AUTHOR=Ujka Kristian , Bastiani Luca , D'Angelo Gennaro , Catuzzo Bruna , Tonacci Alessandro , Mrakic-Sposta Simona , Vezzoli Alessandra , Giardini Guido , Pratali Lorenza
TITLE=Enhanced Right-Chamber Remodeling in Endurance Ultra-Trail Athletes Compared to Marathon Runners Detected by Standard and Speckle-Tracking Echocardiography
JOURNAL=Frontiers in Physiology
VOLUME=8
YEAR=2017
URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2017.00527
DOI=10.3389/fphys.2017.00527
ISSN=1664-042X
ABSTRACT=
Background: Strenuous and endurance exercise training have been associated with morphological and functional heart remodeling. Two-dimensional speckle-tracking echocardiography (STE) is a novel technique that allows an accurate quantification of global myocardium deformation. Our aim was to evaluate together left and right cardiac remodeling in different long-distance running athletes: marathon runners (42 km) (M) and endurance mountain runners (>300 Km) (UT).
Methods: A total of 92 athletes (70 males, 76%) including 47 M [age 45 ± 7 years; training: 18 (9–53) years*days/week], 45 UT [age 42 ± 9, training: 30 (15–66) years*days/week] underwent conventional echocardiography and STE (Beyond Diogenes 2.0, AMID) during the agonistic season.
Results: Right ventricle (RV) end-diastolic area (p = 0.026), fractional area changing (FAC) (p = 0.008) and RV global longitudinal strain (GLS) were significantly increasedin UT athletes. Furthermore, UT showed larger right atrium (RA) volume (p = 0.03), reduced RA GLS and significantly increased RA global circumferential strain (GCS) compared to M. After adjustment for age, sex, and HR as covariates, UT showed a reduced RA GLS (OR 0.907; CI 0.856–0.961) and increased RV FAC (OR 1.172; CI: 1.044–1.317) compared to M.
Conclusion: Athletes enrolled in UT endurance activities showed RV and RA morphological and functional remodeling to increased preload in comparison with M runners characterized by increased RV FAC and reduced RA GLS. Follow-up studies are needed to better assess the long-term clinical impact of these modifications. 2D STE is a useful tool for investigating the deformation dynamic in different sports specialties.