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This paper introduces the concept of the intrinsic-noise-atom (i.e., intrinsic-
noise-element) and its applications. We propose a method to extract intrinsic
noise generated within viscous solids and discuss its impact on material
exploration and analysis. The analysis is designed to improve our ability
to explore viscous material, enhancing the inversion of physical formation
characteristics in acoustic logging while drilling. We show that under a harmonic
single-frequency force, the medium viscosity and the particles’ inertia inside
the viscous solids lead to a transient process from the static state to the stable
state of a harmonic single-frequency vibration. The spectrum corresponding to
this transient process reveals information on the intrinsic noise within viscous
solids. A damped oscillatory spring model of particle vibration corresponding to
longitudinal wave propagation is established, and the acoustic impulse response
and system function are obtained, where we can extract the intrinsic noise signal
from the vibration state generated by the particle under the action of harmonic
single-frequency force. Based on a representative frequency spectrum, the
characteristics of the physical formation around the drilled oil well can be
retrieved to determine whether it is a hydrocarbon reservoir and if there are
deformations, such as fractures, or if it is in good condition. With its reliability,
this method can effectively extract the intrinsic noise and successfully retrieve
the characteristics of the physical formation of solid media.

KEYWORDS

solid viscosity, damping attenuation, propagation attenuation, particle vibration,
intrinsic noise

1 Introduction

Owing to the particle’s inertia and medium viscosity within viscous solids, a stationary
particle undergoes a critical transition from a static state to a stable harmonic single-
frequency vibration under a harmonic single-frequency force. The spectrum associated
with this transient transition process corresponds to the intrinsic noise generated by the
vibrating particle. We define the intrinsic noise produced by a harmonic single-frequency
force acting on a particle as an “intrinsic-noise-atom.” Based on the principles of linear
superposition and Fourier transform, the intrinsic noise induced by multifrequency forces
can be considered as the superposition of intrinsic-noise-atoms caused by each harmonic
frequency component of the multifrequency force. The combination or superposition of
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different intrinsic-noise-atoms can constitute the intrinsic noise
generated by any complexmultifrequency force applied to a particle.
Studying the intrinsic-noise-atom is crucial in understanding the
complex vibrational particle behavior and the propagation property
of waves in viscous solids. Intrinsic noise is a natural physical
phenomenon of particle vibration in viscous solids under external
disturbances. At the same time, the intrinsic-noise-atom is a key
concept and a critical factor in acoustic measurement for practical
applications.

The physical properties and microstructures of different solid
media exhibit distinct characteristics. For instance, when the
harmonic single-frequency force is applied to particles inside
different mediums or objects, the transient transition processes
generated during their vibrations, along with the corresponding
spectra and central frequencies, vary accordingly. Consequently, the
information conveyed by intrinsic-noise-atoms (or intrinsic noise)
is helpful to infer the physical properties of the media and their
internal structures.

Extensive research has been conducted on intrinsic-noise-
atom or intrinsic noise at the micro/macro scale, leading to
applications across various fields. Based on frequency domain
analysis, Michael et al. described a frequency-domain technique
for analyzing intrinsic noise generated in negatively self-regulating
genetic circuits [1]. Ramaswamy et al. studied how intrinsic
spectral noise affects mesoscopic oscillating chemical reactions
[2]. Alex et al. introduced an extended mathematical framework
for analyzing classical intrinsic/extrinsic noise [3]. Jangir et al.
demonstrated that intrinsic randomness in biochemical reactions
(intrinsic noise) and variability in cellular states (extrinsic noise)
reduce information transfer through signaling networks [4].
Villegas et al. investigated intrinsic noise and critical deviation
in Boolean gene regulatory networks [5]. Hong et al. highlighted
that acoustic stress and wave resonance play crucial roles in
plasma bubbles, providing novel approaches for sustainable
chemical processes [6]. Fa and Zhao also reported intrinsic
noise generated during the vibration of particles in viscous
media and piezoelectric transducers, along with its potential
applications [7].

The transient transition process and the intrinsic noise generated
by the whole motion of some objects have also been studied.
Piquette theoretically and experimentally studied the transient
response of piezoelectric transducers, revealing that harmonic
single-frequency voltage excitation of piezoelectric transducers
produces a transient process from a stationary state to a steady
harmonic single-frequency vibration [8, 9]. Similarly, Fa and Zhao
et al. confirmed the transient process of piezoelectric transducers
transitioning from stationary to steady harmonic single-frequency
vibration under harmonic single-frequency electrical excitation
[10–13]. The frequency spectrum corresponding to this transient
process represents the intrinsic noise generated during the vibration
of the transducer. They verified the existence of the intrinsic-noise-
atom generated by the piezoelectric transducer. Fa and Zhao at al.
Have also experimentally confirmed the presence of intrinsic noise
generated during piezoelectric transducers’ vibration when excited
by a multifrequency electric-voltage signal [14]. Zha et al. studied
novel piezoelectric surface and bulk acoustic wave resonators for
communication technologies, which also involved intrinsic noise
applications [15].

