AUTHOR=Yu Zanzhe , Lambie Mark , Chess James , Williams Andrew , Do Jun-Young , Topley Nicholas , Davies Simon J. TITLE=Peritoneal Protein Clearance Is a Function of Local Inflammation and Membrane Area Whereas Systemic Inflammation and Comorbidity Predict Survival of Incident Peritoneal Dialysis Patients JOURNAL=Frontiers in Physiology VOLUME=10 YEAR=2019 URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2019.00105 DOI=10.3389/fphys.2019.00105 ISSN=1664-042X ABSTRACT=

It is not clear whether the association of increased peritoneal protein clearance (PPCl) with worse survival on peritoneal dialysis (PD) is a consequence of either local or systemic inflammation or indicative of generalized endothelial dysfunction associated with comorbidity. To investigate this we determined the relationship of PPCl to comorbidity, membrane area (equivalent to low molecular weight peritoneal solute transport rate), local and systemic inflammation and hypoalbuminaemia, and for each of these with patient survival. 257 incident patients from three GLOBAL Fluid Study centers were included in this analysis. Clinical profiles were collected at baseline along with a peritoneal equilibration test, 24-h dialysate protein and paired plasma and dialysate cytokine measurements. Although peritoneal protein clearance was associated with increased age and severe comorbidity on univariate analysis, only dialysate IL-6, peritoneal solute transport rate, plasma albumin and cardiac comorbidities (ischaemic heart disease and left ventricular dysfunction) were independent explanatory variables on multivariate analysis. While peritoneal protein clearance and daily peritoneal protein loss were associated with survival in univariate analysis, on multivariate analysis only plasma IL-6, age, residual kidney function, comorbidity, and plasma albumin were independent predictors. Peritoneal protein clearance is primarily a function of peritoneal membrane area and local membrane inflammation. The association with comorbidity and survival is predominantly explained by its inverse relationship to hypoalbuminaemia, especially in diabetics.