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The aim of the study is to clarify the impact of the strong cyclic signal component on
the results of surrogate data method in the case of resting electroencephalographic
(EEG) signals. In addition, the impact of segment length is analyzed. Different non-
linear measures (fractality, complexity, etc.) of neural signals have been demonstrated
to be useful to infer the non-linearity of brain functioning from EEG. The surrogate
data method is often applied to test whether or not the non-linear structure can be
captured from the data. In addition, a growing number of studies are using surrogate
data method to determine the statistical threshold of connectivity values in network
analysis. Current study focuses on the conventional segmentation of EEG signals, which
could lead to false results of surrogate data method. More specifically, the necessity
to use end-matched segments that contain an integer number of dominant frequency
periods is studied. EEG recordings from 80 healthy volunteers during eyes-closed
resting state were analyzed using multivariate surrogate data method. The artificial
surrogate data were generated by shuffling the phase spectra of original signals. The
null hypothesis that time series were generated by a linear process was rejected by
statistically comparing the non-linear statistics calculated for original and surrogate
data sets. Five discriminating statistics were used as non-linear estimators: Higuchi
fractal dimension (HFD), Katz fractal dimension (KFD), Lempel-Ziv complexity (LZC),
sample entropy (SampEn) and synchronization likelihood (SL). The results indicate that
the number of segments evaluated as non-linear differs in the case of various non-
linear measures and changes with the segment length. The main conclusion is that the
dependence on the deviation of the segment length from full periods of dominant EEG
frequency has non-monotonic character and causes misleading results in the evaluation
of non-linearity. Therefore, in the case of the signals with non-monotonic spectrum
and strong dominant frequency, the correct use of surrogate data method requires the
signal length comprising of full periods of the spectrum dominant frequency. The study
is important to understand the influence of incorrect selection of EEG signal segment
length for surrogate data method to estimate non-linearity.

Keywords: EEG, dominant frequency, alpha frequency, surrogate data, Fourier transform, segment length

Frontiers in Physiology | www.frontiersin.org 1 September 2018 | Volume 9 | Article 1350

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2018.01350
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2018.01350
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2018.01350&domain=pdf&date_stamp=2018-09-27
https://www.frontiersin.org/articles/10.3389/fphys.2018.01350/full
http://loop.frontiersin.org/people/569009/overview
http://loop.frontiersin.org/people/581950/overview
http://loop.frontiersin.org/people/581914/overview
http://loop.frontiersin.org/people/13934/overview
https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01350 September 26, 2018 Time: 16:33 # 2

Päeske et al. End-Matched Segmentation of EEG Signals

INTRODUCTION

Non-linear dynamics is the most appropriate way to describe
complex physiological systems and is therefore widely used in
biomedical applications. During last decades, the interest in
the theory of non-linear dynamics has increased due to raising
interest in brain functioning and the necessity to understand
complex dynamics of the underlying processes (Hornero et al.,
2009; Rodríguez-Bermudez and Garcíıa Laencin, 2015).

The brain is assumed to function as a self-organizing complex
network of interacting dynamical non-linear subsystems. Despite
some cellular processes may be random and characterized by
probability functions, the neural systems may exhibit rather
chaotic non-linear nature. Large networks of interconnected
neurons behave as self-organized large systems with local non-
linear interactions (Hornero et al., 2009). The question, whether
EEG signals should be looked at as a non-linear deterministic
process or a linear stochastic one, is still open. Therefore, before
analyzing EEG signals by non-linear methods, it is required to
assess whether the non-linearity exists in the data. In case non-
linearity is present, the non-linear dynamics theory could also
characterize the intrinsic nature of EEG, helping to understand
its dynamics, underlying brain processes and search for its
physiological significance, without losing or ignoring important
information (Natarajan et al., 2004). The presence of non-
linearity can be confirmed by hypothesis testing.

Theiler et al. (1992) described a statistical approach for
identifying non-linearity in a time series, through the surrogate
data method. A surrogate data is generated from the original data
by shuffling the phase spectra. Null hypothesis that data were
generated by a linear process is tested by comparing non-linear
statistic calculated for original and surrogate data. If the value
for original data is significantly different, the null hypothesis can
be rejected and non-linearity concluded. The probability that the
surrogate data test will reject null hypothesis depends on the
non-linear statistic used (Spasic, 2010).

