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A novel approach to
pseudorandom number
generation using Hamiltonian
conservative chaotic systems

Vinod Patidar* and Tanu Singh*

School of Computer Science, UPES, Dehradun, Uttarakhand, India

High-quality random number generators are required for various applications
such as cryptography, secure communications, Monte Carlo simulations, and
randomized algorithms. Existing pseudorandom number generators (PRNGs)
face limitations such as periodic behavior, dependence on high-quality entropy
sources, or computational inefficiency. On the other hand, chaotic systems are
widely used for pseudorandom sequence generation due to their sensitivity
to initial conditions and rich dynamical properties. The dissipative chaotic
systems settle into low-dimensional attractors; however, the conservative
chaotic systems (CCSs) conserve phase space volume and exhibit superior
ergodicity, making them particularly suitable for chaos-based cryptographic
applications. However, challenges remain with existing approaches, such as
limited phase space and periodic behavior, necessitating more robust CCS-
based solutions for secure and efficient implementations. To address these
challenges, in this paper, we propose a pseudorandom number generator
based on a Hamiltonian conservative chaotic system (HCCS) constructed
using the 4D Euler equations of rigid body rotations. Although the proposed
method is described using a specific chaotic system, the approach can be
easily extended to other Hamiltonian conservative chaotic systems (HCCSs)
following a careful analysis of their behaviour in phase space. We provide a
detailed description of the pre-analysis, followed by two methods that utilize
the Poincaré sections of HCCS to extract pseudorandom sequences, along with
their corresponding pseudo codes. Additionally, we present the results of the
performance analysis of the two pseudorandom number generation methods
using the NIST randomness test suite, which confirm their robustness and
compliancewith randomness standards. Our innovative approach demonstrates
significant potential to enhance the quality, unpredictability, and efficiency of
pseudorandom number generation, making it highly suitable for cryptographic
applications.

KEYWORDS

pseudorandom number generator (PRNG), pseudorandom bit generator (PRBG),
deterministic chaos, pseudorandomness, chaos theory, Hamiltonian conservative
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1 Introduction

Random number generators are highly required in a variety of
applications ranging from Monte Carlo simulations, cryptography
and secure communications, gambling and gaming, statistical
sampling, modelling and simulations, randomized algorithms,
machine learning and data science, genetic algorithms and
evolutionary computing, hardware testing etc. In most of
applications, the requirement of high-quality randomness is critical
as the predictability and structure of random sequences may
lead to inaccurate analysis/simulations and compromised security
[1]. Generating truly random sequences is impractical, expensive
or very slow as these are generated from unpredictable natural
physical processes like radioactive decay, electronic or thermal
noise, quantum fluctuations, photon emission/detection, disk drive
latency, Brownian motion etc. It therefore leads to a widespread
requirement and use of pseudorandomnumber generators (PRNGs)
which are deterministic algorithms designed to generate number
sequences that approximate the properties of random sequences.
In general, the PRNG takes an initial seed as input and generates
the sequence of numbers using a deterministic recursive/iterative
relation. The output sequence is the same as long as the same seed
is provided as input to these deterministic relations [2]. PRNGs
have become essential for many applications requiring a high-speed
and repeatable random sequence. Well-designed PRNGs should
produce sequences possessing longer periods, unpredictability,
uniform distributions and involving an efficient computational
process. Before the 20th century, randomness was typically achieved
using natural physical processes, asmentioned above.However, with
the advent of computers, the concept of pseudorandom number
generation emerged. The first such PRNG was proposed by John
von Neumann in 1949 [3], based on the middle square method,
which was later found to have several statistical weaknesses. Later in
the second half of the 20th century, PRNGs like Linear Congruential
Generator (LCG) [1,4] and Mersenne Twister [5] became very
popular andwerewidely used in various software systems. A surge in
cryptographic applications in 21st century led to the development
of cryptographically secure PRNGs that aim to prevent attackers
from predicting future sequences. Mersenne Twister [5], developed
in 1997, gained popularity in the early 21st century, along with
other cryptographically secure PRNGs like Yarrow [6], Fortuna
[7, 8], Blum-Blum-Shub [9], and more recently, the Permuted
Congruential Generators (PCGs) [10], the Xoshiro/XORSHIFT
family of PRNGs [11] and QRNGs [12]. Each of the above-
mentioned PRNGs has its limitations: the Mersenne Twister is
not cryptographically secure; Yarrow and Fortuna rely heavily
on high-quality entropy sources and are complex to implement;
and Blum-Blum-Shub is slow and computationally intensive.
QRNGs may require specialized hardware, while Permuted
Congruential Generators (PCGs) and the Xoshiro/XORSHIFT
family, although fast, may lack cryptographic security and exhibit
statistical weaknesses if not implemented with due care. PRNGs can
be broadly classified into the following categories:Deterministic
Algorithm-Based PRNGs- These include Linear Congruential
Generators (LCG), Lagged Fibonacci Generators (LFG), Linear
Feedback Shift Registers (LFSR), the Mersenne Twister, and
others;Cryptographically Secure PRNGs- Examples include Blum