The transient responses of piezoelectric transducers with
mechanical loads have also been investigated. Moon et al. found
that the center frequency of a piezoelectric transducer varies
with the mechanical load and environmental conditions. They
proposed a method to track the resonant frequency by using
the transient characteristics of the transducer [16]. Wang et al.
studied the relationship between the central frequency of intrinsic
noise and the early strength development of cement mortar by
using piezoelectric transducers. Their findings showed that the
central frequency of intrinsic noise is related to the properties of
the cement mortar surrounding the transducer, which represents
the combined response of the mechanical load of cement mortar
and the electric-acoustic (or acoustic-electric) conversion of the
piezoelectric transducer [17].

From the foregoing analysis and discussion, it is evident that
whether considering a particle within a viscous solid medium, a
composite structure formed by two media, or an entire object,
any alteration in their motion state due to external perturbations
will generate associated intrinsic noise. The transient process of
harmonic states and the corresponding spectra are influenced by the
medium’s viscosity, density, stiffness, and other properties, as well as
the geometry of the particle or object.

The concept of the intrinsic-noise-atom holds significant
implications for the forward modeling of intrinsic noise and for
inverting physical properties of the measured medium and its
geometric structure using the intrinsic noise information contained
within acoustic signals. Leveraging the matching pursuit algorithm
[19, 20], Zhang and Castagna developed a wavelet dictionary for
seismic exploration signals derived from the well logging data.They
used logging data from several oil wells (including density and
acoustic velocity) and specialized algorithms to construct a wavelet
dictionary for seismic exploration signals. Bymatching and tracking
the recorded seismic exploration data against the basic wavelet
element in this wavelet dictionary, they successfully reconstructed
information on the characteristics and structures of underground
rock formations (such as reflection coefficient sequences), aiding in
the search for hydrocarbon reservoirs [21, 22].We propose replacing
the logging data with intrinsic noise data from limited acoustic
signals that measure homogeneous or heterogeneous media with
varying internal structures. Employing algorithms of interpolation,
extrapolation, scaling and squeeze/stretch of frequency, we also
can construct a dictionary of intrinsic-noise-atoms by using some
intrinsic noises generated from vibration particles in media with
diverse physical properties and structures [19]. This intrinsic noise
dictionary and the intrinsic noise extracted from the measured
acoustic signal are then used for matching-pursuing and iterative
calculations to reconstruct the physical characteristics (such as
reflection coefficients and acoustic velocities) and internal structure
of the measured medium. Meanwhile, the intrinsic noise extracted
from acoustic signals and density data measured by Logging while
drilling (LWD) are valuable elements for reconstructing the acoustic
wave propagation velocity in the formation.

This allows for the accurate acquisition of formation wave first
arrivals and enables the inversion of formation properties around the
drilled well using spectral information. It helps determine whether
reservoirs and fractures are present, as well as oil/gas content and
evaluates the cement bond quality of the cased well. Although
substantial research has been conducted on intrinsic noise, the
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physical mechanisms of its generation still require study, and its
potential applications merit further exploration, such as the study
of intrinsic noise provides one of the essential conditions for the
parallel/series acoustic lumped particle vibrational transmission
networkmodel which can describe the whole acoustic measurement
process more accurately from the physical mechanism.

2 Physical model

2.1 The model of viscous solid with particle
vibrations

The vibrating “particles” in acoustics are fundamental tangible
substances with mass and energy. When the harmonic single-
frequency force compelling the particle to vibrate near its
equilibrium position in a viscous solid suddenly disappears, the
amplitude of the particle’s vibration diminishes over time due
to energy dissipation from frictional resistance force. When a
harmonic single-frequency force is applied to the stationary particle
in a viscous solid, a particle transitions from stationary to stable
harmonic single-frequency vibration due to the particle’s inertia
and the medium’s viscosity.

Therefore, in addition to the frequency component of the steady-
state harmonic single-frequency vibration, the particle vibration also
contains the frequency component corresponding to the transient
process of the particle vibration, i.e., the frequency component of
the intrinsic noise.

