a retrospective observational study of elite male (
For the entire cohort, ∼86–90% of the training was swum at an intensity of [La]b ≤ 4 mmol⋅L-1. This training volume was divided into 40–44% at <2 mmol⋅L-1 and 44–46% at 2 to ≤4 mmol⋅L-1, leaving 6–9.5% at >4–6 mmol⋅L-1, and 3.5–4.5% at >6 mmol⋅L-1. Three sprint TTL patterns were identified: a pattern with two long ∼14–15-week macrocycles, one with two ∼12–13 week macrocycles each composed of a balanced training load, and one with a single stable flat macrocycle. The long pattern elicited the fastest performances and was most prevalent in Olympic quadrennials (i.e., 4 seasons preceding the 2004, 2008, and 2012 Olympic Games). This pattern exhibited moderate week-to-week TTL variability (6 ± 3%), progressive training load increases between macrocycles, and more training at ≤4 mmol⋅L-1 and >6 mmol⋅L-1. This fastest sprint pattern showed a waveform in the second macrocycle consisting of two progressive load peaks 10–11 and 4–6 weeks before competition. The stable flat pattern was the slowest and showed low TTL variability (4 ± 3%), training load decreases between macrocycles (
Progressive increases in training load, macrocycles lasting about 14–15 weeks, and substantial volume of training at intensities ≤4 mmol⋅L-1 and >6 mmol⋅L-1, were associated with peak performance in elite swimmers.