Surrogate data method is widely used on EEG signals for
testing the null hypothesis of linearity. There are two main
purposes for surrogate data testing. The first purpose is to
test whether the chosen non-linear measure captures non-linear
structure in the data, which cannot be detected with spectral
density function (Breakspear and Terry, 2002; Natarajan et al.,
2004; Spasic, 2010; Bae et al., 2017; Orgo et al., 2017). If the
data does not have any non-linear structure, a linear method
could be used instead. The second purpose is to determine the
statistical threshold of connectivity values in network analysis
(Dimitriadis et al., 2015, 2017; Olejarczyk et al., 2017), which
is being used by a growing number of studies with the method
of surrogate data. However, some factors can cause misleading
results for EEG signal linearity estimation. Surrogate data testing
for a linear stochastic system can indicate false non-linearity in
case the process is non-stationary (Timmer, 1998). A specific
problem has been identified that false detection of non-linearity
may occur in case the data are strongly cyclic (Stam et al., 1998;
Small and Tse, 2002). The problem arises when the length of the
analyzed signal segment deviates from the multiple full periods of
the cyclic component in the signal.

Electroencephalographic (EEG) signal has a strong alpha
frequency component in the frequency range between 9 and
11 Hz. This rhythm is most pronounced in occipital region,
but is also present in central, temporal or even frontal regions.
Alpha rhythm is best revealed during eyes-closed resting state.
Therefore, it might be expected that due to the strong cyclic alpha
component of the resting eyes-closed signal, the surrogate data
method may give false results.

The aim of the study is to clarify the impact of the strong
cyclic signal component on the results of surrogate data method
in the case of EEG signals. In addition, the impact of segment
length is analyzed. For this reason, the degree of non-linearity
was found in eyes-closed resting EEG signal depending on the
analyzed segment length and deviation from full period of the
dominant cyclic component. Five discriminating statistics were
used as non-linear estimators: Higuchi fractal dimension (HFD),
Katz fractal dimension (KFD), Lempel-Ziv complexity (LZC),
sample entropy (SampEn), and synchronization likelihood (SL).

MATERIALS AND METHODS

Subjects
Eighty healthy volunteers (38 female and 42 male) aged
37.0± 14.5 years participated in the study. The experiments were
approved by the Tallinn Medical Research Ethics Committee and
were conducted in accordance with the Declaration of Helsinki.
All subjects signed an informed consent.

EEG Recordings
The EEG was recorded using Neuroscan Synamps2 acquisition
system (Compumedics, Charlotte, NC, United States) from 30
electrodes, positioned according to the extended international
10–20 system. The sampling frequency was 1,000 Hz. Linked
mastoids were used as a reference and electrode impedances were
kept below 10 k�. EEG was recorded for 6 min, during which
subjects were lying in a relaxed position with their eyes closed.

Surrogate Data
Multivariate surrogate data method is used to test whether data
were generated by a non-linear process (Theiler et al., 1992;
Prichard and Theiler, 1994). The null-hypotheses that data were
generated by a linear process and therefore data can be fully
explained by a linear model, is set. Surrogate data is generated
from original data. If the non-linear statistic calculated for
original data significantly differs from the non-linear statistic
calculated for surrogate data, null-hypothesis is rejected and
non-linearity is detected.

Surrogate data is calculated from time series according to
the algorithm by Prichard and Theiler (1994). Fourier transform
is applied and the phase of each frequency component is
independently rotated by a random degree between (0, 2π). After
that, inverse Fourier transform is performed. As a result, the
power spectrum and the autocorrelation function of the time
series is preserved. For multivariate time series, a fixed random
sequence is used to alter the phase of each frequency, ensuring
linear correlations between simultaneously recorded time series.
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To determine whether the value of the non-linear statistic
for the original data set significantly differs from the non-linear
statistics for the surrogate data, z-test is used (Breakspear and
Terry, 2002):

Z =
Qdata −mean (Qsurrogate)

std (Qsurrogate)
(1)

where Qdata is the non-linear statistic calculated for the original
data set, mean (Qsurrogate) is the mean and std (Qsurrogate) is the
standard deviation of linear statistics calculated for the surrogate
data. In the current study, surrogate data was calculated 20 times
for each data segment and the significance level of p < 0.05 was
used. Under the null hypothesis, z-statistic is normally distributed
and when | Z| >1.96 for a two-tailed test, the null hypothesis can
be rejected. For data analysis, we calculated the degree of non-
linearity (DEG), which we define as the percentage of segments
where the null hypothesis was rejected and non-linearity was
detected:

DEG =
nsign
n
· 100% (2)

where n is the number of segments and nsign is the number of
segments, where | Z| >1.96.