Shub (BBS), Yarrow, and Fortuna; Cryptographic Hash Function-
Based PRNGs- These use cryptographic hash functions such as
SHA-256; Cellular Automata-Based Algorithms- Examples include
PRNGs based on specific rules like Rule 30 and Rule 110; Quantum
Random Number Generators (QRNGs)- These rely on quantum
phenomena, such as superposition and entanglement; Hardware-
Based PRNGs-These are non-deterministic and closely approximate
true randomness by utilizing sources like thermal noise and
radioactive decay; Chaos-Based Deterministic PRNGs- These rely
on chaotic systems to generate pseudorandom sequences. For a
recent detailed survey and classification of various state-of-the-
art PRNGs, refer to Bhattacharjee and Das [13]. Additionally,
James and Moneta [14] provides further insights and advocates for
high-quality pseudorandom number generators (PRNGs) rooted in
chaotic dynamical systems exhibiting Kolmogorov-Anosov mixing
(K-mixing) and ergodicity, which ensure exponential divergence
of trajectories (via positive Lyapunov exponents) and uniform
phase space exploration. It also includes a comprehensive review
of high-quality pseudorandom number generators.

Chaotic dynamical systems exhibit exponential divergence of
nearby trajectories, a hallmark of sensitivity to initial conditions
characterized by positive Lyapunov exponents. This divergence
arises from geometric mechanisms such as stretching and folding,
which also induce mixing in the system. Despite this extreme
sensitivity, the system’s trajectories remain bounded in phase
space and exhibit aperiodic behaviour. Furthermore, chaotic
systems are typically ergodic, meaning their long-term temporal
averages converge to spatial averages over the entire state space.
Many chaotic systems also demonstrate topological transitivity,
ensuring that trajectories eventually approach arbitrarily close to
any region within the bounded state space [15–17]. In general
chaotic dynamical system can be classified into two major classes:
dissipative chaotic dynamical systems and conservative chaotic
systems. Dissipative chaotic systems lose energy over time due to
the existence of some form of dissipative force resulting it their
phase space contracts over time and the long-term behaviour of
such systems settle onto an attractor (equilibrium points, nodes/no
spirals, chaotic strange attractor) in low dimension. Some of the
examples are: the Lorenz system, Rossler System, forced damped
Duffing oscillator, etc. Such low-dimensional attractors may be
reconstructed using a delayed reconstruction from one or two
variable time trajectories [16, 17]. In recent years, several chaos-
based pseudorandom number generators have been proposed in the
literature based on the chaotic logistic map, Henon map, standard
map, Lorenz systems, and various hybrid-chaotic maps [18–25].
Most of them have been successfully used for developing secure
image encryption systems, however they face critical limitations due
to use of low-dimensional chaos or existence of dissipative attractors
in their dynamics resulting in the shrinkage of available phase space,
periodic windows under finite precision, and statistical weaknesses
due to low entropy or dissipative dynamics [26].