Damping can be used to measure the attenuation of a particle’s
vibration amplitude inside a medium near its equilibrium position
as time increases. Then, we may analyze the intrinsic noise
corresponding to the transient process experienced by the vibration
of a particle inside a viscous solid.

Particle vibration in a viscous medium will be affected by
frictional resistance force.Themagnitude of this frictional resistance
is not only related to the viscosity of the medium but also to the
geometric shape and size of the object, the mode of movement, and
the speed. For instance, when a small ball moves within a viscous
liquid at a constant speed, it encounters a frictional resistance force,

f f = 6πrηv = R0v (1)

In Equation 1, the frictional resistance force is proportional to
friction resistance (R0 = 6πrη), and it is proportional to the radius of
the ball (r), its speed (v), and the viscosity coefficient of the viscous
liquid (η).

Considering particle vibration in viscous solid media, let’s
assume the particles behave like tiny balls with a constant radius.
During their vibrational motion, the influence of the geometric
parameter of particles on the friction resistance remains unchanged.
The key impact factors are the vibration speed and viscosity of the
solid media. In analogy to Equation 1, we assume that the frictional
resistance force of the vibrating particles in the viscous solidmedium
is proportional to the vibration speed and the viscosity coefficient
of the medium surrounding the particles, and the direction of the
frictional resistance force is opposite to that of movement of the
particles.

TheP-wave corresponds to the compression and extension strain
of the solid medium. Elastic damping is a complex phenomenon

associated with the strain mode within a solid medium caused
by the vibration of the particles. When the particle vibrates, the
size and density of the volume element in a solid medium will
change. As shown in Figure 1A, the compression deformation
of the uniform compression rod, we will use such a model to
analyze the particle vibration process corresponding to the P-wave.
As shown in Figure 1B, the compression strain of the compression
rod is equivalent to a spring oscillatormodel. Assume that the length
of the spring when the particle is in the equilibrium position is
l0, the instantaneous length during the vibration process is l, and
the displacement of the particle is u. It yields an analytical solution
of its particle vibration by solving the corresponding second-order
differential motion equation with constant coefficients.

Assuming that the P-wave propagates along the x-axial
direction, the displacement direction of the particle corresponding
to the P-wave is parallel to the x-axial direction, which is the
horizontal direction in Figure 1B. In such a spring oscillator model
of compression/extension strain, the particle is initially at the
equilibrium position with the length of the spring l0, and the
corresponding particle displacement is equal to zero. During the
particle vibration, it yields a measured length of the spring (l) and
the corresponding particle displacement (u = l− l0). In the P-wave
spring oscillatormodel, the lengthening and shortening of the spring
changes periodically, i.e., the spring length (l) can be longer or
shorter than the length at equilibrium (l0).

As shown in Figure 1, in addition to the ideal microscopic
elastic force, the vibrating particles in the viscous solid medium
are also subject to frictional resistance force ( f f). Assuming that
the frictional resistance (Rm) to the spherical particles in viscous
solid media is an analogy with the frictional resistance (R0) of
the small ball moving at a constant speed in the viscous liquid
described in Equation 1, then the size of the frictional resistance
(Rm) is also proportional to the viscosity of the solid media. So, the
frictional resistance-force ( f f) generated by the viscosity of the solid
medium on the vibrating particles is always parallel to the horizontal
direction and opposite to the direction of motion of the particles,
which can be written by

f f = −Rm
du
dt

(2)

The particle displacement corresponding to the P-wave is

u = x = l− l0 = Δl (3)

For a given stiffness coefficient (k), the elastic force on the
corresponding vibrating particle is

fk = −kΔl = −kx = −ku (4)

2.2 Impulse response and system function

When a harmonic single-frequency external force ( fext) acts
upon a particle in a viscous solid medium, based on Equations 2–4,
the resultant force can be written by

ftotal = fext + f f + fk = fext −Rm
du
dt
− ku (5)
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FIGURE 1
Mechanical analogy model of particle damped vibration corresponding to P-wave: (a) Compression deformation of a uniformly compressed rod; (b)
Equivalent spring oscillator.

In accordance with Newton’s Second Law and Equation 5, we
can derive a second-order linear differential equation with constant
coefficients that describes the motion of a particle as follows,

md2u
dt2
+Rm

du
dt
+ ku = fext (6)

The displacement velocity of the particle (v = du/dt) is
analogous to the current in the electrical network (I = dQ/dt); the
mass (m) is analogous to the inductance (L); the force compliance
(Cm = 1/kc) is analogous to the capacitance (C); the friction-
resistance (Rm) is analogous to the resistance (R); the action force
( fext) is analogous to the voltage source (V).The equation of motion,
i.e., Equation 6, provides the corresponding time domain network,
as shown in Figure 2A. Converting an equivalent mechanical
network to the s-domain can help solve the acoustic impulse
response and system function, as shown in Figure 2B.

