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Breast cancer is a heterogeneous and complex disease, a clear manifestation of

this is its classification into different molecular subtypes. On the other hand, gene

transcriptional networks may exhibit different modular structures that can be related

to known biological processes. Thus, modular structures in transcriptional networks

may be seen as manifestations of regulatory structures that tightly controls biological

processes. In this work, we identify modular structures on gene transcriptional networks

previously inferred from microarray data of molecular subtypes of breast cancer: luminal

A, luminal B, basal, and HER2-enriched. We analyzed the modules (communities) found

in each network to identify particular biological functions (described in the Gene Ontology

database) associated to them. We further explored these modules and their associated

functions to identify common and unique features that could allow a better level of

description of breast cancer, particularly in the basal-like subtype, the most aggressive

and poor prognosis manifestation. Our findings related to the immune system and a

decrease in cell death-related processes in basal subtype could help to understand it

and design strategies for its treatment.

Keywords: network modularity, gene regulatory networks (GRN), breast cancer subtypes, pathway enrichment

analysis, Functional modules, community structure

INTRODUCTION

Breast Cancer: A Heterogeneous Disease
Breast cancer is the malignant neoplasy with the highest incidence and mortality among women
worldwide (Ferlay et al., 2014). One of the main challenges for its treatment is its heterogeneous
nature, with manifestations spanning over a multitude of clinical, physiological and survival
variants, resulting in differences in available therapeutic options (Polyak, 2011).

The heterogeneity of breast cancer can be traced down to the genetic level. Molecular subtyping
provides a helpful tool to classify tumors by identifying common patterns in their genetic
expression. Several classification algorithms that allow the classification of breast samples into
molecular subtypes using different technological platforms have been developed (Perou et al., 2000;
Guedj et al., 2012). A common classification scheme is given in terms of four main molecular
subtypes which are luminal A, luminal B, HER2-enriched and basal-like.

Luminal A
Around a half of the total cases of breast cancer correspond to luminal A tumors (Fan et al., 2006).
These tumors are often positive to estrogen receptor (ER) and negative to ERBB2 receptor, they also

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2017.00915
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2017.00915&domain=pdf&date_stamp=2017-11-17
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ehernandez@inmegen.gob.mx
https://doi.org/10.3389/fphys.2017.00915
https://www.frontiersin.org/articles/10.3389/fphys.2017.00915/full
http://loop.frontiersin.org/people/323194/overview
http://loop.frontiersin.org/people/363855/overview
http://loop.frontiersin.org/people/156740/overview
http://loop.frontiersin.org/people/49930/overview


Alcalá-Corona et al. Modularity in Breast Cancer Subtypes

present overexpression of the ER-regulated genes. This subtype
usually has the best prognosis (Hu et al., 2006) and the lower
recurrence rates (Arvold et al., 2011; Metzger-Filho et al., 2013).

Luminal B
Despite the fact that this subtype has a similar expression pattern
to that of luminal A, it is characterized by a higher variability in
the ER expression and a higher expression of proliferative genes,
also mutations associated with TP53 and genetic instability have
been found in it. Around 20% of the total of breast cancer tumors
corresponds with this phenotype (Sørlie et al., 2001) which tends
to have poorer prognosis than luminal A tumors (Haque et al.,
2012).

HER2-Enriched
This intrinsic subtype is characterized by the overexpression of
the ERBB2 receptor, which is associated with chromosomal-level
amplification (Burstein, 2005). These tumors are negative for
estrogen and progesterone receptors and have a poorer prognosis
than those of luminal subtypes (Yang et al., 2011).

Basal
20% of breast tumors are basal-like and the majority of
triple negative belong to this subtype. Unlike the subtypes
described above, basal-like tumors have underexpression of the
estrogen, progesterone and ERBB2 receptors. These tumors are
also associated with higher genetic instability, they are more
aggressive and present the poorest prognosis. The majority
of BRCA-1 mutations-related tumors belong to this subtype
(Voduc et al., 2010; Haque et al., 2012; Bayraktar and Glück,
2013; Metzger-Filho et al., 2013; Singha et al., 2016) and
have a gene expression profile similar to the basal mammary
epithelium.