Non-linear Statistics
The measures for estimation of non-linearity were selected based
on two main criteria. Firstly, whereas different estimators detect
various aspects of non-linearity, the applied measures should
describe one of the specific features of the signals: self-similarity,
dimension-based morphology, complexity, irregularity or
functional connectivity. Secondly, less time-consuming methods
currently widely used in EEG analysis should be represented.
As a result, five non-linear methods were selected: HFD, KFD,
LZC, SampEn, and SL. HFD and KFD are fractal dimension
methods, LZC is a measure of complexity and SampEn is a
measure of irregularity. As connectivity between neurons and
synchronization of their spiking play crucial role in the brain
functioning, functional connectivity measure SL, although
computationally time consuming, was also selected.

The HFD evaluates the complexity and self-similarity of time
series (Higuchi, 1988). It is calculated directly in the time domain,
making it a simple and fast method. The HFD with a parameter
kmax = 8 was calculated according to the algorithm presented by
Higuchi (1988).

The KFD obtains fractal dimension based on morphology,
measuring the roughness of the time series (Katz, 1988). The KFD
is the ratio of the length of the curve (sum of distances between
two successive points), divided by the maximum distance of any
point under consideration from the first point. In other words,
the ratio of the total length to the straight line corresponding to
the maximum distance from the first point. In addition, a scaling
factor, an average of the distances between two successive points
is used.

Higuchi’s and Katz fractal dimensions are the most common
methods of estimating the fractal dimension of EEG signals
directly in the time domain. Despite both, HFD and KFD
describe the fractal dimension of EEG waveform, the behavior

of the measures is different. HFD has been suggested being the
most accurate, whereas KFD yields the most consistent results
regarding discrimination between brain functional states (Esteller
et al., 2001). Therefore, both are applied in this study.

The LZC evaluates the randomness of finite sequences
(Lempel and Ziv, 1976). First, the EEG signal is transformed
into a finite symbol sequence, according to a chosen threshold.
Next, the sequence of symbols is analyzed from left to right. The
LZC counts the number of times a new pattern is encountered
and its recurrence rate for the given sequence. LZC is simple
to calculate and does not need long data segments. Larger LZC
values correspond to signals that are more complex. Still, the
LZC strongly depends on the signal bandwidth (Kalev et al.,
2015). In the current study, median value of the sequence was
selected as threshold, as it is capable of coping with outliers.
Next, the data was binarized (two symbols) according to the
threshold. Due to artifact free sequences, selecting between
median or mean is not expected to change the outcome
considerably.

The SampEn measures the signal irregularity (Richman and
Moorman, 2000). Signals that are more irregular give larger
SampEn values. The method is quite independent of the signal
length. It is suitable for analyzing short and noisy time series.
The SampEn is the negative natural logarithm of the conditional
probability that two sequences similar for m = 2 points remain
similar at the next point. Parameters for the SampEn were chosen
according to recommendations from previous studies (Richman
and Moorman, 2000; Lake and Moorman, 2010): the embedding
dimension m = 2 and the tolerance r = 0.2 SD, where SD is the
standard deviation of the sample.

The SL is a non-linear measure of functional connectivity
(Stam and Van Dijk, 2002). The SL estimates dynamical
interdependencies between simultaneously recorded time series
using Takens’ theorem (Takens, 1981) of reconstructing EEG
signals into state space. The calculation of the SL is more
thoroughly explained in the article by Stam and Van Dijk
(2002). The SL parameters were calculated according to
the formulas presented in the paper by Montez et al.
(2006) with respect to the time-frequency content of the
signal. Therefore, the following parameters were used: the
embedding lag L = 7, the embedding dimension m = 136, the
number of recurrences nrec = 10, the fraction of recurrences
pref = 0.01, window W1 = 2000 and window W2 = 2999.
Such selection of the parameters ensures that the time-
frequency characteristics of the signals are fully taken into
account. Therefore, small alterations in these parameters are
not expected to change the results of surrogate data method
significantly.

