AUTHOR=Lux Slawomir A. TITLE=Individual-Based Modeling Approach to Assessment of the Impacts of Landscape Complexity and Climate on Dispersion, Detectability and Fate of Incipient Medfly Populations JOURNAL=Frontiers in Physiology VOLUME=8 YEAR=2018 URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2017.01121 DOI=10.3389/fphys.2017.01121 ISSN=1664-042X ABSTRACT=
The objective of the presented study was to demonstrate the potential of a bottom-up “ethological” approach and individual-based model of Markov-like stochastic processes, employed to gain insights into the factors driving behavior and fate of the invasive propagule, which determine the initial stages of pest invasion and “cryptic” existence of the localized, ultra-low density incipient pest populations. The applied model, PESTonFARM, is driven by the parameters derived directly from the behavior and biology of the target insect species, and spatiotemporal traits of the local terrain and climate. The model projections are actively generated by behavior of the primary causative actors of the invasion processes—individual “virtual” insects—members of the initial propagules or incipient populations. Algorithms of the model were adjusted to reflect behavior and ecology of the Mediterranean fruit fly,