Basal subtype cannot be treated by conventional hormone
therapy or monoclonal antibodies (Perou et al., 2000). Usually,
the treatment for patients with this subtype includes surgery,
radiation therapy and chemotherapy. This is one important
reason to study the genome-wide level connectivity patterns of
genes associated with the appearance of basal subtype tumors.

Taking into account that basal tumors do not present
known targets to targeted therapy, searching for functional
modules that may be targeted results appealing. By using
molecular signatures that functionally map to specific processes,
development of directed therapies that provide alternatives
to the canonical ones may become reachable. In this sense,
the use of novel technologies may grant insights to reach
a better understanding of the differences and similarities
between distinct manifestations of breast cancer, and perhaps
design new strategies against it (Espinal-Enríquez et al.,
2017a).

Phenotypic variations among breast cancer subtypes arise due
to differences in their underlying regulatory programs (de Anda-
Jáuregui et al., 2016). Said differences in the global structure
of subtype-specific gene regulatory networks may indeed reflect
differences in lower scales of regulation, in particular in the
presence of underlying functional modules, as we will discuss
further in this work.

Modularity in Transcriptional Networks
The amount of genomic data available nowadays is huge and
the biological information hidden in it is valuable. Using novel
theoretical frameworks to analyze and understand the complex
mechanisms underlying the relationships between molecules
becomes a must. This is the case of the gene regulatory network
approach, which uses gene expression data to model and describe
the relationship between thousands of genes under particular
phenotypes. In this theoretical representation, nodes (also called
vertices) represent genes, while the links are an instance of
interaction or relationship between those genes. Thesemodels are
usually given as complex networks (Albert and Barabási, 2002;
Dorogovtsev and Mendes, 2002; Newman, 2003, 2010; Boccaletti
et al., 2006; Caldarelli and Vespignani, 2007).

Global organization patterns of large complex networks
involve the presence of structural sub-units (subnetworks) that
have been called communities or modules, broadly defined as
subsets of tightly interconnected nodes so that the density of
within-connections is higher than that of between-connections
(Girvan and Newman, 2002; Porter et al., 2009; Fortunato,
2010). Module detection in networks, is still an open problem in
computer science (Mucha et al., 2010) and there is an important
variety of methods and algorithms to detect such communities
(Gulbahce and Lehmann, 2008; Ahn et al., 2010; Fortunato,
2010; Xie et al., 2013; Fortunato and Hric, 2016); thus, modular
structure is an issue of particular relevance, from economic and
social systems (Espinal-Enríquez et al., 2015b; García-Pérez et al.,
2016), to biological systems (Alcalá-Corona et al., 2016).

In the case of gene transcriptional regulatory networks (Tang
et al., 2012), a module or community may correspond to a
co-regulated set of genes (Wilkinson and Huberman, 2004;
Zhu et al., 2008; Marbach et al., 2012; Cantini et al., 2015).
In this sense, modules topology may capture some aspects of
the phenomenology behind biological processes. Previous works
have identified module detection as a valuable alternative for
the identification of groups of genes that can associate biological
features to phenotypes (Cantini et al., 2015; Alcalá-Corona et al.,
2016). We followed along the lines of Alcalá-Corona et al. (2016)
looking to identify biologically functional modules. We were able
to find subtype-specific functional processes in modules detected
by using a random-walk based community detection algorithm
(Rosvall and Bergstrom, 2008).

Recently, it has been shown how the differences in
transcriptional programs between breast cancer molecular
subtypes are reflected in their specific transcriptional networks
(de Anda-Jáuregui et al., 2016). A remaining question is
whether these subtype-specific networks contain modules—
i.e., subnetworks—that may be associated to known biological
features. Therefore, in this work we explore the modular
structure of previously inferred (de Anda-Jáuregui et al., 2016)
breast cancer molecular subtype transcriptional networks for:
luminal A, luminal B, basal, and HER2-enriched tumors.

For further analyses, we decided to focus in the basal
subtype, since it is the one with a poorer prognosis and less
options for treatment. For this subtype we identified specific
communities statistically enriched for processes related to the
immune system. Among these, the community containing the
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PSMB9 gene—composed by only 21 genes—is also the only
one enriched for apoptosis-related events. Furthermore, the
expression signature of molecules associated with the proteasome
complex indicates that cell death-related events are strongly
decreased. We suggest that communities found with this
approach must be further investigated experimentally looking
for alternative therapeutic options in the spirit of personalized
medicine (Espinal-Enríquez et al., 2017b; Hernández-Lemus
et al., 2017).

