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F-box proteins, the substrate recognition subunits of SKP1–CUL1–F-box protein (SCF) 
E3 ubiquitin ligase complexes, play crucial roles in various cellular events mediated by 
ubiquitination. Several sugar-recognizing F-box proteins exist in both mammalian and 
plant cells. Although glycoproteins generally reside outside of cells, or in organelles of the 
secretory pathway, these lectin-type F-box proteins reside in the nucleocytoplasmic 
compartment. Mammalian sugar-recognizing F-box proteins commonly bind to the 
innermost position of N-glycans through a unique small hydrophobic pocket in their loops. 
Two cytosolic F-box proteins, Fbs1 and Fbs2, recognize high-mannose glycans synthesized 
in the ER, and SCFFbs1 and SCFFbs2 ubiquitinate excess unassembled or misfolded 
glycoproteins in the ERAD pathway by recognizing the innermost glycans, which serve 
as signals for aberrant proteins. On the other hand, endomembrane-bound Fbs3 
recognizes complex glycans as well as high-mannose glycans, and SCFFbs3 ubiquitinates 
exposed glycoproteins in damaged lysosomes fated for elimination by selective autophagy. 
Plants express stress-inducible lectin-type F-box proteins recognizing a wider range of 
N- and O-glycans, suggesting that the roles of mammalian and plant lectin-type F-box 
proteins have diverged over the course of evolution to recognize species-specific targets 
with distinct functions. These sugar-recognizing F-box proteins interpret glycans in the 
cytosol as markers of unwanted proteins and organelles, and degrade them via the 
proteasome or autophagy.
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INTRODUCTION

Ubiquitination occurs in a temporally and spatially specific manner. E3 ubiquitin ligases control 
ubiquitination by recognizing specific motifs, such as post-translational modifications induced 
by cell-signaling events or exposed elements that are normally hidden within proteins (Ravid 
and Hochstrasser, 2008). Cullin-RING E3 ligases (CRLs) are the largest family of E3 enzymes 
in all eukaryotes (Petroski and Deshaies, 2005). The best characterized CRLs are SCF complexes. 
Each SCF complex consists of four subunits: a scaffold protein CUL1, a RING protein RBX1, 
an adaptor protein SKP1, and one of many F-box proteins, which are responsible for substrate 
recognition. Each F-box proteins consists of an F-box domain, which binds to SKP1, and a 
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divergent carboxy-terminal substrate-binding domain (Zheng 
et  al., 2002). Mammalian F-box proteins have been grouped 
into three subfamilies according to their substrate-binding 
domains (Jin et al., 2004): the FBXW and FBXL families possess 
WD40 repeats and leucine-rich repeats (LRRs) in their binding 
domains, respectively, whereas the FBXO family does not have 
any characteristic structural domain(s). The varieties of SCF 
complexes differ considerably among eukaryotes. For example, 
there are 22, 72, and 698 F-box proteins in yeast (Saccharomyces 
cerevisiae), human, plant (Arabidopsis thaliana), respectively 
(Hua et al., 2011; Lee et al., 2011; Finley et al., 2012). Furthermore, 
CUL1, RBX1, and SKP1 are invariable components in the SCF 
complex in yeasts and metazoans, but the Arabidopsis genome 
encodes 19 SKP1-like proteins (ASK1-19), and some F-box 
proteins probably interact with several ASK proteins, yielding 
more diverse SCF complexes in plants (Farras et  al., 2001; 
Gagne et  al., 2002; Kuroda et  al., 2012).

F-box proteins discriminate among free metabolites and 
various post-translational modifications in order to correctly 
ubiquitinate and degrade substrates in cells. For example, the 
growth-regulating plant hormones auxin/indole-3-acetic acid 
and jasmonates bind to transport inhibitor response 1 (TIR1) 
and coronatine-insensitive-1 (COI-1), respectively, to form part 
of an enlarged protein-binding interface that allows high-affinity 
interaction with their specific substrate hormone repressors 
(Tan et al., 2007; Sheard et al., 2010). As a common mechanism 
in all eukaryotes, many cell-cycle–related F-box proteins recognize 
phosphorylation in a specific motif in their corresponding 
substrates (Ang and Wade Harper, 2005; Randle and Laman, 
2016). In addition to phosphorylation, other posttranslational 
modifications are also necessary for ubiquitination of some 
SCF complex substrates. In mammals, for example, SCFFBXO22-
KDM4A and SCFFBXL17 target methylated p53 and acetylated 
PRMT1, respectively (Johmura et  al., 2016; Lai et  al., 2017). 
In addition, glycosylation is recognized by some F-box proteins 
in both mammals and plants. In contrast to other posttranslational 
modifications, the sugar chains of glycoproteins exhibit structural 
complexity and diversity.

