
fphys-09-01017 August 27, 2018 Time: 19:47 # 1

ORIGINAL RESEARCH
published: 29 August 2018

doi: 10.3389/fphys.2018.01017

Edited by:
Jing-Yan Han,

Peking University, China

Reviewed by:
Pasquale Pagliaro,

Università degli Studi di Torino, Italy
Huiyong Yin,

Shanghai Institutes for Biological
Sciences (CAS), China

*Correspondence:
Wuxun Du

cnduwux@163.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Vascular Physiology,
a section of the journal
Frontiers in Physiology

Received: 13 December 2017
Accepted: 09 July 2018

Published: 29 August 2018

Citation:
Zhu M, Han Y, Zhang Y, Zhang S,
Wei C, Cong Z and Du W (2018)

Metabolomics Study of the
Biochemical Changes in the Plasma

of Myocardial Infarction Patients.
Front. Physiol. 9:1017.

doi: 10.3389/fphys.2018.01017

Metabolomics Study of the
Biochemical Changes in the Plasma
of Myocardial Infarction Patients
Mingdan Zhu1†, Yanqi Han2†, Yu Zhang3, Shaoqiang Zhang1, Congcong Wei1,
Zidong Cong1 and Wuxun Du1*

1 Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China, 2 Tianjin Engineering
Laboratory of Quality Control Techniques for Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Co.,
Ltd., Tianjin, China, 3 Tianjin University of Traditional Chinese Medicine, Tianjin, China

Myocardial infarction (MI) is a common and multifactorial disease that has the highest
morbidity and mortality in the world. Although a number of physiological, pathological,
and functional parameters have been investigated, only scarce information regarding
the changes of small metabolites in the plasma has been reported, and this lack of
information may cause poor MI diagnosis and treatment. In the present study, we aimed
to investigate the metabolic profiles of plasma samples from MI patients to identify
potential disease biomarkers and to study the pathology of MI. Metabolic profiles of the
plasma of 30 MI patients and 30 controls were obtained using ultra-performance liquid
chromatography/electrospray ionization quadruple time-of-flight mass spectrometry.
The resulting data were processed using pattern recognition approaches, including
principal component analysis and partial least squares-discriminant analysis, to identify
the metabolites that differed between the groups. Significant differences in the plasma
levels of the following 10 metabolites were observed in the MI patients compared
with the controls: phosphatidylserine, C16-sphingosine, N-methyl arachidonic amide,
N-(2-methoxyethyl) arachidonic amide, linoleamidoglycerophosphate choline, lyso-
PC (C18:2), lyso-PC (C16:0), lyso-PC (C18:1), arachidonic acid, and linoleic acid.
The changes in these 10 biomarkers indicated perturbations of energy metabolism,
phospholipid metabolism, and fatty acid metabolism in the MI patients. These findings
hold promise to advance the treatment, diagnosis, and prevention of MI.

Keywords: myocardial infarction, metabolomics, potential biomarkers, UPLC/ESI–Q-TOF/MS, principal
component analysis (PCA)

INTRODUCTION

The WHO has declared that cardiovascular disease is a modern epidemic, and it is one of
the leading causes of morbidity and mortality all over the world. Although the mortality rate
is decreasing due to recent improvements in medical technology, the prevalence is steadily
increasing (The World Health Report, 1997; Law et al., 2002). MI is one of the most frequently