The displacement velocity (v(t)) and the external force ( fext(t))
acting on the particle are functions of time in the time domain. The
corresponding quantities are V(s) and Fext(s) in s-domain. So, we
can get the expressions of the displacement velocity and the system
function of the mechanical network (i.e., the ratio of displacement
velocity and the external force) in the s-domain as follows,

V(s) =
Fext(s)

Rm +ms+ 1
Cms

(7)

H(s) =
V(s)
Fext(s)
=

Cms
mCms

2 +RmCms+ 1
(8)

Using the residue theorem, we can get the analytical expression
of the mechanical network impulse response corresponding to the
particle motion in the time domain as follows,

h(t) =
N

∑
j=1

Res[H(sj)e
sjt] (9)

where, N is the number of singular points of system function
(H(s)) and sj is the roots of the denominator in Formula 8,
which is a quadratic polynomial [mCms

2 +RmCms+ 1 =

FIGURE 2
Equivalent mechanical network of particle motion in viscous solids: (a)
Time domain; (b) s-domain.

(s+ s1)(s+ s2)]. So we have

s1,2 =
−RmCm ±√(RmCm)

2 − 4mCm

2mCm
= −β± α (10)

here α = √(RmCm)
2 − 4mCm/(2mCm); β = Rm/(2m).
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Equation 10 would provide a few different potential solutions.

1) There are two different real roots [(RmCm)
2 > 4mCm]. The

mechanical network impulse response in Equation 9 yields

h(t) = (A1e−αt +A2e−βt)ε(t) (11)

where A1 = Cmβ/(β− α); A2 = −Cmα/(β− α); ε(t) is the unit
step function.

This solution indicates that the particle in a viscous solid
medium is in an overdamped physical state, which is not a solution
for the particle being in a vibrational state.

2) The system is in the case of two identical real roots where
[(RmCm)

2 = 4mCm; s1,2 = −
Rm
2m

]. The mechanical network
impulse response in Equation 9 yields,

h(t) = (A1t+A2)e−βtε(t) (12)

where α = 0; β = − s1,2 =
Rm
2m

; A1 = Cmβ; A2 = Cm.
The mechanical network impulse response is in exponential

decay with time, indicating that the particle system in the viscous
solid medium is in a critical damping state, which is also not a
solution that conforms to the actual particle vibration.

3) There is a pair of conjugate complex roots [(RmCm)
2 <

4mCm; s1,2 = − β± iα]. The mechanical network impulse
response is then,

h(t) = Ae−βt cos(ωdt+ θ)ε(t) (13)

where A = Cm√1+ (
β
α
)
2
; θ = tan−1 ( β

α
) = tan−1( 1

√1−4m/(R2
mCm)
);

ωd =
√4mCm−(RmCm)

2

2mCm
.

Equations 11, 12 are not solutions in practical
physical sense. Equation 13 indicates that the particle system is
underdamped and that the mechanical network impulse response is
described well for particle vibrational state motion. The amplitude
(A), angular frequency (ωd), and phase shift angle (θ) are determined
only by the physical properties of the viscous solid medium. The
impulse response amplitude in the viscous solid medium (Ae−βt) is
no longer a constant but decays exponentially with time.

The system function of the particle vibration system in the
viscous solid medium, i.e., the frequency domain expression
corresponding to the impulse response of the particle system, can
be obtained from Equation 8,

H(iω) =H(s)|s=iω =
iωCm

−mCmω
2 + iRmCmω+ 1

(14)

Equations 13, 14 show that this case is a linear time-invariant
system whose impulse response and system function are functions
of the physical properties and parameters of the viscous solid.
Consequently, by inverting the impulse response or system function
with the measured acoustic wave signal, we can gain information on
the physical properties of the viscous solid media and discover its
internal structural anomalies.

Finally, when an external force ( fext) is acting on a particle inside
a viscous medium, its vibration velocity, i.e., the derivative of the
particle displacement with time, can be expressed based on the
mechanical network impulse response,

v(t) = fext(t) ∗ h(t) (15)

where Equation 15 is a time-domain expression of Equation 7.

3 Calculation and analysis

We selected a few solid medium samples for calculation and
analysis, neglecting the anisotropy of the rocks, where their physical
parameters [18] are shown in Table 1.