Protein glycosylation occurs in the endoplasmic reticulum 
(ER) and Golgi, and glycoproteins reside within the lumen of 
secretory pathway organelles or outside the cell. Because they 
are separated by an endomembrane or the plasma membrane, 
sugar chains are normally not accessible to the ubiquitination 
machinery in the cytosol or nucleus. However, there are several 
opportunities for glycoproteins to appear in the cytosol. The 
first possibility is the ER-associated degradation (ERAD) pathway, 
in which unfolded proteins and orphan subunits are degraded 
by the proteasome after retrograde transport from the ER to 
the cytosol (Vembar and Brodsky, 2008). In this case, the 
N-glycan structures of glycoproteins emerging in the cytosol 
are high-mannose glycans that are modified by ER-resident 
enzymes. On the other hand, compounds including silica, 
monosodium urate, and protein amyloids, which are endocytosed 
from the extracellular milieu, can injure endosomes and 
lysosomes, causing glycoproteins modified with complex- or 
hybrid-type glycans to be  leaked from these organelles to the 
cytosol. Furthermore, some specific-glycans on the surfaces of 

viruses and bacterial toxins that invaded cells via the retro-
grade transport pathway may appear in the cytosol. Therefore, 
sugar chains appearing in the cytosol serve as ubiquitination 
signal for unwanted proteins and organelles (Yoshida and 
Tanaka, 2018). In this review, we  focus on the substrate 
recognition mechanisms of sugar-recognizing F-box proteins. 
We will discuss the differences and similarities in the substrate 
recognition modes of lectin-type F-box proteins between plants 
and mammals, from the standpoint of their physiological roles.

MECHANISM OF N-GLYCAN 
RECOGNITION BY SUGAR-
RECOGNIZING F-BOX PROTEINS

N-Glycan Recognition by Mammalian 
Sugar-Recognizing F-Box Proteins
F-box protein recognizing sugar chain 1 (Fbs1), the first ubiquitin 
ligase component identified as a sugar-recognizing F-box protein, 
was purified from mouse brain lysate based on its affinity for 
an N-glycoprotein (Yoshida et  al., 2002). Of the 72 human 
F-box proteins, only three, Fbs1/FBXO2, Fbs2/FBXO6, and 
Fbs3/FBXO27, have the ability to bind glycoproteins containing 
high-mannose glycans, which are synthesized in the ER (Yoshida 
et  al., 2003, 2011).

These F-box proteins recognize Man3GlcNAc2 core in 
N-glycans, but exhibit diverse binding to various glycan structures 
(Glenn et  al., 2008). Structural analysis reveals that the overall 
architecture of Fbs1 consists of the F-box domain, a linker 
domain, and a substrate-binding domain (Figure 1A). The 
substrate-binding domain of Fbs1 is composed of a 10-stranded 
β-sandwich with an α-helix; it binds Man3GlcNAc2 through a 
small hydrophobic pocket in the loops located at the top of 
the β-sandwich, which protrudes toward E2 (Figure 1B). 
Man3GlcNAc2 interacts with Fbs1 through hydrogen bonds 
and/or hydrophobic interactions (Figure 1C; Mizushima et  al., 
2004, 2007). The core regions of glycans in native glycoproteins 
are shielded by the amino acid residues surrounding the 
glycosylation site, but are exposed upon denaturation. Indeed, 
Fbs1 and Fbs2 prefer to interact with denatured glycoproteins; 
thus, exposure of the innermost position of N-glycans upon 
glycoprotein denaturation serves as a signal of misfolding 
(Yoshida et al., 2005, 2007; Mallinger et al., 2012). Interestingly, 
a cytosolic N-Glycanase 1 (NGLY1) also recognizes the same 
position of glycoproteins and is involved in deglycosylation of 
various substrates prior to their proteasome-mediated degradation 
via the ERAD pathway (Yamaguchi et  al., 2007; Suzuki, 2015). 
Therefore, ERAD substrates emerging in the cytosol might 
be  denatured.