Abbreviations: AA, arachidonic acid; BPI, basic peak ion; CK, creatine kinase; CK-MB, creatine kinase isoenzyme; CRE,
creatinine; LEA, leucine enkephalinamide acetate; LPA, lysophosphatidic acid; LPC, lysophosphatidylcholine; MI, myocardial
infarction; PCA, principal component analysis; PLS-DA, partial least squares-discriminant analysis; RSDs, relative standard
deviations; S1P, sphingosine 1 phosphate; TC, total cholesterol; TCM, traditional Chinese medicine; TG, triglyceride;
UPLC/ESI–Q-TOF/MS, ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass
spectrometry; WHO, World Health Organization.
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occurring cardiovascular conditions in both developed and
developing countries and can be a major catastrophic event
that leads to sudden death or hemodynamic deterioration
(Murray and Lopez, 1997). The risk factors for MI are
caused by interactions between environmental and genetic
factors that include hypercholesterolemia, diabetes mellitus,
hypertension, obesity, and smoking (Teslovich et al., 2010).
Although research regarding the physiological, pathological, and
functional parameters and the treatment and prognosis of MI
has been conducted over the last decade, little information about
changes in the small metabolites in the plasma has been reported,
and this lack of information may be detrimental to the diagnosis
and treatment of MI (Li et al., 2012).

Metabolomics is an emerging and powerful discipline
concerning comprehensive analyses of small molecules (<1 kDa)
and provides powerful methods to discover biomarkers in
biological systems (Wang et al., 2012). Metabolomics is based
on dynamic changes in low molecular weight metabolites
in organisms and has been applied in clinical research,
human nutrition, plant physiology, microbiology metabolism
and environmental toxicology studies (Li et al., 2008). The
metabolites often mirror the end results of genomic and
protein perturbations due to disease, and these results are
closely associated with phenotypic changes. Various analytical
methods involving multivariate data analysis, such as PCA
and PLS-DA, have been applied in metabolomic-based drug
metabolism studies (Zhang et al., 2012a). Moreover, some
advanced instruments, such as UPLC/ESI–Q-TOF/MS, have
become the widely applied techniques in metabolomics studies.
The UPLC/ESI–Q-TOF/MS system is not only capable of
providing accurate fragment mass, precursor ion, and neutral
loss information but also exhibits high peak capacity, sensitivity,
and resolution (Zhang et al., 2012b). Metabolomics combined
with advanced instruments and appropriate analytical methods
provides support that enables us to explain the metabolites
associated with MI.

In recent years, the studies on metabolic disorders of
urine, serum, and plasma from MI-treated rats have been
reported with the aims to interpret the biochemical process
and evaluate the pharmacological actions of diverse drugs.
Many potential MI biomarkers in urine, serum, and plasma
samples of rats have been identified relating to inflammation,
oxidative injury, energy metabolism, and hypertrophy which
were considered as the most relevant pathological changes
in the formation of MI (Liu Y.T. et al., 2013; Jiang et al.,
2014). However, the biomarkers of plasma samples from MI
patients with qi deficiency and blood stasis have still few
been studied using a metabonomic approach. By comparing
with the experiments of rats samples, the clinical samples can
offer a more direct and convincing result on MI metabolic
information.

In the present study, we investigated the metabolic profiles of
plasma samples from MI patients to identify potential disease
biomarkers and to research the pathology of MI. The plasma
metabolic profiles of 30 MI patients and 30 controls were
obtained using UPLC/ESI–Q-TOF/MS. The resulting data were
processed with pattern recognition approaches that included

PCA and PLS-DA to discover the differentially expressed
metabolites.

MATERIALS AND METHODS

Ethics Statement
Written informed consent was obtained from the patients and
healthy people in the study. The experimental protocol was
reviewed and approved by the Institutional Review Board of
Second Affiliated Hospital of Tianjin University of TCM. Ethics
review was approved by Ethics Committee of Xi Yuan Hospital of
China Academy of Chinese Medical Sciences.

Chemicals
HPLC-grade acetonitrile and methanol were purchased from
Fisher (Pittsburgh, PA, United States). Formic acid (HPLC-
grade) and LEA (HPLC-grade) were purchased from Sigma-
Aldrich (St. Louis, MO, United States). Ultrapure water
(18.2 M�) was prepared from distilled water using a Milli-Q
water purification system (Millipore Laboratories, Bedford, MA,
United States).