On the other hand, Conservative chaotic systems are mainly
characterized by their property of conserving phase space volume
and energy.The long-term asymptotic dynamics of such a system do
not approach an attractor. The elliptic (centre), hyperbolic (saddle)
points and chaotic stochastic orbits may co-exist for various ranges
of control/system parameters and initial conditions. As a general
scenario of the dynamical behaviour of such systems: for some range
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of control parameter the entire phase space is filled with regular
orbit i.e., invariant tori, above a certain critical value of parameter
the volume occupied by the invariant tori decreases abruptly and
variety of orbits including the chaotic (stochastic) orbits appear
for different sets of initial conditions with further increase in the
parameters. The chaotic (stochastic) orbits in such systems fill the
entire accessible phase space and the basin of attraction is identical to
the region occupied by them. Under such conditions, the dimension
of the chaotic orbit is always same as the dimension of the phase
space and is an integer, and possesses an invariant measure and a
high order of ergodicity. Some of the various popular examples of
such systems are Henon Heiles systems, undamped forced Duffing
oscillator, standard map etc., [16, 17]. Due to the nonexistence of
attractor (contrary to dissipative systems) in phase space, identical
size of phase space and chaotic orbit’s basin, stronger or richer
ergodic property along with the interesting property of sensitivity
on initial conditions and system parameters make conservative
chaotic systems (CCSs) [17] more suitable for their applications in
pseudorandom sequence generation [22, 27] and their further use
in chaos-based permutation and substitution for image encryption
[28]. Conservative chaotic systems (CCSs) are further divided
into two categories: (i) Hamiltonian Conservative Chaotic Systems
(HCCSs) and (ii) Non-Hamiltonian Conservative Chaotic Systems
(Non-HCCSs). The HCCSs are categorized by the zero sum of
Lyapunov exponents along with both energy and volume of phase
space conservation (Henon-Hiles, undamped forced, standard map,
Cang’s system-A [29] etc.) however non-HCCSs possess only zero
sum of Lyapunov exponents (Sprott’s system A [30–32]). Some
systems have constantHamiltonian but the traces of Jacobian are not
zero are also termed as non HCCSs (e.g., Cang’s system-B [29]).

Recent advancements in the construction of Hamiltonian
conservative chaotic systems have significantly expanded the
scope of chaos-based applications, particularly in pseudorandom
number generation (PRNG). Ji’e et al. [33] introduced a simplified
framework for designing Hamiltonian systems, emphasizing
structural symmetry and energy conservation, which enables
systematic generation of chaotic dynamics. Dong et al. [34]
demonstrated howmultistable Hamiltonian systems with adjustable
parameters can enhance unpredictability, directly linking their
chaotic outputs to robust PRNGs validated through statistical
tests like NIST. Extensions to higher-dimensional systems, such
as 5D hyperchaotic models by Dong et al. [35] and Zhang and
Huang [36], leverage symmetry and coexisting attractors to amplify
entropy, critical for high-security encryption. Kong et al. [37]
further generalized these principles to odd-dimensional (2n+1)
Hamiltonian systems, balancing simplicity with high-dimensional
complexity and showcasing their efficacy in fast image encryption.
Notably, hardware implementation challenges are addressed in
works like Yu et al. [38] and Yan and Li [39], which validate the
feasibility of FPGA-based realizations of multistable Hamiltonian
systems, ensuring practical applicability in resource-constrained
environments. Adding to this, Yuan et al. [40] introduce a novel
class of nD Hamiltonian systems incorporating a three-terminal
memristor, merging memristive nonlinearity with conservative
chaos. Their work demonstrates enhanced dynamical richness,
including tunable hyperchaotic regimes and improved entropy,
while providing a hardware-efficient FPGA implementation
framework tailored for PRNGs. Collectively, these studies highlight

a paradigm shift toward Hamiltonian conservative chaos as a
cornerstone for reliable PRNGs, combining mathematical elegance
(energy conservation, symmetry, memristive adaptability) with
engineering pragmatism (scalability, multistability, hardware
feasibility). However, open challenges remain in optimizing the
trade-off between system complexity, memristor integration, and
computational efficiency for real-time cryptographic applications.