Although both Fbs1 and Fbs2 preferentially bind high-mannose 
glycans, Fbs3 binds to glycoproteins modified with complex-
type glycans, such as transferrin and LAMP2, as well as high-
mannose glycans (Glenn et  al., 2008; Yoshida et  al., 2017). 
However, the structural information of Fbs3 is not yet available 
until now, and the mode of recognition by Fbs3 remains to 
be  elucidated.
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Mammalian Fbs1-Related F-Box Proteins
Fbs1/FBXO2 exhibits high sequence similarity with other F-box 
proteins (Winston et al., 1999; Ilyin et al., 2002). In phylogenetic 
analysis, these proteins cluster into two groups: one group 
contains Fbs1/FBXO2, Fbs2/FBXO6, and FBXO44a, and the 
other contains FBXO17 and Fbs3/FBXO27 (Figure 2A). The 
genes that encode the proteins each group are arranged in 
tandem with very short intergenic regions, but the two groups 
map to different chromosomes in both human and mouse 
(Ilyin et  al., 2002; Yoshida and Tanaka, 2010). These F-box 
proteins contain a highly homologous F-box domain and a 
substrate-binding domain (SBD) (Figure 2B), but the long 
N-terminal region and C-terminal tail are unique to Fbs1 and 
Fbs2, respectively. The SBD of FBXO44 has 68% identity with 
the corresponding region of Fbs2; the residues necessary for 
binding to N-glycans are conserved, and its overall structure 
is similar to Fbs1 and Fbs2. Nonetheless, FBXO44 has no 
detectable sugar-binding activity (Glenn et  al., 2008; Yoshida 
et  al., 2011). The crystal structure of FBXO44–Skp1 revealed 
that FBXO44 has different hydrogen bond networks than the 
four loops from Fbs1 and Fbs2, preventing the formation of 
the sugar-binding pocket (Kumanomidou et  al., 2015; Nishio 

et  al., 2016). Thus far, from a structural perspective, it has 
been challenging to identify factors that determine the substrate 
specificity of these isoforms.

Plant Lectin-Type F-Box Proteins
These Fbs orthologues are encoded in various vertebrate 
genomes, but other lectin-type F-box proteins are found in 
plants. High levels of secretory lectins accumulate in plant 
seeds and vegetative storage tissues, but plants also synthesize 
small amounts of nucleocytoplasmic lectins in response to 
specific stress factors and changing environmental conditions. 
Among nucleocytoplasmic lectins, chimeric proteins that contain 
F-box domain with Jacalin-related lectins or Nictaba-like lectins 
were found (Lannoo and Van Damme, 2010). Nictaba, an 
inducible lectin found in Nicotiana tabacum leaves treated 
with jasmonates (Chen et  al., 2002), recognizes Man3GlcNAc2 
core as well as human Fbs family members (Lannoo et  al., 
2006). However, the three-dimensional conformations and 
sugar-recognition modes of Nictaba and mammalian Fbs1 
differ considerably (Mizushima et  al., 2004; Schouppe et  al., 
2010). Arabidopsis and crops such as soybean express dozens 
of F-box/Nictaba proteins (Delporte et  al., 2015; Van Holle 
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FIGURE 1 | Structure of Fbs1. (A) Overall structure of Fbs1. The F-box domain (F-box), linker, and substrate-binding domain (SBD) are shown in violet, green, and 
cyan, respectively. Dotted lines represent disordered regions. GlcNAc2-binding residues are depicted as stick models. (B) Model of the SCFFbs1 complex bound to 
E2. Fbs1, Cul1, Rbx1, Skp1, and E2 are colored green, blue, red, orange, and yellow, respectively. A model of SCFFbs1 was constructed by superposition of the 
Skp1 subunits from the Skp1–Fbs1, and Skp1–Cul1–Rbx1 structures (Zheng et al., 2002) (PDB ID code 1LDK); the RING-finger domains derived from Rbx1; the 
c-Cbl subunit of c-Cbl–UbcH7 (Zheng et al., 2000) (PDB ID code 1FBV); and the E2 subunits of c-Cbl-UbcH7. (C) Surface representation of the substrate-binding 
site of the Fbs1 SBD bound to Man3GlcNAc2 of RNase B. The surface is colored according to the electrostatic potential of the residues (blue, positive; red, negative). 
Bound RNase B and Man3GlcNAc2 are orange, and the residues involved in the substrate binding are blue.
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et  al., 2017), but to date only an Arabidopsis F-box/Nictaba 
protein, At2g02360, has been characterized. The expression of 
At2g02360 is up-regulated after treatment with salicylic acid, 
heat stress, or infection with Pseudomonas syringae. Plants 
overexpressing At2g02360 exhibit milder disease symptoms 
after infection of pathogens, but the molecular mechanisms 
involved in acquisition of pathogen resistance remain to 
be  elucidated (Stefanowicz et  al., 2016). Although At2g02360 
shares the highest sequence similarity (64%) to tobacco Nictaba 
among Arabidopsis F-box/Nictaba proteins, it binds to N- and 
O-glycans with Galβ1-3GlcNAc and Galβ1-4GlcNAc and poly-
N-acetyllactosamine, but not to Man3GlcNAc2 core (Stefanowicz 
et  al., 2012). It is possible that other F-box/Nictaba proteins 
have different sugar-binding specificities, but the roles of 
mammalian and plant lectin-type F-box proteins seem to have 