Data Processing
Data processing was done in MATLAB (The Math-works, Inc.)
using signal processing toolbox. Signals were digitally filtered
(1–45 Hz) using zero-phase Butterworth filter and re-referenced
according to the reference electrode standardization technique
(REST) (Yao, 2001). Signals were divided into 5.3-s segments.
Data were visually inspected and segments with artifacts were not
analyzed.
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Surrogate data method makes an assumption of stationarity.
We conducted two stationarity tests: the Kwiatkowski–Phillips–
Schmidt–Shin (KPSS) and the Phillips–Perron (PP) test and no
non-stationarity was detected.

Dependence on the Segment Length Increment for
Alpha Component
The aim of the current section was to determine how DEG
depends on the segment length increment. For that purpose, the
length of the segment was gradually incremented from an integer
number of alpha periods by 2 ms. Therefore, the length of each
segment was determined as:

l = kT +1t, 1t = 0, 2, 4, . . . , 108 ms, (3)

where k is an integer, T is the period of alpha frequency
component and 1t is the segment length increment. The first
segment was approximately 5 s, starting and ending at the alpha
peak amplitude (1t = 0) – consisting of an integer number of
alpha periods. Therefore, the exact length of the first segment
depended on the alpha period. The second segment started
at the same position as the first one, but ended 2 ms later
(1t = 2). Finally, the length of the last segment (1t = 108) was
approximately 5.1 s. For most subjects, the length of the last
segment corresponds to l = (k + 1)T – again an integer number
of alpha periods. As there were 62 data segments for a subject,
we repeated the incrementation procedure for each of the 62 data
segments and DEG was calculated according to formula (2) for
each 1t = 0, 2, 4, . . . , 108 ms, where n = 62.

Alpha peaks were found by zero-phase filtering signals into
alpha frequency band (7.5–13 Hz) using Butterworth filter and
peaks were indicated by local maxima. The channel O1 was
chosen for processing, because of the highest average alpha
power. After finding positions of alpha peaks in channel O1,
whole frequency band (1–45 Hz) was used for calculating DEG.
The dependence on 1t was found for five different non-linear
parameters: HFD, KFD, LZC, SampEn and SL. As SL is calculated
between two channels, O1 and O2 were used.

Dependence on Channel
In different channels, the amount of alpha power, the strong
cyclic component, differs. This component is most pronounced
in occipital region, but is also present in other regions. To analyze
the dependence on the EEG channel, three channels were chosen
according to average mean alpha power: O1 with the highest
alpha power, C3 with average alpha power and T7 with the lowest
alpha power. In addition to O1, analysis for C3 and T7 were
conducted in accordance to 2.5.1, whereas HFD was used as a
non-linear measure.

Dependence on the Segment Length Increment for
Different Frequency Components
It is well known that alpha is the dominant frequency during
eyes-closed resting state EEG recordings, especially in posterior
areas. However, it is important to clarify, whether the surrogate
data method is also affected by the cyclic component of other
EEG frequency bands. For that purpose, the analysis in 2.5.1 was
repeated using HFD, but the segments beginning and the segment

length increment have been matched to the following frequencies:
delta (1–1.5 Hz; 1t = 0, 20, . . . , 1000), theta (4–8 Hz; 1t = 0,
3, . . . , 126) and beta (13–30 Hz; 1t = 0, 1, . . . , 46). For better
comparison, the results for alpha component (7.5–13 Hz; 1t = 0,
2, . . . , 108) are also presented.

Dependence on Segment Length
While incrementing the segment by 1t, the overall segment
length was almost the same, between 5 and 5.1 s. To analyze
the dependence on the segment length, the data were divided
into substantially different segment lengths: around 5, 10, 15, and
20 s. Each segment started from alpha peak and ended with alpha
peak, consisting of an integer number of alpha periods. Each
subject had 10 segments of each segment length, whereas n = 10
in formula (2). DEG was calculated for each subject and segment.

Data Processing
The observations of DEG were obtained for each subject. The
dependence on the 1t and the segment length were statistically
evaluated using one-way analysis of variance (ANOVA) with
the significance level of p < 0.05. To correct for the problem
of multiple comparisons, Bonferroni correction was used by
adjusting the p-value p = p/m, where m is the number of
comparisons.