3.1 A system of particle vibration in viscous
solid media

From the physical properties of the selected rock samples
(Table 1), we can obtain the friction resistance of the vibrating
particle (Rm = a1η11), its mass (m = a2ρ), and the stiffness coefficient
of the spring oscillator (k = 1/Cm = a3c11). Here, a1, a2, and a3 are
the proportional coefficients between the frictional resistance of the
particle and the viscosity coefficient of the solid medium, the mass
of the particle and the density of the solid, and the stiffness and
the stiffness coefficient of the spring vibrator, respectively, which are
determined by the physical properties and internal structure of the
viscous solidmedium and the geometrical-size of the particle. Based
on the physical parameters of the three types of viscoelastic solid
media samples presented in Table 1, and setting the proportional
coefficient as follows: a1 = 1× 10−11, a2 = 1× 10−7, and a3 = 1×
10−1, we can calculate the acoustic impulse response and system
function of the three aforementioned rock samples. We selected two
scenarios for this analysis and comparison: one where the viscosity
coefficient is set to η11 = 3× 10

4N ⋅ s/m2, as illustrated in Figure 3,
and another one where the viscosity coefficient is set to η11 = 9×
104N ⋅ s/m2, as illustrated in Figure 4. Among these, the waveform
and amplitude spectrum of the acoustic impulse response of the
shale particle vibration system exhibit the biggest values respectively.
The maximum value obtained from the shale calculations was used
to normalize the results for all three rock types.

The calculation results show that for different rocks with the
same viscosity coefficient, the waveform amplitude in the time
domain decays exponentially with time until it decays to zero; under
the same viscosity coefficient, the amplitude of the time domain
waveform and amplitude spectrum of the internal particle vibration
of shale is the largest, and that of C-sandstone is the smallest;
the amplitude spectrum of the particle vibration increases with
frequency until it reaches the maximum amplitude at a specific
frequency, and then the amplitude starts to decrease with frequency.
The frequency corresponding to the maximum amplitude of the
amplitude spectrum is defined as the center frequency ( f0) of the
particle system.

For the same rock with different viscosities, the center frequency
of the particle vibration is independent of the viscosity of the
medium, but the amplitude of the spectrum will decrease with
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TABLE 1 Parameters of three isotropic rocks.

Rock sample Shale M-Sandstone C-sandstone

Stiffness coefficient c11 (N/m) 1.76 × 1013 2.84 × 1013 4.24 × 1013

P-wave velocity vp (m/s) 2,745 3,368 4,231

Density ρ (kg/m3) 2.34 × 103 2.50 × 103 2.37 × 103

FIGURE 3
From top to bottom, the vibrational system (η11 = 3× 10

4N ⋅ s/m2) of Shale, M-sandstone, and C-sandstone: (a) time domain waveform; (b) amplitude
spectrum; (c) phase spectrum.

the increase of viscosity; the center frequency of the particle
vibration inside C-sandstone is the highest (2.129 MHz) and
followed by M-sandstone (1.695 MHz), where the shale stone has
the lowest center frequency (1.382 MHz). This further supports
our understanding of the influence of the stiffness coefficient
on the center frequency. The larger the stiffness coefficient, the
larger the center frequency corresponding to the particle vibration
system; at the center frequency, the phase of the system function
has a 180° mutation.

In summary, the viscosity of solidmediawill affect the amplitude
of the particle vibration system function but will not affect its center
frequency.The stiffness coefficient will affect the center frequency of
the particle vibration system. Therefore, the mechanical properties
of viscous solidmedia’s particle vibration are related to the shape and

geometric parameters of the particles and the viscosity and stiffness
coefficient of the medium solid.

3.2 Harmonic single-frequency force
acting on a particle inside a medium

Let’s consider and compare the particle vibrations within solid
media under the action of harmonic single-frequency forces with
different frequencies ( f = 0.8 f0, 1.0 f0, and 1.2 f0) in the units
of central frequency, as shown in Figures 5–7, for the time domain
waveforms, amplitude, and phase spectra.

When the single-frequency harmonic force frequency is equal to
the center frequency of the particle vibration, resonance occurs, and
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FIGURE 4
From top to bottom, the vibrational system (η11 = 9× 10

4N ⋅ s/m2) of Shale, M-sandstone, and C-sandstone: (a) time domain waveform; (b) amplitude
spectrum; (c) phase spectrum.

the amplitude of the time domain waveform and the corresponding
amplitude spectrum is the largest, as shown in the middle penal
(the second from top to bottom). The time domain waveform and
amplitude spectrum are normalized by the maximum values of the
time domain waveform and amplitude spectrum at resonance.