MATERIALS AND METHODS

A complete workflow for this study is depicted in Figure 1.
This section is divided as follows: data acquisition and
classification, network inference, community detection, Gene
Ontology enrichment analysis and functional analysis.

Breast Cancer Microarray Data and
Classification
For this analysis, we used a set of 493 microarray expression
profiles for breast cancer samples processed on the
Affymetrix HGU133A platform. This experimental dataset
was collected from the Gene Expression Omnibus (GEO) from
accession numbers GSE4922 (Ivshina et al., 2006), GSE1456
(Pawitan et al., 2005), GSE7390 (Desmedt et al., 2007), GSE1561
(Farmer et al., 2005), GSE2603 (Minn et al., 2005), GSE2990
(Sotiriou et al., 2006), GSE9574 (Tripathi et al., 2008), GSE15852
(Ni et al., 2010), GSE6883 (Liu et al., 2007), and GSE3494 (Miller
et al., 2005). Data preprocessing was performed following a
pipeline for Robust Multi-array Average (Irizarry et al., 2003),
as in Tovar et al. (2015). Breast cancer samples were classified
using the well-validated PAM50 algorithm (Parker et al., 2009).
PAM50 classification of this dataset was achieved previously in
de Anda-Jáuregui et al. (2015, 2016).

Network Inference
Gene regulatory network inference from experimental data
has been extensively used to unveil interactions between genes
from their experimentally-measured expression levels. ARACNE
(Margolin et al., 2006) is one of the most employed algorithms
to calculate correlations between pairs of genes. In a nutshell,
the algorithm calculates the Mutual Information (MI)—a
non-parametric measure that captures non-linear dependencies
between variables (Hernández-Lemus and Siqueiros-García,
2013)—in a relatively fast implementation. The method
associates a MI value to each significance value (p-value) based
on permutation analysis, as a function of the sample size.

In our case, we described previously the network architecture
of the 4 breast cancer molecular subtypes (de Anda-Jáuregui
et al., 2016). In that paper, (1) it was calculated the MI for every
pair of (non-self) probe sets in the microarray platform; (2) a
MI cutoff proportional to p-value, corrected for sample size was
established; (3) Probe sets were mapped to HUGO gene symbols,
discarding those without a corresponding gene symbol.

We also performed other three methods for network
inference, based on linear correlations, namely, Pearson,
Spearman and Kendall correlation measures. Additionally, we

inferred mutual information-based networks by using CLR and
MRNETB algorithms (Supplementary Material 1). All of these
were executed with the R package minet (Meyer et al., 2008).

Module Detection
There are many methods and techniques for community
detection (Girvan and Newman, 2002; Clauset et al., 2004;
Palla et al., 2005; Newman, 2006; Rosvall and Bergstrom, 2007;
Fortunato, 2010; Fortunato and Hric, 2016), we decided to use
Infomap (Rosvall and Bergstrom, 2008) since it has shown to be
one of the best suited algorithms for detecting modules both in
performance and accuracy (Lancichinetti et al., 2009) as it was
assessed in terms of the LFR benchmark (Lancichinetti et al.,
2008).

In the same way in which countries, regions or cities
correspond to structures with more information on a map than,
say a single street; Infomap identifies the relevant structures in
the network as if making a map of it from the flow of information
between these structures. This is achieved by compressing the
information described by a random walk inside the network,
being that a random walker will spend more time in a structure
with greater internal information flow in the network (a greater
density of internal edges) before jumping to another, as happens
when navigating between cities or countries.

The description of this walk is made using Huffman coding
(Huffman et al., 1952), thus it is possible to recover the
most important structures of the network by minimizing this
description using information theory; just like cities that have a
shorter description on a map contain much more information
than a particular address whose length is longer. Hence, we
applied Infomap to each of the connected components of each
network, previously inferred in de Anda-Jáuregui et al. (2016), for
the four breast cancer molecular subtypes—since the detection
of modules only makes sense in connected networks 1—with the
aim to glimpse the modular structure of them.