diverged substantially over the course of to recognize species-
specific targets with distinct functions (Figure 2C).

PHYSIOLOGICAL ROLES OF 
MAMMALIAN SUGAR-RECOGNIZING 
F-BOX PROTEINS

As described above, Fbs1 and Fbs2 specifically recognize high-
mannose glycans, and in particular the innermost structure. Therefore, 
SCFFbs1 and SCFFbs2 can ubiquitinate excess unassembled or misfolded 
glycoproteins in the ERAD pathway by recognizing the innermost 
glycans as signals for aberrant proteins (Figure 2B). On the other 
hand, Fbs3, which can also interact with glycoproteins modified 
with complex-type glycans present in organelles downstream of 

C

A B

FIGURE 2 | Roles of sugar-recognizing F-box proteins in the cytosol. (A) Phylogenetic tree of Fbs1 homologs. Genomic locations of these genes on human or 
mouse chromosomes are also shown. (B) Percentage identities of substrate-binding domain (SBD) of Fbs1 homologs. (C) Overview of the functions of sugar-
recognizing F-box proteins. Three mammalian F-box proteins (Fbs1, Fbs2, and Fbs3; yellow-colored) form SCF complexes and ubiquitinate glycoproteins in the 
cytosol, followed by proteasomal or autophagic degradation to maintain cellular homeostasis. They mainly recognize the innermost Man3GlcNAc2 structure in high-
mannose glycans, which are attached in the ER, as a signal of misfolded glycoproteins, and act on excess unassembled subunits or misfolded glycoproteins via the 
ERAD pathway. In contrast to Fbs1 and Fbs2, Fbs3 can bind to complex-type glycans, is targeted to endomembranes via N-myristoylation, and accumulates on 
organelles such as lysosomes and endosomes ruptured by toxic compounds. SCFFbs3 ubiquitinates exposed the lysosomal glycoprotein LAMP2 to induce 
autophagy. Dozens of F-box/Nictaba proteins (green) are expressed in plants, but their functions have not been elucidated. These proteins recognize varieties of 
glycan structure in both N- and O-glycans, and their expression is induced by certain environmental stresses. The Arabidopsis F-box/Nictaba protein functions in 
defense against pathogens such as Pseudomonas syringae.
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the Golgi or on the cell surface, contributes to maintenance of 
organelle homeostasis (Figure 2C).

SCFFbs1 and SCFFbs2 are the E3 enzymes responsible for 
degradation of integrin β1 that is expressed in excess over integrin 
α chains, or ERAD substrates such as TCRα, asialoglycoprotein 
receptor H2a, and CFTRΔ508 (Yoshida et  al., 2002, 2003; 
Groisman et  al., 2011; Chen et  al., 2016; Ramachandran et  al., 
2016). The ERAD pathway is a ubiquitous protein quality control 
system in all eukaryotes, and ERAD substrates are generally 
ubiquitinated by ER membrane-embedded E3s, such as Hrd1 
and gp78 (Vembar and Brodsky, 2008). However, Fbs proteins 
are encoded only in vertebrate genomes. In particular, Fbs1 
expression is restricted to a subset of tissues, and therefore its 
role in in quality control may be  tissue-specific.

