AUTHOR=Russo Isabella , Femminò Saveria , Barale Cristina , Tullio Francesca , Geuna Stefano , Cavalot Franco , Pagliaro Pasquale , Penna Claudia TITLE=Cardioprotective Properties of Human Platelets Are Lost in Uncontrolled Diabetes Mellitus: A Study in Isolated Rat Hearts JOURNAL=Frontiers in Physiology VOLUME=9 YEAR=2018 URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2018.00875 DOI=10.3389/fphys.2018.00875 ISSN=1664-042X ABSTRACT=
Platelets affect myocardial damage from ischemia/reperfusion. Redox-dependent sphingosine-1-phosphate production and release are altered in diabetic platelets. Sphingosine-1-phosphate is a double-edged sword for ischemia/reperfusion injury. Therefore, we aimed to verify whether: (1) human healthy- or diabetic-platelets are cardioprotective, (2) sphingosine-1-phosphate receptors and downstream kinases play a role in platelet-induced cardioprotection, and (3) a correlation between platelet redox status and myocardial ischemia/reperfusion injury exists. Isolated rat hearts were subjected to 30-min ischemia and 1-h reperfusion. Infarct size was studied in hearts pretreated with healthy- or diabetic-platelets. Healthy-platelets were co-infused with sphingosine-1-phosphate receptor blocker, ERK-1/2 inhibitor, PI3K antagonist or PKC inhibitor to ascertain the cardioprotective mechanisms. In platelets we assessed (i) aggregation response to ADP, collagen, and arachidonic-acid, (ii) cyclooxygenase-1 levels, and (iii) AKT and ERK-phosphorylation. Platelet sphingosine-1-phosphate production and platelet levels of reactive oxygen species (ROS) were quantified and correlated to infarct size. Infarct size was reduced by about 22% in healthy-platelets pretreated hearts only. This cardioprotective effect was abrogated by either sphingosine-1-phosphate receptors or ERK/PI3K/PKC pathway blockade. Cyclooxygenase-1 levels and aggregation indices were higher in diabetic-platelets than healthy-platelets. Diabetic-platelets released less sphingosine-1-phosphate than healthy-platelets when mechanical or chemically stimulated