In this paper, we propose a pseudorandom number generator
(PRNG) based on a Hamiltonian conservative chaotic system
(HCCS) constructed using the 4D Euler equations of rigid
body rotations. The novelty of our proposed work lies in the
systematic pre-analysis of HCCSs to ensure a uniform and
ergodic distribution of phase space variables used in the PRNG
development, along with their invariant measure to achieve the
desired pseudorandomness. This analysis also helps in selecting
the appropriate parameters/initial conditions ranges to be used
as seed values for the proposed PRNG. Such recommendations
are often overlooked in existing chaos-based PRNGs, including
those based on HCCSs. We detail this preliminary analysis for
a specific HCCS constructed using the 4D Euler equations of
rigid body rotations and use it to describe the proposed PRNG
approach. This approach can be readily extended to other HCCSs,
provided their phase space behavior is carefully analyzed as
outlined in this paper. In the next section, we describe the details
of the Hamiltonian conservative chaotic system, its dynamical
behavior, and the pre-analysis required for effective pseudorandom
number generation.

2 Hamiltonian conservative chaotic
system based on 4D Euler equations

The 3D Euler equations for rigid body dynamics describe
the rotational motion of a rigid body about the centre of mass
without external torque. These equations date back to the 18th
century, derived by Leonhard Euler and express how the angular
velocity changes over time based on the body’s moment of inertia
[41, 42]. These are nonlinear coupled differential equations that
preserve the conservation of angular momentum and energy and
predict the rotational motion of the rigid body that can range
from smooth rotation to a very complex even chaotic depending
on the body’s geometry and initial conditions. These are widely
used in the field like mechanical engineering and aerospace
engineering.

I1
dω1

dt
= (I2 − I3)ω2ω3,

I2
dω2

dt
= (I3 − I1)ω3ω1,

I3
dω3

dt
= (I1 − I2)ω1ω2.

(1)

Hereω1,ω2,ω3 are the components of the angular velocity in the
body-fixed frame, and I1, I2, I3 are the principal moments of inertia
about the three principal axes.

A 4D extension of these equations describes the rotational
dynamics in four-dimensional space involving the six independent
angular velocities (ω12,ω13,ω14,ω23,ω24,ω34) corresponding to the
six independent planes of rotation in 4D space (i.e., combinations
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FIGURE 1
2D projections of the Poincare section x = 0 and histograms of the corresponding variables.

of the four coordinate axes) [43]. In 4D, a 4× 4 matrix represents
the inertia tensor (Iij; i, j ∈ {1,2,3,4}) that describes how the mass
is distributed with respect to six independent planes. The more
complex structure of the moment of inertia leads to richer dynamics
including potential chaotic behaviour.

The 4D Euler equations for rigid body rotation can be written in
terms of theHamiltonian vector fieldwhere the six angular velocities

can be organized into an angular momentum vector L in the 6D
space of rotations.

The 4D Euler equations in Hamiltonian form have the following
general form:

dLij
dt
= ∑

k≠i,j
(I−1ik − I

−1
jk )LikLjk (2)
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FIGURE 2
2D projections of the Poincare section y = 0 and histograms of the corresponding variables.

where Lij is the angular momentum in the ij-plane, and
Iij are the components of the moment of inertia tensor
in the 4D space. The corresponding Hamiltonian function
related to the total kinetic energy of the system, in terms
of angular momentum and moment of inertia in 4D space,
is given as

H = T = 1
2
∑
ij
I−1ij L

2
ij (3)

A Hamiltonian form of 3D Euler equation may be written by
assuming xi = Iiωi and αi = I−1i

ẋ1 = (α3 − α2)x2x3,

ẋ2 = (α1 − α3)x1x3,

ẋ3 = (α2 − α1)x1x2.

(4)

with the Hamiltonian H(x) = 1
2
(α1x21 + α2x

2
2 + α3x

2
3)
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FIGURE 3
2D projections of the Poincare section z = 0 and histograms of the corresponding variables.

The Euler equations may also be written in the form

ẋ = J (x)∇H (x) , (5)

where J(x) is symplectic

J (x) = −JT (x) =
[[[[

[

0 −x3 x2
x3 0 −x1
−x2 x1 0

]]]]

]

(6)

equivalently, the Euler equations may be written in Lie–Poisson
bracket or cross-product form

ẋ = {x,H (x)} = x×∇H (x) , (7)

with {x,H} determining the Lie–Poisson structure.
Qi [44] extends these equations to 4D for four sub-rigid

bodies, introducing six complete 4D Euler equations that preserve
symplectic structure, Hamiltonians, and Casimir energies. Based
on these equations, six types of Hamiltonian conservative chaotic
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FIGURE 4
2D projections of the Poincare section w = 0 and histograms of the corresponding variables.