Roles of Fbs1 in the Brain and Inner Ear
Originally named neural F-box protein 42  kDa (NFB42) and 
organ of Corti protein 1 (OCP1), Fbs1 is expressed at high 
levels in the brain and rodent inner ear (Erhardt et  al., 1998; 
Henzl et  al., 2001). Therefore, Fbs1 may function in quality 
control specifically in the nervous system and inner ear, rather 
than in the general ERAD system.

NMDA receptors play crucial roles in neuronal development 
and information storage in the brain, and SCFFbs1 controls the 
abundance and localization of their specific subunits, GluN1 
and GluN2A (Kato et al., 2005; Atkin et al., 2015). Furthermore, 
Fbs1 attenuates amyloid-β (Αβ) production through ubiquitination 
of β-secretase (BACE1) and amyloid precursor protein (APP), 
and the expression of Fbs1 decreases in the brains of Alzheimer’s 
disease (AD) patients and Tg2576 mice, a well-characterized 
model of AD (Gong et al., 2010; Atkin et al., 2014). In primary 
neurons derived from Tg2576 mice, overexpression of Fbs1 
promotes the degradation of BACE1, which is essential for Αβ 
generation, thereby decreasing the Aβ level (Gong et al., 2010). 
In addition, the total amount of amyloid precursor protein 
(APP) in the brain of Fbs1-KO mouse is increased but decreased 
on the surface of cells in hippocampal neurons, indicating that 
Fbs1 regulates APP protein levels and processing (Atkin et  al., 
2014). Interestingly, PGC-1α, a transcriptional coactivator involved 
in control of energy metabolism, regulates Fbs1 expression, 
and nicotinamide riboside upregulates BACE1 degradation 
through enhancing PGC-1α expression (Gong et al., 2010, 2013). 
Compounds such as nicotinamide that stimulate Fbs1 expression/
activity may represent candidate therapeutic agents for AD.

Furthermore, Fbs1-knockout mice exhibit age-related 
hearing loss with cochlear degeneration and high cochlear 
levels of the inner-ear gap-junction protein GJB2 (Nelson 
et  al., 2007), which is a multi-pass membrane protein that 
lacks glycans but nonetheless interacts with Fbs1 (Henzl 
et al., 2004). Fbs1 is an unusually abundant inner ear protein, 
and exists as a heterodimer with Skp1 but not as a component 
of the SCF complex, suggesting that its function in inner-ear 
homeostasis is distinct from that of the conventional SCF 
complex (Atkin et  al., 2015).

Although the expression of Fbs1 is restricted to specific 
organs under normal condition, recent studies show that 

expression of Fbs1, like plant Nictaba, is up-regulated in response 
to some stressors. In the livers of mice with high-fat diet-
induced obesity, Fbs1 expression is induced by the IKKβ/NF-κΒ 
pathway, and SCFFbs1 disrupts glucose homeostasis via degradation 
of the insulin receptor (Liu et al., 2017). Infection with Epstein–
Barr virus (EBV) also stimulates Fbs1 expression, and induced 
SCFFbs1 ubiquitinates and degrades EBV glycoprotein B, thereby 
decreasing the infectivity of progeny viruses (Zhang et  al., 
2018). Thus, SCFFbs1 may function in the unusual ERAD system 
that is induced under certain stresses. The expression of Fbs3, 
like that of Fbs1, is restricted to specific organs, including the 
brain. Its levels are very low, but it may be  induced by as-yet-
undetermined stimuli.

