AUTHOR=Moo Eng Kuan , Leonard Timothy R. , Herzog Walter TITLE=In Vivo Sarcomere Lengths Become More Non-uniform upon Activation in Intact Whole Muscle JOURNAL=Frontiers in Physiology VOLUME=8 YEAR=2017 URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2017.01015 DOI=10.3389/fphys.2017.01015 ISSN=1664-042X ABSTRACT=
The sarcomere force-length relationship has been extensively used to predict muscle force potential. The common practice is to measure the mean sarcomere length (SL) in a relaxed muscle at a single location and at a given length, and this mean SL is assumed to represent the SLs at other locations across the muscle. However, in a previous study, we found that SLs are highly non-uniform across an intact passive muscle. Moreover, SL non-uniformity increases during activation in single myofibril experiments. Myofibrils lack some structural proteins that comprise an intact muscle, and therefore, the increased SL dispersion upon activation seen in myofibrils may not occur in intact whole muscle. The objectives of the current study were (i) to measure the distribution of SLs in an activated intact muscle; and (ii) to assess the feasibility of using the mean SL measured at a specific location of the muscle to predict muscle force. Using state-of-the-art multi-photon microscopy and a miniature tendon force transducer,