RESULTS

Average DEG values for end-matched segments according to
alpha frequency (1t = 0) are presented in Table 1. The percentage
of segments where non-linearity was detected varies significantly
depending on the non-linear measure. KFD indicated the highest
degree of non-linearity: the KFD value was significantly changed
in 99% of segments, while LZC revealed non-linearity only in
0.4% of the segments.

Dependence on the Segment Length
Increment for Alpha Component
The calculated DEG values for HFD, KFD, LZC, SampEn and
SL in alpha frequency band are presented in Supplementary
Datasets 1–5. We conducted ANOVA to analyze whether the
segment length increment 1t influences the results of surrogate
data method. ANOVA (p< 0.05/5) yielded statistically significant
results for every non-linear statistic that indicated non-linearity
(DEG> 5%): HFD DEG (Figure 1B), KFD DEG (Figure 1D) and
SampEn DEG (Figure 1H). For example, when 1t = 0, then HFD
DEG was 46.1%, but 1t = 50 (corresponding to half alpha period)

TABLE 1 | The degree of non-linearity at alpha peak.

DEG, %

HFD 46.1

KFD 99.1

LZC 0.4

SampEn 81.5

SL 3.9
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FIGURE 1 | Non-linear measures (A) HFD, (C) KFD, (E) LZC, (G) SampEn, and (I) SL calculated for surrogate data depending on the segment length increment 1t
are presented on the left. The degree of non-linearity DEG depending on the segment length increment 1t for (B) HFD DEG, (D) KFD DEG, (F) LZC DEG,
(H) SampEn DEG, and (J) SL DEG are presented on the right. Statistically significant results are indicated with a pink background.
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FIGURE 2 | The degree of non-linearity DEG depending on the segment
length increment 1t for alpha component in channels O1, C3, and T7.

resulted in HFD DEG 80.0%. LZC DEG (Figure 1F) and SL DEG
(Figure 1J) did not depend on the 1t.

In order to understand the DEG results presented in Figure 1,
we can consider the values of non-linear measures calculated
for original and surrogate data, according to which DEG was
calculated. Incrementing the segment length to 1t = 50 increased
the values calculated for surrogate data for all five non-linear
measures, but the increase was statistically significant only for
HFD (Figure 1A), KFD (Figure 1C), LZC (Figure 1E), and
SampEn (Figure 1G). Since HFD and SampEn calculated for
surrogate data were significantly increased compared to the
values calculated for original data, this resulted in an increase
also in DEG (Figures 1B,H). However, KDF for surrogate data
was significantly decreased compared to KFD for original data,
resulting in a decrease in DEG (Figure 1D). Although LZC
calculated for surrogate data was also influenced by segment
length increment (Figure 1E), LZC was similar for original and

surrogate data, yielding low DEG values, resilient to segment
length increment (Figure 1F).

Dependence on Channel
The calculated HFD DEG values for channels O1, C3 and T7
are presented in Supplementary Datasets 1, 6, 7. According to
ANOVA (p < 0.05/3), HFD depended on the 1t for all studied
channels. The deflection in DEG was the largest in channel O1,
followed by C3 and T7 (Figure 2). These results are in accordance
with the amount of spectral alpha power in those channels.

Dependence on the Segment Length
Increment for Different Frequency
Components
The calculated HFD DEG values for delta, theta, alpha and
beta frequency components are presented in Supplementary
Datasets 1, 8–10. According to ANOVA (p < 0.05/4), HFD
depended on every calculated cyclic component (Figure 3).
The difference between maximum and minimum DEG for
different 1t was the largest for alpha component (80.0% –
45.3% = 34.7%), followed by theta (63.9% − 51.4% = 12.5%),
delta (61.1%−51.1% = 10.0%), and beta component
(60.6%− 51.6% = 9.1%).

Dependence on Segment Length
The influence of segment length (1t = 0) on DEG was
investigated for five non-linear measures: HFD, KFD, LZC,
SampEn, and SL (Supplementary Dataset 11). The results are
presented in Table 2. According to ANOVA (p < 0.05/20), DEG
depended on the segment length for HFD, SampEn, and SL
(marked with ∗ in Table 2). The results for 5-s segments are
slightly different from the results in Table 1, because smaller
number of segments were used.