Roles of Fbs3
Fbs3 has a unique endomembrane localization due to 
N-myristoylation. This endomembrane localization, together 
with its glycoprotein-binding activity, is essential for effective 
recruitment to damaged organelles. Fbs3 accumulates within 
ruptured lysosomes or endosomes by treated with the lysosomal 
damage reagent L-leucyl-l-leucine methyl ester (LLOMe), 
crystalline silica, or latex beads coated with transfection reagents, 
whereas neither Fbs1 or Fbs2 behaves in this manner (Yoshida 
et  al., 2017). Lysosomes are specialized organelle that contain 
a variety of digestive enzymes and play a crucial role in autophagy, 
but damaged lysosomes are themselves eliminated by a special 
form of autophagy known as lysophagy. Like mitophagy, a 
well-characterized form of selective autophagy, ubiquitination 
is prerequisite for lysophagy, but the ubiquitination substrates 
and molecular mechanisms underlying lysophagy induction have 
not been elucidated (Maejima et al., 2013). Following lysosomal 
damage, Fbs3 quickly moves to ruptured lysosomes by detecting 
exposed glycoproteins, and SCFFbs3 ubiquitinates several lysosomal 
glycoproteins. Among the lysosomal glycoproteins, ubiquitination 
of LAMP2 is especially important for recruitment of components 
of the autophagic machinery, such as p62 and LC3 (Yoshida 
et  al., 2017). Although SCFFbs3 recognizes and ubiquitinates 
exposed glycoproteins that are normally sequestered in lysosomes 
following lysosomal damage, resulting in induction of lysophagy, 
other glycan-recognition systems are also involved in the 
autophagy-mediated response to damaged endomembranes.

Galectins are β-galactoside–binding lectins, and mostly 
reside in the cytosol and nucleus. Galectin-8 accumulates 
on damaged bacteria-containing vesicles and binds directly 
to NDP52, an autophagy receptor, thereby triggering a specific 
form of autophagy called xenophagy and restricting the 
growth of Salmonella in cells (Thurston et  al., 2012; Li et  al., 
2013). Galectin-3 also accumulates on damaged organelles, 
such as phagosomes ruptured by infecting Mycobacterium 
and damaged lysosomes, and interacts with TRIM16, a RING-
type ubiquitin ligase. TRIM16 further interacts with the key 
autophagy regulator ULK1, Beclin1, and ATG16L1, and induces 
autophagy following their ubiquitination (Chauhan et  al., 
2016). Thus, several cytosolic glycan-monitoring systems 
collaborate with the proteasome and autophagy to maintain 
cellular homeostasis.
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CONCLUSIONS AND PERSPECTIVES

Here we have summarized our current knowledge of the sugar-
recognition modes and physiological roles of lectin-type F-box 
proteins. These proteins recognize cytosolic sugar chains, which 
are normally present in organelles or extracellularly, as aberrant 
or harmful signals that trigger ubiquitination, leading to 
alleviation of deleterious cellular states and maintenance of 
homeostasis. Mammalian sugar-recognizing F-box proteins 
commonly bind to the innermost position of N-glycans, and 
cytosolic NGLY1 removes this sugar degron. Mutations in 
NGLY1 cause an inherited disorder of the ERAD pathway 
(Enns et  al., 2014), and NGLY1 knockout mice are embryonic 
lethal (Fujihira et  al., 2017). Why would F-box proteins fail 
to rescue the lethality of NGLY1 deficiency, which is caused 
by excessive glycoprotein in the cytosol? As with Fbs3, the 
functions of Fbs1 and Fbs2 may be  distinct from the ERAD 
pathway. For instance, Fbs3 accumulates in ruptured lysosomes 
and preferentially ubiquitinates LAMP2, which plays a crucial 
role for lysophagy. Thus, identification of the intrinsic substrates 
for Fbs1 and Fbs2 is essential for understanding their physiological 
relevance in maintaining cellular homeostasis. Research of these 
glycoprotein-related F-box proteins knockout mice in models 
of disease, including AD, would be  also useful for assessing 
their physiological and pathophysiological roles.

In comparison with mammals, plants have more sugar-
recognizing F-box proteins with diverse substrate specificities, 
but their functions have not been elucidated. The ability of 
these proteins to form SCF complexes remain to be determined. 
Among 22 yeast F-box proteins, some function in complexes 

that lack CUL1, suggesting that not all F-box proteins in plants 
must form SCF complexes. Future studies should seek to 
determine their sugar-binding specificities and endogenous 
interacting proteins, substrates, and components of the complex. 
The elucidation of the molecular mechanisms underlying 
induction of sugar-recognizing F-box proteins and promotion 
of SCF complex formation by various stimuli, as well as detailed 
analyses of their substrate recognition modes in both plants 
and mammals, will be  crucial to understanding the functions 
of F-box proteins and cytosolic sugar chains.
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