Subjects
Thirty MI patients were recruited from the Second Affiliated
Hospital of Tianjin University of TCM, China in the period
from August 13, 2014 to August 12, 2015. Briefly, the selection
criteria were as follows: (1) patients aged between 40 and 70 years;
(2) patients with acute MI within the previous 1–6 months; (3)
patients exhibiting qi deficiency and blood stasis; (4) patients
who were conscious so that the clinical data could be collected;
and (5) patients who provided written informed consent. The
exclusion criteria for all patients were severe hypertension,
hyperlipidemia, pulmonary dysfunction, arrhythmia, hepatosis,
renal inadequacy, mental diseases, pregnant and breast-feeding
women, and other diseases that would have affected the clinical
observations. The subjects were confirmed according to the
“Clinical Guideline of New Drugs of Traditional Chinese
Medicine for the Treatment of Coronary Heart Disease.” The
control group consisted of blood samples from 30 individuals
who attended the hospital for routine physical check-ups, and
the control subjects were age- and gender-matched to the MI
patients.

Plasma Sample Preparation
The blood samples were anticoagulated with natrium citricum
and centrifuged at 13,000 rpm for 10 min to obtain plasma
samples. The plasma samples (300 µL) were mixed with
methanol (1200 µL) via vortexing for 2 min and then centrifuged
at 4◦C for 15 min at 13,000 rpm. The supernatants (1200 µL) were
transferred to new 1.5-mL polypropylene tubes and evaporated
to dryness using a vacuum drying oven. Next, 150 µL of 50%
methanol was added to dissolve the residues in each tube. The
solutions were filtered through 0.22-µm Millipore filters prior to
sample injection.
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UPLC and MS Analyses
The chromatographic separation was performed on a Waters
Acquity UPLC BEH C18 column (2.1 mm × 100 mm, 1.7 µm,
Waters, Corp., Milford, MA, United States) using a Waters
ACQUITY UPLC system equipped with a binary solvent delivery
system and an autosampler. The column temperature was
maintained at 30◦C. UV detection was performed over the range
of 190–400 nm. The mobile phase was composed of phase
A (acetonitrile) and phase B (water with 0.1% formic acid).
The gradient for the plasma samples was as follows: 0–4 min,
2–30% A; 4–5 min, 30–40% A; 5–8 min, 40–40% A; 8–14 min,
40–50% A; 14–18 min, 50–55% A; 18–22 min, 55–90% A; and
22–24 min of washing in 90% A. The proportion of phase
A returned to 2% in 2 min, and the column was allowed to
re-equilibrate for 5 min before the next injection. The flow rate
was 0.4 mL/min, and 5 µL were injected into the column. The
column eluent was directed to the mass spectrometer without
splitting.

The mass spectrometry was performed with a Waters
Q/TOF Premier Mass Spectrometer (Waters, Corp., Manchester,
United Kingdom) coupled to an electrospray ionization
source (ESI). The mass spectra were acquired in both the
negative and positive ion voltage modes with the following
parameters: capillary voltages, 2.5 kV (negative mode) and
3.0 kV (positive mode); sample cone voltage, 30 V; extraction
cone voltage, 4.0 V; collision energy, 5 eV; desolvation gas
(nitrogen was used as the drying gas) flow rate, 600 L/h;
desolvation temperature, 300◦C; cone gas rate, 50 L/h; source
temperature, 100◦C; and scan range, m/z 50–1000 Da. The
scan time and inter-scan delay were set to 0.15 and 0.02 s,
respectively. All data were acquired using a LockSpray
interface (LEA, m/z 555.2931 for the positive mode and
553.2775 for the negative mode) to ensure accuracy and
reproducibility at a concentration of 200 ng/mL and a flow rate
of 20 µL/min.

