AUTHOR=Sage Michaël , Stowe Symon , Adler Andy , Forand-Choinière Claudia , Nadeau Mathieu , Berger Claire , Marouan Sofia , Micheau Philippe , Tissier Renaud , Praud Jean-Paul , Fortin-Pellerin Étienne TITLE=Perflubron Distribution During Transition From Gas to Total Liquid Ventilation JOURNAL=Frontiers in Physiology VOLUME=9 YEAR=2018 URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2018.01723 DOI=10.3389/fphys.2018.01723 ISSN=1664-042X ABSTRACT=
Total liquid ventilation (TLV) using perfluorocarbons has shown promising results for the management of neonatal respiratory distress. However, one important safety consideration for TLV is a better understanding of the early events during the transition to TLV, especially regarding the fate of residual air in the non-dependent-lung regions. Our objective was to assess perflubron distribution during transition to TLV using electrical impedance tomography, complemented by fluoroscopy, in a neonatal lamb model of induced surfactant deficiency. Eight lambs were anesthetized and ventilated in supine position. Surfactant deficit was induced by saline lung lavage. After deflation, lungs were filled with 25 ml/kg perflubron over 18 s, and TLV was initiated. Electrical impedance tomography data was recorded from electrodes placed around the chest, during the first 10 and at 120 min of TLV. Lung perfusion was also assessed using hypertonic saline injection during apnea. In addition, fluoroscopic sequences were recorded during initial lung filling with perfluorocarbons, then at 10 and 60 min of TLV. Twelve lambs were used as controls for histological comparisons. Transition to TLV involved a short period of increased total lung volume (