AUTHOR=Viswanathan Meera C. , Blice-Baum Anna C. , Schmidt William , Foster D. Brian , Cammarato Anthony TITLE=Pseudo-acetylation of K326 and K328 of actin disrupts Drosophila melanogaster indirect flight muscle structure and performance JOURNAL=Frontiers in Physiology VOLUME=6 YEAR=2015 URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2015.00116 DOI=10.3389/fphys.2015.00116 ISSN=1664-042X ABSTRACT=
In striated muscle tropomyosin (Tm) extends along the length of F-actin-containing thin filaments. Its location governs access of myosin binding sites on actin and, hence, force production. Intermolecular electrostatic associations are believed to mediate critical interactions between the proteins. For example, actin residues K326, K328, and R147 were predicted to establish contacts with E181 of Tm. Moreover, K328 also potentially forms direct interactions with E286 of myosin when the motor is strongly bound. Recently, LC-MS/MS analysis of the cardiac acetyl-lysine proteome revealed K326 and K328 of actin were acetylated, a post-translational modification (PTM) that masks the residues' inherent positive charges. Here, we tested the hypothesis that by removing the vital actin charges at residues 326 and 328, the PTM would perturb Tm positioning and/or strong myosin binding as manifested by altered skeletal muscle function and structure in the