Multivariate Data Analysis and Data
Processing
The original chromatographic peak data obtained from
the UPLC/ESI–Q-TOF/MS system were recognized and
matched with the MarkerLynx Application Manager (Waters,
United States). The main parameters were as follows: retention
time range, 0–24 min; mass range, 50–1000 Da; mass
tolerance, 0.2 Da; minimum intensity, 1%; mass window,
0.05, retention time tolerance, 0.02 min; and noise elimination
level, 6. Pattern recognition analyses are practical methods
in metabolomic investigations, and the analyses used here
included unsupervised PCA and supervised PLS-DA. The
PLS-DA model was processed with Simca-P software (version
11.5, Demo, Umetrics, Umea, Sweden) as used to concentrate
the group discrimination into the first component, while
the remaining unrelated variation was contained in the
subsequent components (Boccard and Rutledge, 2013).
According to the significance values and screening of the
score plots and loading plots, the potential biomarkers were
identified.

Biomarker Identification
The selected potential biomarkers were precisely identified, and
the elemental compositions were generated with MarkerLynx
based on the exact masses of the metabolites with high
contribution scores. The MS/MS fragments of the biomarkers
were obtained in a consistent manner. The following databases
were used to identify the potential markers: ChemSpider1,
MetFrag2, MassBank3, and PubChem4.

Metabolic Pathway Analysis
The pathway analyses of the potential biomarkers were
performed with database sources that included the Human
Metabolome Database (HMDB5), the Kyoto Encyclopedia
of Genes and Genomes (KEGG6), METLIN7, the Small
Molecule Pathway Database (SMPD8), the LIPID Metabolites and
Pathways Strategy (Lipid MAPS9), and the Scripps Center for
Metabolomics and Mass Spectrometry.10

Statistical Analysis
The statistical analyses were performed using SPSS software
(version 16.0, Chicago, IL, United States), and statistical
significance was set at p < 0.05. The multivariate statistical
analyses were performed with the SIMCA-P 11.5 software
package (Demo, Umetrics, Umeå, Sweden). The PLS-DA model
was subsequently validated using cross-model validation and
permutation.

RESULTS

Clinical Characteristics of Subjects
Thirty MI patients and 30 controls were included in this study.
The clinical characteristics of the MI patients and controls are
listed in Table 1. The enrolled patients and controls were well-
matched in terms of age, gender, and ethnicity, which indicated
that the intra-group differences were mainly due to MI-related
pathological variations. The biochemistry data revealed that the
levels of the indicators TC and TG were higher in the MI patients
than in the controls, and no significant differences were observed
in the CK, CK-MB, or CRE levels.

Validation of the UPLC-MS Method
The precision of the instrument and accuracy of method reflected
the stability of the analysis, which were very important for
guaranteeing the reliability of the acquired metabolomic data.
In the present study, the injection precision was determined by

1http://www.chemspider.com
2http://msbi.ipb-halle.de/MetFrag/
3http://www.massbank.jp
4http://ncbi.nlm.nih.gov/
5http://www.hmdb.ca/
6https://www.genome.jp/kegg/
7http://metlin.scripps.edu/
8http://www.smpdb.ca/
9http://www.lipidmaps.org/
10http://masspec.scripps.edu/index.php
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TABLE 1 | The basic characteristics of the subjects.

Control MI patients p-valuea

No. of subjects 30 30 –

Age, mean ± SD, years 55.23 ± 6.21 56.30 ± 6.70 0.525

Gender, male/female, no. 15/15 15/15 1.000

CK (U/L) 93.73 ± 44.24 97.53 ± 43.82 0.739

CK-MB (U/L) 14.43 ± 4.23 13.77 ± 3.33 0.500

CER (µmol/L) 74.41 ± 20.64 76.05 ± 19.67 0.754

TC (mmol/L) 3.79 ± 0.96 4.70 ± 1.18 0.002

TG (mmol/L) 1.11 ± 0.38 2.32 ± 0.59 0.000

aUnpaired t-tests and χ2 tests were used to assess the difference between control
and patients.

repeatedly analyzing sets of six injections from the same samples.
The RSDs of the peak areas were between 2.2 and 3.8%. To
evaluate the influence of sample preparation on the stability
of the data, six parallel samples were prepared using the same
preparation protocol. The retention times of the peaks remained
almost unchanged, and the RSDs of the peak intensities of the
major signals were below 3.9%. These results indicate that the
repeatability of sample preparation met the requirements for
metabolomics analysis.