As shown in the first column of the figures for each sample,
its time domain waveform consists of two parts, i.e., a transient
transition process and a steady-state harmonic single-frequency
vibrationwith the frequency of the harmonic force.The time domain
waveformof the particle vibration has different transient processes at
the beginning but gradually stabilizes to a sinusoidal vibration over
time. The closer the harmonic single-frequency force (excitation
signal) frequency is to the center frequency of the particle system,
the greater the amplitude of the particle vibration and the shorter
the duration of the transient transition process. When harmonic
single-frequency excitation signals of different frequencies act
on the particles, the time domain waveform generated by the
particle vibration shows different transient processes and gradually
stabilizes a harmonic single-frequency vibration with the frequency
of over time.

The corresponding amplitude spectrum contains two types of
spectrum information: one is the spectrum corresponding to the
harmonic single-frequency signal of steady-state harmonic single-
frequency oscillation, i.e., the impulse pulse in the frequency

domain, which is the frequency of the harmonic single-frequency
force, and the other is the spectrum corresponding to the transient
process, which is the frequency component of the intrinsic noise
generated by the particles inside the viscous solid medium under
the action of the harmonic single-frequency force.

The phase spectrum’s behavior at the intrinsic noise center
frequency is a key indicator for understanding the vibration
spectrum. At this frequency, the phase spectrum exhibits a positive
jump, and at the regular frequency of the harmonic single-frequency
force, the phase spectrum shows an impulse. The phase jump
and impulse coincide when the harmonic single-frequency force
frequency aligns with the intrinsic noise center frequency. This
alignment provides a crucial insight: when the frequency of the
harmonic single-frequency force is significantly different from the
center frequency of the intrinsic noise, it becomes easier to isolate
the intrinsic noise from the particle vibration spectrum.

3.3 External forcewithmultiple frequencies

The excitation force signal acting on the particle in viscous
solids is usually a wavelet containing many frequency components.
A complex multifrequency signal can be decomposed into
separate single-frequency components with different amplitudes,
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FIGURE 5
Vibrational state of Shale stone at different frequencies, from top to bottom ( f = 0.8 f0, f = 1.0 f0, and f = 1.2 f0): (a) time domain waveform; (b)
amplitude spectrum; (c) phase spectrum.

frequencies, and phases based on discrete Fourier transform. The
more frequency components are used, the more accurate the
waveform shape is to represent the original wavelet.

It is common to use the gate-selected sinusoidal force applied to
the particle with a time domain expression,

fext(t) = A0 sin(ωst)[H(t) −H(t− t0)] (16)

By Fourier transform, we can get its spectrum expression and
the corresponding phase spectrum:

Sext(ω) = U0{ωs − (ωs cos ωst0 + iω sin ωst0)exp(−iωt0)/(ω2
s −ω2)}

(17)

ϕ(ω) = arctan
Im[S1(ω)]
Re[S1(ω)]

(18)

where A0 and ωs are the amplitude and angular frequency (ωs =
2π fs).

Taking the center frequency of the particle system inside shale
( f0 = ω0/2π = 1.382 MHz) as an example, let’s choose a gate-selected
sinusoidal force and apply it to the shale sample, where we have a
harmonic frequency gate width (t0 = 3T0 = 6π/ωs), and amplitude
(A0 = 1) of the gate-selected sinusoidal force with a gate-selected
sinusoidal force period (T0), as shown in Figure 8. Based on
Equations 17, 18, the amplitude and phase spectra of the gate-
selected sinusoidal force are illustrated in Figures 8A, B respectively.

Utilizing Equations 16–18, the calculated and fitted time-domain
waveforms of the gate-selected sinusoidal force are represented by
the solid and circled lines in Figure 8C. It shows that the waveform
fitted by the amplitude and phase spectra is virtually consistent
with the excitation signal, ensuring the accuracy of subsequent
analysis. For the equivalent mechanical network of the particle
vibration (see Figure 2), based on the linear superposition principle,
each frequency component in the gate-selected sinusoidal force can
act on the particle as a separate action force to excite the particle.The
superposition of the contribution of all frequency components of the
gate-selected sinusoidal force to the particle vibration provides the
final vibration state of the particle.