DISCUSSION

The aim of the study was to clarify the impact of the strong cyclic
EEG signal component on the results of surrogate data method

FIGURE 3 | The degree of non-linearity DEG depending on the segment length increment 1t for (A) delta, (B) theta, (C) alpha, and (D) beta frequency components.

Frontiers in Physiology | www.frontiersin.org 6 September 2018 | Volume 9 | Article 1350

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01350 September 26, 2018 Time: 16:33 # 7

Päeske et al. End-Matched Segmentation of EEG Signals

TABLE 2 | The degree of non-linearity at different segment lengths (∗p < 0.05).

DEG, %

Segment length 5 s 10 s 15 s 20 s

HFD 45.7∗ 41.0∗ 36.4∗ 34.0∗

KFD 99.9 100 100 100

LZC 0.4 0.6 0.2 0.4

SampEn 82.0∗ 95.4∗ 98.5∗ 99.4∗

SL 4.4∗ 6.5∗ 7.0∗ 9.1∗

by Theiler et al. (1992). In addition, the impact of segment
length was analyzed. The major finding of the study was that
if the EEG segment does not contain an integer number of full
alpha periods, the values calculated for surrogate data may be
significantly altered, resulting in a false rejection of linearity. To
the best of our knowledge, similar results have not been reported
earlier.

Previous studies have shown that false detection of non-
linearity may occur when the data are strongly cyclic (Stam
et al., 1998; Small and Tse, 2002). However, the influence
of this problem on EEG signals was not previously known.
Although surrogate data method is widely used for EEG analysis
(Breakspear and Terry, 2002; Natarajan et al., 2004; Spasic, 2010;
Dimitriadis et al., 2015, 2017; Bae et al., 2017; Olejarczyk et al.,
2017), the cyclic behavior of dominant frequency component
is not considered in segmentation. The current study shows
the importance of segmenting data according to the alpha
component for eyes-closed resting state EEG.

Our results demonstrate remarkable non-monotonic changes
in the degree of non-linearity of EEG signals with the fine
tuning of the segment length within a period of dominant EEG
signal frequency for every non-linear statistic that indicated non-
linearity (DEG > 5%): HFD (Figure 1B), KFD (Figure 1D), and
SampEn (Figure 1H). The changes in the degree of non-linearity
are caused by the changes in the non-linear measures calculated
for surrogate data (Figures 1A,C,G), whereas the measures
calculated for original data have no remarkable dependence on
so small alteration of segment length. The impact of segment
length tuning on the results of surrogate data method is maximal
when the segment length contains an odd number of half-periods
of the dominant frequency (Figure 1). The phenomenon can be
explained by spectral leakage in the discrete Fourier transform
while deriving the surrogates, as discrete Fourier transform
assumes periodic signals. Thornhill (2005) showed that even
a small spectral component other than that at the dominant
frequency could be interpreted as non-linearity and causes false
detection of non-linearity for sine waves. However, they showed
that pseudoperiodic data with weaker cyclic behavior were more
robust to small end-mismatches. These results are in accordance
with the results in the current study. Moreover, the current study
proves that the cyclic behavior of EEG has a strong influence
on non-linear measures calculated for surrogate data for large
end-mismatch.

Two measures, LZC (Figure 1F) and SL (Figure 1J), did
not detect significant non-linearity (DEG < 5%). In the case of
LZC, the possible reason is that the measure is highly sensitive

to low frequency EEG component in binarization due to its
high amplitude values. The non-linearity, if contained in the
low amplitude high frequency activity, gets overlooked in the
process of binarization and is not detected by the measure.
SL did not detect non-linear coupling, indicating that SL does
not necessarily give significantly more information compared to
similar linear functional connectivity measures.

The level of alterations caused by fine tuning within a period of
dominant frequency differs at different non-linear discrimination
measures. The degree of linearity changes about two-fold with
HFD, is much lower with KDF and SampEn and becomes
insignificant with LZC and SL. The different impact of fine tuning
of segment length within a period of dominant frequency can be
explained by different sensitivity of various non-linear measures
to a small additional spectral component introduced by the
deviation of the segment length from a full period. The problem
can be solved by selecting the start and end of the segment by
matching the period of the strong cyclic component. A segment
end-matching can be performed by selecting a segment length
equal to integer number of full periods of the dominant frequency
(Stam et al., 1998). In addition, Small et al. (2001) suggested
an alternative surrogate data method: pseudo-periodic surrogate
(PPS) algorithm. However, PPS is not applicable to data where
the non-linearity of interest is distortion of the periodic waveform
(Thornhill, 2005).