systems are constructed, revealing the mechanism that generates
and enhances chaos. The approach has been summarized briefly in
the following paragraph. For a system with dimension more than
3, the Lie-Poisson structure can not be written in the cross-product
form as in Equation 7. For this purpose four 3D rigid sub-bodies
SB123,SB124,SB134, and SB234 are considered, and the generalized
4D sub-Euler equation for the sub-body SBijk are expressed
as follows:

ẋijk = xijk ×∇H(xijk) = det
[[[[

[

ei ej ek
xi xj xk
αixi αjxj αkxk

]]]]

]

(8)

In the above equation ijk is one of the ordered triplets from
the set (123,124,134,234). The cross-product calculation is same as
3D crossproduct and the result is generalized in 4D vector form
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FIGURE 5
The division of the phase space (a,b) into four parts and the corresponding pairs of bits.

with zero as the remaining component. By integrating these sub-
bodies, six complete 4D bodies Euler’s equations are constructed
e.g., ∑24 is constructed by combining SB124 & SB234 in the
following way:

ẋ = x124 ×∇H (x124) + x234 ×∇H(x234) (9)

ẋ = J24 (x)∇H (x) , (10)

where

J24 (x) =

[[[[[[[

[

0 −x4 0 x2
x4 0 −x4 x3 − x1
0 x4 0 −x2
−x2 x1 − x3 x2 0

]]]]]]]

]

(11)

with the Hamiltonian H(x) = 1
2
(α1x21 + α2x

2
2 + α3x

2
3 + α4x

2
4)

Similarly, we may construct ∑12 ∑13, ∑14, ∑23, and ∑34 by
combining SB123 & SB124, SB123 & SB134, SB124 & SB134, SB123 &
SB234, and SB134 & SB234 respectively. All six 4D Euler’s equations are
conservative in Hamiltonian form, and the Casimir energy function
(also known as energy-momentum) is also conserved. The rate of
change of the Casimir function, referred to as the Casimir power,
may serve as a criterion for determining whether the system exhibits
chaos. Hamiltonian conservative chaotic systems (HCCS) may be

generated by breaking the conservation of Casimir energy and
preserving the Hamiltonian in the above six 4D Euler’s equations.
The generated six HCCS are denoted by ∑Hij where ij is one of the
elements of the set (12, 13, 14, 23, 24, 34). One of the Hamiltonian
conservative chaotic systems (HCCS) ∑H24 generated in the above
mentioned way is as follows:

ẋ = JH24 (x)∇H (x) , (12)

where

JH24 (x) =

[[[[[[[

[

0 −x4 b x2
x4 0 −x4 x3 − x1
−b x4 0 −x2
−x2 x1 − x3 x2 0

]]]]]]]

]

. (13)

in the expanded form, the HCCS ∑H24 may be written as:

[[[[[[[

[

̇x1
̇x2
̇x3
̇x4

]]]]]]]

]

=

[[[[[[[

[

0 −x4 b x2
x4 0 −x4 x3 − x1
−b x4 0 −x2
−x2 x1 − x3 x2 0

]]]]]]]

]

[[[[[[[

[

α1x1
α2x2
α3x3
α4x4

]]]]]]]

]

, (14)

with the substitutions [45] α4 − α2 = a, α4 − α3 = c, α1 − α4 = d,
and α3 − α2 = 0, and (x1,x2,x3,x4) ≡ (x,y,z,w), the HCCS takes the
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FIGURE 6
The division of the phase space (a,b) into eight parts and the corresponding triplets of bits.

following form:

ẋ = ayw+ bz,

ẏ = czw+ dxw,

̇z = −cyw− bx,

ẇ = −(a+ d)xy.

(15)

We use the above mentioned HCCS as an example to
demonstrate the generation of pseudorandom numbers.