Additionally, to corroborate that the network topology as well
as the modular structure found with our approach are due to the
intrinsic nature of tumor biology, we constructed null models
for each network. In this null model, all nodes and edges for
each molecular subtype network were maintained, but randomly
rewired, according to the Erdös-Rényi model (Erdös and Rényi,
1959). Additionally, we constructed another null model following
the method previously published in Faith et al. (2007) based on
Newman et al. (2001) and Newman (2003), to preserve the same
degree distribution than our inferred networks (Supplementary
Material 2).

Gene Ontology Enrichment
The basic hypothesis in an overrepresentation analysis
(ORA), is that relevant pathways can be detected if the
proportion of differentially expressed genes, within a
given pathway, exceeds the proportion of genes that
could be randomly expected (García-Campos et al., 2015).
We performed ORA for each module, by resorting to
FDR-corrected hypergeometric tests with HTSanalyzeR

1A network divided into components has been indeed already partitioned.
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FIGURE 1 | Workflow followed in this study. The pipeline starts with the collection of 493 breast cancer samples. PAM50 classification was performed as in

(de Anda-Jáuregui et al., 2015). In the image, the colors correspond to each molecular subtype. For the four subtypes, mutual information-based networks

(de Anda-Jáuregui et al., 2016) were inferred with ARACNE (Margolin et al., 2006). Once networks were built, we detected communities for each subtype network by

using Infomap (Rosvall and Bergstrom, 2008). Modules are represented by different colored nodes. Detected modules were later enriched using HTSanalyzeR (Wang

et al., 2011). In the picture, enriched communities are full colored circles, meanwhile non-enriched ones are non colored. Finally, the enriched modules were analyzed

at a more profound level, by observing the most general processes that are involved in these modules. In the picture, enriched communities found in basal subtype

are classified according to upper general processes. Each process is represented with a different color and the labels correspond to the GO-ID.
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TABLE 1 | Network parameters for the modular structure of breast cancer molecular subtypes.

Subtype Number of components with Number of enriched Number of nodes in the Number links in the

enriched modules modules largest component largest component

Luminal A 6 8 930 8,535

Luminal B 3 5 555 8,476

Basal 4 7 523 7,181

HER2-enriched 1 3 1,649 9,108

Number of components with enriched modules, enriched modules, number of nodes in the largest connected component, as well as links in the largest connected component are

shown.

TABLE 2 | Enriched modules found in transcriptional networks for breast cancer

molecular subtypes.

Community Number of genes Number of enriched

processes

LUZP4 805 8

NFIC 125 20

COL5A2 53 21

Luminal A CD2 33 8

TYROBP 36 3

PLIN1 42 1

KRT14 12 4

ZFP36 12 12

LUZP4 464 15

CD2 42 4

Luminal B COL5A2 24 6

IFIT1 17 7

IGKC 10 6

CNR2 846 6

HER2+ LCK 370 83

COL5A2 196 29

SLC4A4 390 7

CD2 72 15

CD53 65 3

Basal RSAD2 23 9

PSMB9 21 38

COL5A2 15 16

IGLC1 12 6

Modules are labeled according to their top-PageRank genes. Number of genes as well as

number of enriched processes per community are shown. Notice that the four subtypes

contain a module in which COL5A2 gene is the top-PageRank node (bold), although those

modules are different.

(Wang et al., 2011), choosing a significance below Q-
value = 0.001. Categories larger than 1000 genes were
discarded.

Functional Analysis
Modules were labeled according to the highest PageRank gene,
i.e., each module is named by its top-PageRank centrality gene.
For each subtype, we observed the number of modules and

their respective size. We also observed whether or not modules
are conserved across molecular subtypes to assess the existence
of common regulatory process in breast cancer transcriptional
programs. The hypothesis is that different network architectures
determine specific community structures and hence, different
processes would control the regulatory program for each
molecular subtype.

We looked up for general GO categories (i.e., main branches
in the ontology tree) representative of the basal subtype
regulatory network. We focused on this subtype since it
does not present therapeutic alternatives but cytotoxic or
surgery. By identifying the processes enriched for their
communities, we analyzed how specific those processes are. On
the other hand, we also observed whether a process/processes
appear in several modules or subtypes, providing insights
regarding concomitant processes that occur in cancer,
despite the network architecture (as given by the molecular
subtype).