Metabolic Profiling Analysis
The BPI current chromatograms from the MI patients and
controls in both the negative and positive ESI modes are shown
in Figure 1. All of the retention time, peak intensity, and exact
mass data were imported into the MassLynx software, and the
data from MassLynx were directly imported into the Simca-P
software for multiple statistical analyses. As shown in Figure 2,
the analysis of the PLS-DA score plots of the first and second
principal components (PC1 and PC2, respectively) in the positive
and negative modes truly reflected the differences between the
MI patients and controls and revealed that the metabolic profiles
of the control and patient groups were clearly separated. All
of the samples were classified into two main groups, and none
were misclassified, which demonstrates that the constituents of
the samples from the different stages were significantly different.
The R2X, R2Y, and Q2 of this PLS-DA model were 0.210,
0.994, 0.994 and 0.173, 0.990, 0.968 in positive and negative
modes, respectively. Loading plots were utilized to reveal the
contributions of each principal component. The distance from
the origin of the loading plots to the marker is indicative
of the significance of the marker, and higher values indicate
more significant markers. As shown in Figure 3, 10 compounds
strongly contributed to the clusters in both the positive and
negative modes (variables with statistical significant difference
p < 0.05) and were identified as responsible for the separation
between the MI patients and control groups. Therefore, 10
components were regarded as potential biomarkers.

Identification of Potential Biomarkers
The presumed molecular formulas were searched in HMDB and
other databases to identify the possible chemical constitutions.
Furthermore, the MS/MS data were screened to determine the

potential structures of the ions. To illustrate the identification
of the metabolites, we selected the ion at tR = 18.59 min (m/z
496.3356) as an example that will be described. The [M + H]
496.3356 demonstrated an odd number of nitrogen atoms, and
its molecular formula was speculated to be C24H50NO7P based
on analyses of the elemental composition and fractional isotope
abundance. In the positive mode, the MS/MS figure contained
fragmentations of [M + H-H2O]+ (m/z 478.3), [M + H-
C5H13NO4P]+ (m/z 313.2), and [M + H-C19H37NO2]+ (m/z
184.0). Finally, the metabolite was tentatively identified as LPC
(16:0) based on the database searches. The data in the literature
were also used to confirm this result (Liu P. et al., 2013).

According to the protocol detailed above, 10 endogenous
metabolites in the plasma were tentatively identified and are
summarized in Table 2. The metabolites of N-methyl arachidonic
amide (No. 3) and AA (No. 9) were obviously up-regulated
(p < 0.05) in the MI group compared with the control
group, and the levels of phosphatidylserine (No. 1), C16-
sphingosine (No. 2), N-(2-methoxyethyl) arachidonic amide
(No. 4), linoleamidoglycerophosphate choline (No. 5), lyso-PC
(C18:2) (No. 6), lyso-PC (C16:0) (No. 7), lyso-PC (C18:1) (No. 8),
and linoleic acid (No. 10) were significantly decreased (p < 0.05)
in the MI group.

Metabolic Pathway Analysis
Pattern recognition analysis of the metabolites revealed that an
obvious separation of the MI model and the control group was
achieved. Metabolite profiling focuses on the analysis of a group
of metabolites that are related to specific metabolic pathways that
are involved in biological states. Based on the identified potential
biomarkers from LC–MS, the perturbed metabolic pathways in
the MI patients were identified based on the KEGG pathway
database. The metabolites were primarily involved in alterations
in glycerophospholipid metabolism (Nos. 1, 5, 6, 7, and 8), AA
metabolism (Nos. 3, 4, and 9), sphingolipid metabolism (No. 2),
and fatty acid β-oxidation metabolism (No. 10).