By exploring a few selected frequency components of a gate-
selected sinusoidal force at frequencies ( f = 0.2 f0, 0.6 f0, 1.2 f0,
and 1.4 f0) for the selected three rocks, we can observe amplitude
variations with respect to these frequencies (|S1 (1.2 f0)|>|S1 (0.2
f0)|>|S1 (0.6 f0)|>|S1 (1.4 f0)). Figures 9–11 are the calculated
time-domain waveforms for the selected harmonic force frequency
components ( f = 0.2 f0, 0.6 f0, 1.2 f0, and 1.4 f0) acting on the
particles inside the selected three rock samples, and there is the
relation of |vs (1.2 f0)|>|vs (0.2 f0)|>|vs (0.6 f0)|>|vs (1.4 f0)|, where
vs(⋅) denotes the amplitude of the steady-state harmonic single-
frequency oscillation of the particle in response to the different
frequency components of the gate-selected sinusoidal force. For
example, take shale stone, whose internal particle system has the
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FIGURE 6
Vibrational state of M-sandstone at different frequencies, from top to bottom ( f = 0.8 f0, f = 1.0 f0, and f = 1.2 f0): (a) time domain waveform; (b)
amplitude spectrum; (c) phase spectrum.

center frequency of f0 = 1.382 MHz, at the frequencies of f =
0.2 f0 (0.2764 MHz), 0.6 f0 (0.8292 MHz), 1.2 f0 (1.6584 MHz)and
1.4 f0 (1.9348 MHz), the magnitudes of the frequency components
of the gate-selected sinusoidal force are 2.2824× 10−7, 2.1042 × 10−7,
4.9681 × 10−7, and 1.4109 × 10−7, respectively, and the amplitudes
of the steady-state harmonic single-frequency oscillation of the
particle in the shale stone are 0.0231, 0.0215, 0.0421, 0.0147, which
is vs(1.2 f0) >vs(0.2 f0) >vs(0.6 f0) > vs(1.4 f0). The same rules also
apply to M-sandstone and C-sandstone, as shown in Figures 10, 11.

Figures 9–11 shows that each frequency component provided
by the gate-selected sinusoidal force acting on the particle yields
a distinctive transient process and steady-state harmonic single-
frequency vibrations with different frequencies and amplitudes.
For frequency components of the gate-selected sinusoidal force
applied to the particle far away from the intrinsic noise center
frequency, the transient transition of the particle vibration is
long. When the gate-selected sinusoidal force frequency applied
to the particle is equal to the center frequency of the intrinsic
noise, the duration of the transient process of the particle
vibration is the shortest, and the gate-selected sinusoidal force
frequency is superimposed on the center frequency of the intrinsic
noise. The frequency and magnitude of the intrinsic noise and
the corresponding force frequency component determine the
amplitude of the transient process. In contrast, the magnitude of
this frequency component determines the steady-state harmonic
vibration’s amplitude.

The vibration state of a particle inside the viscous solidmedium is
a summary contribution of all frequency components. Figures 12–14
shows the vibration states of the particles inside the three types of
rocks (shale, M-sandstone, and C-sandstone) under the gate-selected
sinusoidal forces of frequencies ( fs < f0, fs = f0, fs > f0). The time
domain waveform and frequency domain amplitude spectrum were
normalizedby themaximumvalues of the timedomainwaveformand
amplitude spectrum for each rock at fs = f0.

Figures 12–14 shows that different frequencies of gate-selected
sinusoidal wavelet acting on its internal particles for a given rock
medium yield different vibration states. The particle vibration has
different time domain waveforms, amplitude, and phase spectra.
When the gate-selected sinusoidal force frequency equals the
central frequency of the intrinsic noise corresponding to the rock,
the time domain waveform and amplitude spectrum will be at
their maximum.

When the gate-selected sinusoidal force frequency overlaps
with the intrinsic noise central frequency ( fs = f0), the amplitude
spectrum has only one peak, which is the imposition of the peak
upon another. If the excitation frequency is lower than the noise
central frequency ( fs < f0), there are two peaks in the amplitude
spectrum. The left peak is the contribution from the gate-selected
sinusoidal force, and the right peak is the contribution from the
intrinsic noise generated by the particle vibration. If the excitation
frequency is higher than the noise central frequency ( fs > f0), there
are also two peaks in the amplitude spectrum. The left peak is the
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FIGURE 7
Vibrational state of C-sandstone at different frequencies, from top to bottom ( f = 0.8 f0, f = 1.0 f0, and f = 1.2 f0): (a) time domain waveform; (b)
amplitude spectrum; (c) phase spectrum.

FIGURE 8
The gate-selected sinusoidal signal: (a) amplitude spectrum, (b) phase
spectrum, and (c) time domain waveform.

contribution from the intrinsic noise, and the right peak is from the
gate-selected sinusoidal force. Regardless of the type of excitation
force, either a harmonic single-frequency signal or a multifrequency

wavelet, the vibrational state of the particle always contains the
excitation frequency components and the intrinsic noise generated
by the vibrating particles. The medium’s physical properties and
geometric structure are the sole factors in determining the spectral
characteristics of the intrinsic noise.