The above system has been integrated for the parameters
(a,b,c,d) = (0.5,10,6,5.5) and initial conditions (x0,y0,z0,w0) =
(1,1,1,1) [45] for 16× 106 steps with a time step of 0.01 for
generating a bit sequence of 106 bits. The system trajectory has
been observed continuously and the Poincare points (yn,zn,wn),
(xn,zn,wn), (xn,yn,wn) and (xn,yn,zn) are recorded when the
trajectory crosses the planes x = 0, y = 0, z = 0 andw = 0 respectively.
We have depicted the 2D projections of these Poincare points and
histograms of the variables in Figures 1–4. Particularly in the left
column of these figures the 2D projections of 3D Poincare points
have been depicted and in the right column the histograms of
all three variables of Poincare points. These Poincare sections and
histograms are obtained for the time asymptotic behaviour of the
system under the parameter values and initial conditionsmentioned

above. The distribution of points in the 2D projections as well as
the shape of the histograms remain invariant under time asymptotic
behaviour. As we observe that the phase space of the above system
is a hypersphere defined by −2 ≤ x ≤ 2; −2 ≤ y ≤ 2; −2 ≤ z ≤ 2; −2 ≤
w ≤ 2 and the Poincare sections of the phase trajectories through the
planes give 3D spheres whose projections on various 2D planes are
circles of radius 2 with origin (0,0).

For the purpose of a pseudorandom number generation,
we require a uniform and ergodic distribution of points in
phase space, with invariant probability distributions for all phase
variables. It is well known that for a uniform distribution of
points in a 2D square space, both variables must individually
follow a uniform distribution over the same range. Similarly,
for a uniform distribution of points in a 2D circular space,
both variables should follow a normal-like distribution (more
precisely, a uniform distribution in 2D polar space) over the
same range.

In our analysis, when we closely examine the distribution
of points in the 2D projections of Poincaré sections and their
corresponding histograms of variables, we clearly observe from
Figure 1 that the projection of points in the 2D phase space (y,w), as
well as the individual distributions of variables y andw for a Poincaré
section defined by x = 0, satisfies the above criteria. This behavior is
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Require: a, b

 if a < 0 and b < 0 then

  pair_of_bits←′00′

 else if a < 0 and b > 0 then

  pair_of_bits←′01′

 else if a > 0 and b > 0 then

  pair_of_bits←′10′

 else if a > 0 and b < 0 then

  pair_of_bits←′11′

 end if

 return pair_of_bits

Algorithm 1. Generate the pair of bits using Method 1.

fully ergodic in the time-asymptotic sense. However, any other cases
in Figures 1–4 do not meet this criterion.

3 The proposed method for
pseudorandom number generation

After selecting a suitable pair of variables namely, a and b, there
are twoways to generate pseudorandombit sequences by comparing
these variables.

In the first method, we divide the entire circular phase space
into four equal parts (quadrants) and assign a pair of bits to
each part. We then integrate the Hamiltonian conservative system
and obtain the Poincaré points for the selected pair of variables.
When the Poincaré points fall into a particular quadrant of the
phase space, we add the corresponding pair of bits to our bit
sequence. This process continues until the sequence reaches the
desired length. We have illustrated the division of the phase space
and the corresponding pairs of bits in Figure 5 and presented the
corresponding algorithm in Algorithm 1.

In the second method, we divide the circular phase space
into eight equal parts and assign a triplet of bits to each part.
We then integrate the Hamiltonian conservative chaotic system
and sequentially obtain the Poincaré points for the selected pair
of variables. When the Poincaré points fall into a specific part
of the phase space, we add the corresponding triplet to our bit
sequence. This process continues until the sequence reaches the
desired length. We have illustrated the division of the phase space
and the corresponding pairs of bits in Figure 6 and presented the
corresponding algorithm in Algorithm 2.

The second method generates bit sequences faster than the first
method, as each iteration (each time the trajectory crosses the
selected Poincaré plane) produces three bits. In contrast, the first
method only produces two bits. Therefore, the second method is 1.5
times faster than the first.

Based on the dynamic analysis of the Hamiltonian conservative
chaotic system presented in the previous section, we select the
variables y and w corresponding to the Poincaré section defined by
x = 0 for pseudorandom number generation. We now explore three
different schemes for each of the two methods mentioned above.

