AUTHOR=Teixeira Alrieta H. , Freire Jordânia M. de Oliveira , de Sousa Luzia H. T. , Parente Antônia T. , de Sousa Nayara A. , Arriaga Angela M. C. , Lopes da Silva Francisca R. , Melo Iracema M. , Castro da Silva Igor I. , Pereira Karuza M. A. , Goes Paula , Costa José J. do Nascimento , Cristino-Filho Gerardo , Pinto Vicente de Paulo T. , Chaves Hellíada V. , Bezerra Mirna M.
TITLE=Stemodia maritima L. Extract Decreases Inflammation, Oxidative Stress, and Alveolar Bone Loss in an Experimental Periodontitis Rat Model
JOURNAL=Frontiers in Physiology
VOLUME=8
YEAR=2017
URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2017.00988
DOI=10.3389/fphys.2017.00988
ISSN=1664-042X
ABSTRACT=
Periodontitis is very prevalent worldwide and is one of the major causes of tooth loss in adults. About 80% of the worldwide population use medicinal plants for their health care. Stemodia maritima L. (S. maritima) antioxidant and antimicrobial effects in vitro as well as anti-inflammatory properties. Herein, the potential therapeutic effect of S. maritima was assessed in rats subjected to experimental periodontitis (EP). EP was induced in female Wistar rats by nylon thread ligature around 2nd upper left molars for 11 days. Animals received (per os) S. maritima (0.2; 1 or 5 mg/kg) or vehicle (saline + DMSO) 1 h before ligature and then once daily for 11 days. The naive group had no manipulation. After this time-point, the animals were terminally anesthetized, and the maxillae were removed for morphometric and histological analyzes (HE). Gingival tissues were dissected to cytokine levels detection (TNF-α, IL1-β, CINC-1, and IL-10), enzymes superoxide dismutase (SOD), and catalase (CAT) analysis, as well as gene expression (TNF-α, IL-1β, RANK, and iNOS) by qRT-PCR. Systemic parameters (weight variation, plasma levels of hepatic enzymes aspartate aminotransferase (AST) and alanine aminotransferase (ALT), creatinine, total alkaline phosphatase (TALP), and bone alkaline phosphatase (BALP) were performed. Histological analysis of the stomach, liver, kidney, and heart was also performed. S. maritima (5 mg/kg) decreased alveolar bone loss, TNF-α and CINC-1 gingival levels, oxidative stress, and transcription of TNF-α, IL1-β, RANK, and iNOS genes. It elevated both BALP activity and IL-10 gingival levels. The animals showed no any signs of toxicity. In conclusion, S. maritima reduced pro-inflammatory cytokine production, oxidative stress, and alveolar bone loss in a pre-clinical trial of periodontitis. S. maritima is a potential tool for controlling the development of periodontitis.