Figures 12–14 shows that, in the near frequency region around
the spectrum of intrinsic noise and force, the fluctuation of the
phase spectrum is more pronounced due to the influence of
the spectrum distribution and characteristics of intrinsic noise,
especially with multifrequency force. In the frequency range
far away from the spectrum of intrinsic noise and excitation
force, the fluctuation of the phase spectrum tends to become
smaller. We found that the phase spectrum of the intrinsic
noise generated by the internal particles of the different sample
rock media under the action of the same type of force has
similar changes and trends. Comparing Figures 9–11 with
Figures 12–14 shows that when a single-frequency force acts
on a particle, extracting the intrinsic noise generated by the
vibrating particle is easier than that of multiple-frequency
excitation.

4 Concluding remarks

We have introduced the concept of “intrinsic-noise-
atom”. Through algorithms of interpolation, extrapolation,
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FIGURE 9
Different frequency components of the gate-selected sinusoidal force acting on the particles inside the shale: (a) f = 0.2 f0; (b) f = 0.6 f0; (c) f = 1.2
f0; (d) f = 1.4 f0.

FIGURE 10
Different frequency components of the gate-selected sinusoidal force acting on M-sandstone: (a) f = 0.2 f0; (b) f = 0.6 f0; (c) f = 1.2 f0; (d) f = 1.4 f0.
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FIGURE 11
Different frequency components of the gate-selected sinusoidal force acting on C- sandstone: (a) f = 0.2 f0; (b) f = 0.6 f0; (c) f = 1.2 f0; (d) f = 1.4 f0.

FIGURE 12
Shale vibration state from top to bottom ( fs < f0, fs = f0, fs > f0): (a) time domain waveform; (b) amplitude spectrum; (c) phase spectrum.
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FIGURE 13
M-sandstone vibration state from top to bottom ( fs < f0, fs = f0, fs > f0): (a) time domain waveform; (b) amplitude spectrum; (c) phase spectrum.

FIGURE 14
C-sandstone vibration state from top to bottom ( fs < f0, fs = f0, fs > f0): (a) time domain waveform; (b) amplitude spectrum; (c) phase spectrum.

squeeze/stretch, and scaling, we can construct a dictionary that
contains intrinsic-noise-atoms produced by vibrating particles
within the viscous media with various physical properties
and structures.

The combination or superposition of different intrinsic-
noise-atoms can constitute the intrinsic noise generated when
any complex multifrequency force is applied to a particle,
and vice versa.
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The generation and disappearance of particle vibrations
have their own transient transition processes. The spectrum
corresponding to the transient process is the intrinsic noise
generated by the particle vibration system.

Intrinsic noise is closely related to the physical properties
of the solid media and their internal structure. Applying the
matching-pursuit algorithm on and the intrinsic noise extracted
frommeasured acousticwave signalwith the atoms in dictionary can
invert the physical properties of the solid media and their internal
structure more accurately. Such as,in LWD acoustic logging, The
intrinsic noise information can be used to reduce or eliminate the
influence of the drill-collar direct wave on the measured acoustic
wave efficiently, so that obtain propagation velocity of acoustic wave
in the formation around the wellbore accurately.

This research lays a theoretical foundation for extracting the
progressive intrinsic noise generated by the sequential vibration of
all particles on the acoustic wave propagation path from themeasured
acoustic wave signal and the parallel-series lumped particle vibration
model to describe the acoustic measurement process. The next step
will be to establish a quantitative relationship between intrinsic
noise and acoustic attenuation. A new lumped particle vibration
transmission network that takes into account the influence of factors
such as particle vibration-damping attenuation, wave propagation
attenuation, progressive intrinsic noise generated by particles inside
themedium,andtheelectric-acoustic (oracoustic-electric)conversion
of the acoustic transducer on the measured acoustic wave signal (the
electrical signal at the electrical end of the receiving transducer) is
established to describe the acoustic measurement process.

This research has theoretically derived and simulated the intrinsic
noise signal generated by the particle in viscous solid media and has
not yet been verified by relevant experiments. In the subsequent
process, some rock samples can be constructed for experimental
measurement,combiningtheorywithengineering,andwecandevelop
correspondingsoftwaretointerpretandprocessthephysicalproperties
of the inversion medium and the internal structural anomalies using
the progressive intrinsic noise signal. It also lays the foundation for
developing a new intrinsic noise logging tool.
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