AUTHOR=Du Peng , Calder Stefan , Angeli Timothy R. , Sathar Shameer , Paskaranandavadivel Niranchan , O'Grady Gregory , Cheng Leo K. TITLE=Progress in Mathematical Modeling of Gastrointestinal Slow Wave Abnormalities JOURNAL=Frontiers in Physiology VOLUME=8 YEAR=2018 URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2017.01136 DOI=10.3389/fphys.2017.01136 ISSN=1664-042X ABSTRACT=

Gastrointestinal (GI) motility is regulated in part by electrophysiological events called slow waves, which are generated by the interstitial cells of Cajal (ICC). Slow waves propagate by a process of “entrainment,” which occurs over a decreasing gradient of intrinsic frequencies in the antegrade direction across much of the GI tract. Abnormal initiation and conduction of slow waves have been demonstrated in, and linked to, a number of GI motility disorders. A range of mathematical models have been developed to study abnormal slow waves and applied to propose novel methods for non-invasive detection and therapy. This review provides a general outline of GI slow wave abnormalities and their recent classification using multi-electrode (high-resolution) mapping methods, with a particular emphasis on the spatial patterns of these abnormal activities. The recently-developed mathematical models are introduced in order of their biophysical scale from cellular to whole-organ levels. The modeling techniques, main findings from the simulations, and potential future directions arising from notable studies are discussed.