Once the functional analysis were performed we studied
those genes with highest centrality measures: Betweenness
centrality, clustering coefficient, shortest path length, degree and
PageRank, to evaluate with more accuracy the role of those
genes in the module and more importantly, in the biological
process.

Finally, taking into account the differentially expressed genes,
we investigated whether these expression patterns could activate
or inhibit the statistically significant enriched processes. By
means of z-score calculations (Krämer et al., 2014) we assessed
the degree of dysregulation of said processes.

RESULTS AND DISCUSSION

Modular Structure Is Specific for Each
Breast Cancer Subtype Network
By means of mutual information-based network inference
for the 4 breast cancer subtypes, we previously described
(de Anda-Jáuregui et al., 2016) how differences in the
transcriptional program between breast cancer molecular
subtypes, reflected in different transcriptional network
architectures.Table 1 briefly summarizes some of these structural
differences.

From this table, it is possible to observe differences between
the architectures for each network subtype. Considering these
different topologies, we observe that each transcriptional network
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FIGURE 2 | Modules in networks for each breast cancer molecular subtype. (A) Luminal A; (B) Luminal B; (C) HER2+ and (D) Basal subtype. The nodes belonging to

a community are colored the same. The same color for different subtypes is not related. For visualization purposes, only islands with more than 8 genes are depicted.

presents a characteristic modularity pattern, i.e., the gene
composition of communities and the connectivity rules for each
subtype are unique.

Table 1 also shows that the number of modules for each
subtype is different. In Figure 2, we show a visualization of
each transcriptional network, with nodes colored by module.
A remaining question is whether or not those modules have a
specific phenotype-dependent functional role in the regulatory
program of each breast cancer molecular subtype.

With the module detection method used in this work, all
network’s genes are classified as an element of a module. For
this reason, we have modules with associated Gene Ontology
processes, but also modules which do not have statistically
significant enriched categories.

Of course, different sizes of networks will have different
topological parameters. In the case of mutual-information
inference of networks, it is necessary to establish a threshold

for valid interactions. To have large networks, a low cutoff
value is needed; on the contrary, for small networks, it is
mandatory to have a strict threshold of mutual information. In
de Anda-Jáuregui et al. (2016) it was demonstrated that the global
properties of the four networks for the breast cancer molecular
subtypes are conserved throughout a large range of network
sizes (3 orders of magnitude). For this reason, we performed the
module detection algorithm as well as the functional enrichment
with the same networks than those published in de Anda-
Jáuregui et al. (2016) (top-10,000 links).

GO Categories Are Associated to Modules
for Each Molecular Subtype
In Table 2, it can be observed how each molecular subtype
has a unique set of enriched modules, regarding module sizes
and number of modules, as well as the number of enriched
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FIGURE 3 | COL5A2 communities: Enriched processes are shared between subtypes despite gene compositions being different. (A) Venn diagram showing the

number of genes of COL5A2comm for each molecular subtype. Notice that only 3 genes (COL5A2, THBS2, and LUM) are shared. (B) Enriched processes of

COL5A2comm for each molecular subtype.

processes for each community. It is worth mentioning that the
number of enriched processes is not directly related to the
size of the modules (From now on, we will name the modules
according to its top-PageRank node with the nomenclature
Name_of_the_Genecomm).

For instance, LUZP4comm for the luminal A subtype is
composed by 805 genes, however, only 8 processes are enriched
for this module. On the other hand, ZFP36comm contains only 12
genes, but 12 processes are enriched on it. Processes enriched for
ZFP36comm are related to the response to stimulus and signaling.

Interestingly, each module in the luminal A network has a
unique set of enriched processes. This could be related to the
network structure (Figure 2A), since almost all modules are
separated from each other. This is not the case for the rest
of molecular subtypes. The full list of enriched processes per
module for all molecular subtype networks can be found in
Supplementary Material 3.

COL5A2comm Is Present in Each Molecular Subtype
We mentioned previously that the community structure for
each molecular subtype network is different. And this could be
related to the aforementioned specific behavior observed in each
phenotype. Notwithstanding, breast cancer have a common core
of features that can be mapped to the genetic regulatory program
(Espinal-Enríquez et al., 2017a), commonly named as hallmarks
of cancer (Hanahan and Weinberg, 2011).

