AUTHOR=Mora Emanuel C., Macias Silvio , Hechavarría Julio C., Vater Marianne , Kössl Manfred TITLE=Evolution of the heteroharmonic strategy for target-range computation in the echolocation of Mormoopidae JOURNAL=Frontiers in Physiology VOLUME=4 YEAR=2013 URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2013.00141 DOI=10.3389/fphys.2013.00141 ISSN=1664-042X ABSTRACT=
Echolocating bats use the time elapsed from biosonar pulse emission to the arrival of echo (defined as echo-delay) to assess target-distance. Target-distance is represented in the brain by delay-tuned neurons that are classified as either “heteroharmonic” or “homoharmormic.” Heteroharmonic neurons respond more strongly to pulse-echo pairs in which the timing of the pulse is given by the fundamental biosonar harmonic while the timing of echoes is provided by one (or several) of the higher order harmonics. On the other hand, homoharmonic neurons are tuned to the echo delay between similar harmonics in the emitted pulse and echo. It is generally accepted that heteroharmonic computations are advantageous over homoharmonic computations; i.e., heteroharmonic neurons receive information from call and echo in different frequency-bands which helps to avoid jamming between pulse and echo signals. Heteroharmonic neurons have been found in two species of the family Mormoopidae (