The dependence of the degree of non-linearity on the segment
length increment from full alpha periods has the maximal
value for alpha frequency component (Figure 3). The alteration
of the degree of non-linearity with the dominant frequencies
in delta, theta or beta bands are less critical. The possible
reason is the structure of EEG signal with a dominant alpha
frequency. The minimum DEG value in Figure 3 is the smallest
for alpha frequency component. These results show that the
synchronization of the fine tuning of the segment length should
be performed with the dominant frequency component to
decrease the amount of false positive surrogate data results.

The dependence of the degree of non-linearity on the
segment length increment from full period of dominant EEG
frequency is evident in various EEG channels (Figure 2). As
expected, the impact is stronger in the EEG channels with
higher alpha content (O) and weaker in channels with lower
alpha content (T). The influence of segment end-mismatch
on other channels also mostly depends on the spectral alpha
power and lies between the obtained results of O1 and T7
(Figure 2). The results may also be influenced by an additional
strong frequency component (channel C3 in Figure 2), but the
dominant frequency component should be taken into account in
segment end-matching.

The degree of linearity estimated at an integer number of
alpha periods (Tables 1, 2) shows that the degree of non-linearity
varies for different non-linear measures. Different sensitivity to
surrogate data method has also been reported by other author
(Spasic, 2010) when comparing HFD and third order correlation.
Our results suggest that HFD, KFD, and SampEn were more
sensitive to non-linearity, while SL and LZC values changed
significantly in less than 5% of segments for 5-s segments. In
this case, SL has been calculated between O1 and O2 channels.
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The results can vary for different channel pairs, but Orgo et al.
(2017) found that for SL 5-s segments, the average degree of non-
linearity over all channel pairs was similar to that in our current
study (6.1% compared to our 4.4%). In addition, the degree
of non-linearity estimated in the current study is close to the
results reported by Breakspear and Terry (2002), who detected
statistically significant evidence of non-linear interactions in 4.8%
of the 2.048-s segments of eyes-closed resting state EEG.

The findings presented in Table 2, indicating changed non-
linearity with increased segment length, are in principle in
accordance with the results reported by other research groups
(Olbrich et al., 2003; Sun et al., 2012; Orgo et al., 2017). Olbrich
et al. (2003) have reported the dependence of rejection of the
null hypothesis between natural and surrogate data in sleep EEG
on the length of the analyzed segment. They suggested that
the increase of evaluated non-linearity with the segment length
might occur because of the increasing non-stationarity of the
longer time series. In the current study, KPSS and PP test did
not reveal any non-stationarity. Sun et al. (2012) have made a
conclusion that the length of signal segment for analysis of 3–
16 periods is sufficient for detecting non-linearity in the case
of EEG phase synchronization. However, in the current study
we showed that the results of evaluation of non-linearity vary
even with the segment lengths of more than 100 periods. Orgo
et al. (2017) were the first to compare the degree of EEG non-
linear coupling in different frequency bands and segment lengths,
during eyes-closed resting state. Their results showed that the
degree of non-linear coupling increased with the length of the
segment, and it was most dominant in total, alpha, beta and theta
frequency bands.

CONCLUSION

The results of the performed study show that the selection of a
proper segment length in evaluating non-linearity of EEG signals
with surrogate data method is critical to assure the reliability of
evaluation. The results of performed calculations demonstrate
that false rejection of linearity occurred with surrogate data
method when an EEG segment did not contain an integer

number of full alpha periods using HFD, KFD, or sample entropy.
LZC and SL did not detect significant non-linearity and were
therefore not influenced by segment end-mismatch. The major
novel finding is that the correct estimation of non-linearity with
surrogate data method requires a segment length comprising of
full periods of the spectrum’s dominant frequency component. In
addition, the degree of non-linearity estimated with HFD, sample
entropy and synchronization likelihood significantly changed
with the segment length.
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