In the particular case of these inferred networks, we want
to stress the case of the “COL5A2 communities” (bold in
Table 2). In each subtype, we identified a module in which the
most PageRank gene was COL5A2, the gene for the collagenase
5a2 protein, an integral component of the extracellular matrix
(ECM). However, the gene composition for COL5A2comm is
different among molecular subtypes. It can be observed in
Figure 3A, where a Venn diagram of the gene composition of
COL5A2comm for each molecular subtype is shown.

A series of features of this diagram can be discussed:
each module contains a different number of genes, but
more important, there are only three genes that are shared

between all subtype networks: COL5A2, THBS2, and LUM.
THBS2 codifies to the thrombospondin-2 a well-known cell-cell
communicator and inhibitor of tumor growth and angiogenesis,
which has been associated with both gastric and breast
cancer (Koch et al., 2011; Sun et al., 2014). LUM gene,
codifies to lumican stromal protein, which in turn regulates
collagen fibril organization; genomic variations of this gene
have been associated with breast cancer (Kelemen et al.,
2008).

Nevertheless, in each subtype, the COL5A2comm is associated
with similar processes, as shown in of Figure 3B. There
are five enriched processes common to COL5A2comm across
subtypes: collagen fibril organization, extracellular matrix
(ECM), extracellular matrix organization, extracellular matrix
structural constituent, and extracellular region. This may imply
that ECM-related processes are a common feature of breast
cancer, via COL5A2 gene regulatory program, and this is
independent of the molecular subtype (a table containing
the gene lists of COL5A2 communities can be found in
Supplementary Material 4).

By looking at the COL5A2-associated modular structure in
the different subtypes, we were able to discern the existence
of a specific set of processes common to all breast cancer
subtypes: ECM dysregulation. The appearance of common
enriched processes is independent of the genes present in each
subtype network. This is a clear instance of the robustness of
crucial processes acquired during breast cancer development; the
relevance of ECM dysregulation may exert on cancer malignancy
and progression is well known (Bonnans et al., 2014; Espinal-
Enríquez et al., 2015a).

Also, given the strong relationship of ECM with several
other processes during cancer development, such as angiogenesis
(found in HER2+ COL5A2comm), immunity or cell migration
(reviewed in Bonnans et al., 2014), this finding acquires
more relevance. COL5A2 modules have ECM-related processes
enriched by different genes. Those genes also contribute to
the enrichment of other processes which may shape specific
landscapes across molecular subtypes.
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FIGURE 4 | Genes in COL5A2 modules are mostly overexpressed thruoghout molecular subtypes This figure shows the expression signature of those genes

belonging to COL5A2 modules in (A) Luminal A (B), Luminal B (C), HER2+, and (D) Basal breast cancer molecular subtypes. Notice that the majority of genes are

overexpressed. However, in (C) there is a subset of genes which is underexpressed and are grouped in terms of the network topology.

For instance, HER2+ subtype COL5A2comm has 10 unique
significantly-enriched processes, including TGF-β signaling,
focal adhesion, or angiogenesis. Enrichment occurs via genes
such as TGF-β , metalloproteinases, collagenases, VCAN or
fibronectin which, appear in the COL5A2comm of the HER2+
subtype network.

TGF-β in particular, is quite relevant to favor and
promote a metastatic environment (Ghajar et al., 2013).

TGF-β is also directly active in the SMAD translocation
into nucleus, promoting the expression of several ECM-
related molecules (Verrecchia et al., 2001). Despite the
differences between genes for each COL5A2comm per
subtype, ECM-related processes appear consistently, and
the non-common processes for each subtype may reflect
particular environments involved in the tumor biology for each
subtype.
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FIGURE 5 | Modular structure of Basal subtype islands 2 and 6. (A) Colors define each module. (B) Information flow between communities. Link width is proportional

to the number of links shared between modules. Full-color communities represent those that are enriched to a GO category.

COL5A2 Modules Are Consistently
Overexpressed across All Subtypes
Acknowledging that the expression pattern is crucial to infer the
effect of a gene regulatory network, we explored the expression
profile of the COL5A2 modules in each subtype. Interestingly,
for all subtypes, despite those modules contain different genes,
all subtypes have an overexpression pattern, this is clearly
observed in Figure 4. There, genes are colored according to
their expression levels (red for overexpressed and blue for
underexpressed).