DISCUSSION

In this study, UPLC/ESI–Q-TOF/MS-based metabolomics study
was used to investigate the metabolic profiles of plasma samples
from MI patients to identify potential disease biomarkers
and to study the pathology of MI. First, the clinical and
biochemistry characteristics of MI patients and controls were
compared, which indicates the difference in TC and TG
between two groups was significant. Moreover, 10 compounds,
namely, phosphatidylserine, C16-Sphingosine, N-methyl
arachidonic amide, N-(2-methoxyethyl) arachidonic amide,
linoleamidoglycerophosphate choline, Lyso-PC (C18:2), Lyso-
PC (C16:0), Lyso-PC (C18:1), AA, and linoleic acid, were
identified and determined to be potential biomarkers in the
MI patients. Furthermore, Metabolic pathway analysis of these
metabolites suggested that glycerophospholipid metabolism, AA
metabolism, sphingolipid metabolism, and fatty acid β-oxidation
metabolism were the most significantly metabolic pathways in
the MI patients.
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FIGURE 1 | UPLC-Q-TOF/MS analysis of the plasma. (A,B) BPI chromatograms of plasma from the control and MI patients acquired in positive mode. (C,D) BPI
chromatograms of plasma from the control and MI patients acquired in negative mode.

FIGURE 2 | PLS-DA score plots for the plasma samples of the control and MI patients. (A,B) 2-D plots of the plasma results in positive and negative modes,
respectively. (C,D) 3-D plots of the plasma results in positive and negative modes, respectively. Classification shows a clear distinction between the control group
(black) and MI group (red).

Metabolomics-based biomaker study offers a novel and
sensitive technique in the biomarker discovery for early diagnosis
and treatment (Dang et al., 2018). Comprehensive strategies
attract increasing attentions in MI study (Shah et al., 2012a;
Forssen et al., 2017). GC-MS-based tissue metabolomics study

of MI rats suggested that 22 metabolites were identified
to be different between the infarcted myocardia and non-
infarcted myocardia (Wang et al., 2017). A non-targeted
UHPLC-Q-TOF/MS metabolomics approach was applied to
confirm the alterations in CHD patients and metabolites,

Frontiers in Physiology | www.frontiersin.org 5 August 2018 | Volume 9 | Article 1017

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01017 August 27, 2018 Time: 19:47 # 6

Zhu et al. Metabolomics Study of MI Patients

FIGURE 3 | Loading plots of the metabolomes of the plasma from the control and MI patients. (A) Positive mode. (B) Negative mode [1 – phosphatidylserine; 2 –
C16-sphingosine; 3 – N-methyl arachidonic amide; 4 – N-(2-methoxyethyl) arachidonic amide; 5 – linoleamidoglycerophosphate choline; 6 – lyso-PC (C18:2); 7 –
lyso-PC (C16:0); 8 – lyso-PC (C18:1); 9 – arachidonic acid; and 10 – linoleic acid].

namely, 4-pyridoxic acid, PG (20:3/2:0) and lithocholic acid
were identified, which exhibited strong correlations with CHD
(Li et al., 2017). In the present study, we combined UPLC/ESI–Q-
TOF/MS and metabolomics method to investigate the biomarker
of the MI patients. Based on the results, we speculated that
the differences (shown in Table 2) in the plasma might denote
potential biomarker targets for differentiating MI pathological
and control states. Among the determined 10 metabolites,
phosphatidylserine, C16-sphingosine, Lyso-PC (C18:2), Lyso-
PC (C16:0), Lyso-PC (C18:1), AA, and linoleic acid have been
reported to be the biomarkers for cardiovascular disease (Liu Y.T.
et al., 2013; Jiang et al., 2014; Park et al., 2015), and we determined
N-methyl arachidonic amide, N-(2-methoxyethyl) arachidonic
amide, and linoleamidoglycerophosphate choline to be the new
biomarkers for MI.

