AUTHOR=Mohr Maurice , Schön Tanja , von Tscharner Vinzenz , Nigg Benno M. TITLE=Intermuscular Coherence Between Surface EMG Signals Is Higher for Monopolar Compared to Bipolar Electrode Configurations JOURNAL=Frontiers in Physiology VOLUME=9 YEAR=2018 URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2018.00566 DOI=10.3389/fphys.2018.00566 ISSN=1664-042X ABSTRACT=

Introduction: The vasti muscles have to work in concert to control knee joint motion during movements like walking, running, or squatting. Coherence analysis between surface electromyography (EMG) signals is a common technique to study muscle synchronization during such movements and gain insight into strategies of the central nervous system to optimize neuromuscular performance. However, different assessment methods related to EMG data acquisition, e.g., different electrode configurations or amplifier technologies, have produced inconsistent observations. Therefore, the aim of this study was to elucidate the effect of different EMG acquisition techniques (monopolar vs. bipolar electrode configuration, potential vs. current amplifier) on the magnitude, reliability, and sensitivity of intermuscular coherence between two vasti muscles during stable and unstable squatting exercises.

Methods: Surface EMG signals from vastus lateralis (VL) and medialis (VM) were obtained from eighteen adults while performing series of stable und unstable bipedal squats. The EMG signals were acquired using three different recording techniques: (1) Bipolar with a potential amplifier, (2) monopolar with a potential amplifier, and (3) monopolar electrodes with a current amplifier. VL-VM coherence between the respective raw EMG signals was determined during two trials of stable squatting and one trial of unstable squatting to compare the coherence magnitude, reliability, and sensitivity between EMG recording techniques.

Results: VL-VM coherence was about twice as high for monopolar recordings compared to bipolar recordings for all squatting exercises while coherence was similar between monopolar potential and current recordings. Reliability measures were comparable between recording systems while the sensitivity to an increase in intermuscular coherence during unstable vs. stable squatting was lowest for the monopolar potential system.

Discussion and Conclusion: The choice of electrode configuration can have a significant effect on the magnitude of EMG-EMG coherence, which may explain previous inconsistencies in the literature. A simple simulation of cross-talk could not explain the large differences in intermuscular coherence. It is speculated that inevitable errors in the alignment of the bipolar electrodes with the muscle fiber direction leads to a reduction of information content in the differential EMG signals and subsequently to a lower resolution for the detection of intermuscular coherence.