As it can be observed, the COL5A2 module in each subtype
reflects that those enriched processes are exacerbated, which
is consistent with the fact that ECM-related processes are up-
regulated, corroborating the previous observations.

Basal Subtype Modules Analysis
We have now explored some of the differences in the regulatory
programs behind common breast cancer subtypes, as seen in their
underlying transcriptional networks. Based on the association
between the modular structures in these networks and biological
processes, we have shown that each molecular subtype has a
specific functional landscape, which may be associated with the
features observed in the clinical setting.

With this in mind, we will now focus on the study of the
basal molecular subtype. As described in the introduction, this
is the most malignant subtype of breast cancer, with the poorest
prognosis, and the most restrictive therapeutic alternatives. In
Figure 5A we can observe the module structure of two islands
of basal subtype. Colors represent each module. We show the
second largest component and the IGLC1comm, that is not
connected to the larger island, but it shares enriched processes
with that island.

Figure 5B shows the enriched modules (color-filled nodes).
Regarding the enriched modules found in Figure 5, we observed

which GO categories are involved for each module. The results
are depicted in Figure 6. There, modules are colored according
to the color code of Figure 5, meanwhile labels of enriched
processes are colored depending on the general type of the
process.

From a visual inspection of Figure 6, it is clear that the
majority of enriched categories of those modules are related to
immune system processes (red labels). However, some modules
have other enriched processes, such is the case of PSMB9comm,
which contains only 21 genes, but 38 GO categories are enriched
by it. This is the only module in which apoptosis-related enriched
processes (yellow labels) can be observed. Regarding enriched
categories of PSMB9comm we also observe:

• 8 out of the 38 PSMB-enriched processes are related to
apoptosis. There is no other module which contains enriched
apoptosis-related processes: yellow names in Figure 6 are only
connected to PSMB9comm.

• PSMB9 also has another 29 unique processes related to it.
• 5 signaling processes are also unique to PSMB9comm.
• Apoptosis-related categories are involved in the proteasome

complex and its regulation. The whole list of processes is
shown in Supplementary Material 5.

It is also worth mentioning that 40 out of 74 enriched GO
categories belong to immune system-related processes; 32 of
them are unique categories for independent modules. This
may imply that despite modules being sets of nodes more
connected between them over the rest of the component,
these communities indeed communicate with each other, and
present a complete regulatory program in which specific
modules act individually as a part of a whole, at least,
regarding immunity. The 11 shared processes (8 of them
related to immunity) at the center of the figure reinforce this
suggestion.
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FIGURE 6 | GO processes associated with modules in the transcriptional network of basal breast cancer molecular subtype. In this figure, modules are colored

according to the color code of Figure 5. These communities are connected to GO ID categories which are colored according to a general process (upper left). Names

of those categories are provided in Supplementary Material 5.

PSMB9comm and Decreasing of Apoptosis
The network modular structure found here, reflects not only how
groups of genes participate in an orchestrated functional process,
but also how the expression patterns of those genes are according
to the specific direction in which said process functions, namely,
increasing or decreasing. As an example of this last, we mention
the case of PSMB9comm in basal subtype.

As we previously mentioned, PSMB9comm is composed by
21 genes, but that module is enriched in 38 processes, mostly

related to apoptosis and immunity (Supplementary Material 7).
Furthermore, network centralities in this module reveal the
relevance of some genes in terms of flux of information and a
coordinated regulation of sub-processes. For example, PSMB9,
TAP1 and UBE2L6 are the genes with highest Betweenness
centrality, clustering coefficient, degree and PageRank centralities.
Because of these properties, removal of them divide the
subnetwork in two modules: on the one hand, the strongly-
connected module of HLA genes, mainly related to the Major
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FIGURE 7 | Cell death and viral infection processes are oppositely regulated by the same molecular signature of basal breast cancer subtype. In this figure, genes are

depicted according to their expression levels: red for overexpressed and blue for underexpressed genes. Lines between molecules and processes indicate the

predicted function of the molecule according to its expression value, blue line leads an inhibition of the process; in turn, orange lines account for predicted activation.

Color of cell death and viral infection processes represent the same predicted effect than lines.