The levels of phosphatidylserine, linoleamidoglycero-
phosphate choline, Lyso-PC (C18:2), Lyso-PC (C16:0), and Lyso-
PC (C18:1), which were involved in the glycerophospholipid
metabolism, were downregulated in MI patients compared
with control subjects in our study. Glycerophospholipids are
precursors of lipid mediators that are involved in the signal
transduction process. Lyso-PC (C18:2) (No. 6), lyso-PC (C16:0)
(No. 7), and lyso-PC (C18:1) (No. 8) are glycerophospholipids,
which are important components of all cell membranes (Fuly

et al., 2007). Phospholipase A2 can be activated during the
breakdown of the membrane, which results in further decreases
in the generation of lyso-PCs (Glukhova et al., 2015). The
degradation of glycerophospholipids by phospholipase A2
generates LPC and AA. LPC is then enzymatically converted
to LPA (Wymann and Schneiter, 2008) and has been identified
as risk factor biomarkers for coronary artery disease (Zhang
et al., 2017). Moreover, increased AA (No. 9) in adipose
tissue is associated with an increased risk of non-fatal acute
MI (Wang et al., 2014). Specifically, AA is oxygenated by
cyclooxygenase form prostaglandins or by lipoxygenase enzymes
to for leukotrienes, which can mediate or modulate inflammatory
reactions (Jabbour et al., 2009).

Sphingolipids (phytosphingosine and sphingosine, No. 2) are
components of cellular membranes in eukaryotic cells (Lynch,
2012). Ceramide and S1P are generated from phytosphingosine.
Ceramide is converted into sphingosine and sphingomyelins
(Gault et al., 2010). The decrease in sphingosine observed in
this study might reflect either a reduction in the synthesis of the
metabolite or its rapid consumption for the increased synthesis
of S1P or sphingomyelins. Studies have found that S1P plays
an important role in vascular maturation, and S1P has been
implicated in the pathophysiology of atherosclerosis and wound
healing (Watterson et al., 2003).
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Fatty acids are the largest energy reserve in the body
and supply energy-yielding substrates via β-oxidation in the
mitochondria and peroxisomes. Fatty acids have also been
regarded as independent predictors of cardiovascular events
(Shah et al., 2012b). The reduction of linoleic acid (No.
10) observed in this study indicates that the β-oxidation of
the unsaturated fatty acid was inhibited, and such inhibition
contributes to myocardial damage (Hjelte and Nilsson, 2005).

In conclusion, our metabolomics-based biomaker study
results showed that 10 identified metabolites, related to
energy metabolism, phospholipid metabolism, and fatty
acid metabolism, played significantly role in MI patients.
Interestingly, we observed glycerophospholipid metabolism
emerged as the most significantly disturbed pathway, which was
consistent with previous findings (Lu et al., 2017). Consequently,
the identified metabolites, especially phosphatidylserine,
linoleamidoglycerophosphate choline, Lyso-PC (C18:2), Lyso-
PC (C16:0), and Lyso-PC (C18:1), may be better metabolites
to forecast the risk for MI patients. Moreover, comprehensive
metabolomics study may offered a technique in biomarker
discovery and understanding disease mechanisms.

CONCLUSION

Metabolomics provides useful tools for identifying differences in
metabolic pathways between patients and controls and predicting
and discovering biomarkers for the prediction of diseases. In
the present UPLC/ESI–Q-TOF/MS-based metabolomics study,
we obtained more detailed information about the metabolic
changes that occur in patients. In this study, we investigated the
metabolic profiles of plasma samples from 30 MI patients and
30 controls using UPLC/ESI–Q-TOF/MS spectroscopy coupled
with multivariate statistical analyses that included PCA and
PLS-DA. The results revealed that endogenous metabolites
are altered in MI patients. The 10 identified metabolites
that are potentially associated with perturbations of energy
metabolism, phospholipid metabolism, and fatty acid metabolism
will contribute to progress related to MI. These findings hold
promise to advance the treatment, diagnosis, and prevention
of MI.
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