Histo-Compatibility Complex (MHC), and on the other hand,
the proteasome complex, mainly related to apoptosis and
ubiquitination. Based on several centrality measurements, we can
argue that these elements are regulating in a coordinated fashion
both processes, immunity and cell death (see Supplementary
Material 6).

Also important is the fact that all genes in the module are
overexpressed (Supplementary Material 7). Having in mind that
cell death and immunity act coordinately in basal subtype, we
investigated the predicted activation or inhibition that those
processes present, i.e., based on the expression profile of the
geneset, which is the direction of change for a determined
function. In this case, Cell death and immunity. For this purpose,
we used the Diseases and Functions Analysis provided
by QIAGEN’s Ingenuity R© Pathway Analysis (IPA R© , QIAGEN
Redwood City, www.qiagen.com/ingenuity), which assesses (by
means of a z-score) the match between observed and predicted
up/down regulation patterns, as described in Krämer et al. (2014)
and Espinal-Enríquez et al. (2015a).

Interestingly, the most inhibited function predicted by the
analysis is Cell death (z-scores of -8), meanwhile the most
activated function, predicted by the analysis (z-scores of 7) was
viral infection. This means that the expression profile of
molecules related to both processes has an expression signature
observed when cell death-related events are decreased and

concomitantly, genes responding to a viral infection activate
a defense scheme. Figure 7 shows a subset of molecules that
participate in both processes and have a predicted effect on them.
As it can be observed, the same expression signature, inhibits cell
death and at the same time, it seems to activate viral infection
genes.

CONCLUDING REMARKS

Here, by adopting a Systems Biology approach, we inferred
transcriptional networks for breast cancer molecular subtypes,
we find the modular structure for each network, and performed
enrichment analyses for all the detectedmodules. All information
regarding networks as well as modularity performed in this work
can be found in Supplementary Material 8: the .cys file of all
networks. As a summary, we present the most relevant results
obtained with our approach:

• Modularity of each breast cancer molecular subtype network
is different.

• There is a unique pattern of enriched processes associated with
modules for each subtype network.

• Despite these particular community structures, COL5A2comm

is present in all subtypes, furthermore, even if those
modules do not have the same genes, they share processes
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related to extracellular matrix and collagen fibril formation,
suggesting robustness in processes for breast cancer in general,
independent of the participating genes.

• For basal subtype modular structure, there are several unique
processes which are related to apoptosis and immune system.

Inference of transcriptional networks using high throughput
experiments is still an open problem. We are aware that
many algorithms exist, which may generate different
results since they are based on different assumptions
(for further review of this topic, refer to Hernández-
Lemus and Siqueiros-García, 2013). In our previous work
(de Anda-Jáuregui et al., 2016) we used ARACNE, which
resulted suitable to generate comparable network models
for breast cancer molecular subtypes. The discussion in
the present work was built upon these previous results. In
Supplementary Material 1, we provide networks inferred by
using other algorithms for basal subtype, for comparison
purposes.

As it can be observed from the analysis, the structure of the
gene regulatory networks for breast cancer subtypes is strongly
associated to function. This association may not be directly
observed, unless analyzed by an approach such as the provided
here. Regarding the basal subtype the tight co-regulation of genes
participating together in apoptosis-related processes may open a
possibility to explore therapeutics targeting those molecules or
downstream elements of them.

Immunity in basal subtype has not been profoundly explored.
A methodology such as the one presented here, can be combined
with different analyses in order to integrate multiple sources of
information into a solid framework. An example of this can
be found in (Li et al., 2015), where Genome-Wide Association
Studies (GWAS) were combined with CD4+ master regulator
genes, to identify possible mechanisms of appearance of aberrant
phenotypes.

We were able to reduce the degrees-of-freedom of our data.
From hundreds of experiments of microarrays (493), from
inferred transcriptional regulatory networks (de Anda-Jáuregui
et al., 2016), which identified the top 10,000 interactions between

genes (from 220,000,000 of possible interactions). Using that
information, we identified modular structures, related to the
manner in which genes are interconnected. That architecture is
not only relevant for topological analysis, but also for biological
functionality. Further work includes possible applications into
different datasets, RNA-seq technology, other cancers and
possible experimental procedures to investigate the implication
of apoptosis-related processes and immunity in the breast cancer
basal subtype.
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