Require: a, b

 if a < 0 and b < 0 then

  if |a| < |b| then

   triplet_of_bits←′000′

  else if |a| > |b| then

   triplet_of_bits←′001′

  end if

 else if a < 0 and b > 0 then

  if |a| > |b| then

   triplet_of_bits←′010′

  else if |a| < |b| then

   triplet_of_bits←′011′

  end if

 else if a > 0 and b > 0 then

  if |a| < |b| then

   triplet_of_bits←′100′

  else if |a| > |b| then

   triplet_of_bits←′101′

  end if

 else if a > 0 and b < 0 then

  if |a| > |b| then

   triplet_of_bits←′110′

  else if |a| < |b| then

   triplet_of_bits←′111′

  end if

 end if

 return triplet_of_bits

Algorithm 2. Generate the triplet of bits using Method 2.

3.1 Method 1: Through the divison of
Poincare phase space into four parts

We integrate two identical Hamiltonian conservative chaotic
systems, starting with random and different initial conditions
but the same system parameter values corresponding to chaotic
ergodic behavior.

3.1.1 Scheme 1.1
Consider the Poincare phase space of variables y1 (each time the

trajectory crosses the Poincaré section at x1 = 0) and y2 (each time
the trajectory crosses the Poincaré section at x2 = 0). This space is
divided into four parts and pairs of bits are generated as described
in Method 1 above. This process is carried out using Algorithm 1
with a = y1 and b = y2.

3.1.2 Scheme 1.2
Consider the Poincare space of variables w1 (each time the

trajectory crosses the Poincaré section at x1 = 0) and w2 (each time
the trajectory crosses the Poincaré section at x2 = 0). This space is
divided into four parts, and pairs of bits are generated as described
in Method 1 above. This process is carried out using Algorithm 1
with a = w1 and b = w2.
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FIGURE 7
Phase space (X,Y) and histograms of the phase variables X and Y of the
2D Hamiltonian conservative chaotic standard map.

3.1.3 Scheme 1.3
Consider the Poincare phase space of variables y1 (each time the

trajectory crosses the Poincaré section at x1 = 0) and w2 (each time
the trajectory crosses the Poincaré section at x2 = 0), or alternatively,
the Poincare space of variables y2 (each time the trajectory crosses
the Poincaré section at x1 = 0) and w1 (each time the trajectory
crosses the Poincaré section at x2 = 0).This space is divided into four

parts and pairs of bits are generated as described inMethod 1 above.
This process is carried out using Algorithm 1 with a = y1 and b = w2
or, alternatively, a = y2 and b = w1.

3.2 Method 2: Through the divison of
Poincare phase space into eight parts

We integrate two identical Hamiltonian conservative chaotic
systems, starting with random and different initial conditions
but the same system parameter values corresponding to chaotic
ergodic behavior.

3.2.1 Scheme 2.1
Consider the Poincare phase space of variables y1 (each time the

trajectory crosses the Poincaré section at x1 = 0) and y2 (each time
the trajectory crosses the Poincaré section at x2 = 0). This space is
divided into eight parts, and triplets of bits are generated as described
in Method 2 above. This process is carried out using Algorithm 2
with a = y1 and b = y2.

3.2.2 Scheme 2.2
Consider the Poincare phase space of variablesw1 (each time the

trajectory crosses the Poincaré section at x1 = 0) and w2 (each time
the trajectory crosses the Poincaré section at x2 = 0). This space is
divided into eight parts, and triplets of bits are generated as described
in Method 2 above. This process is carried out using Algorithm 2
with a = w1 and b = w2.

3.2.3 Scheme 2.3
Consider the Poincare phase space of variables y1 (each time

the trajectory crosses the Poincaré section at x1 = 0) and w2
(each time the trajectory crosses the Poincaré section at x2 = 0),
or alternatively, the Poincare space of variables y2 (each time
the trajectory crosses the Poincaré section at x1 = 0) and w1
(each time the trajectory crosses the Poincaré section at x2 =
0). This space is divided into eight parts, and triplets of bits
are generated as described in Method 2 above. This process
is carried out using Algorithm 2 with a = y1 and b = w2 or,
alternatively, a = y2 and b = w1.

In the proposed approach for pseudorandom number
generation, we describe two primary methods, dividing the phase
space into four parts and into eight parts, each with multiple
schemes. These methods can be applied to any HCCS, provided
that the selected phase variables for partitioning satisfy the pre-
analysis criteria of uniformity, ergodicity, and invariant measure.
The number of schemes within each method depends on the
available phase variables meeting these criteria. At least two such
phase variables are required, along with their corresponding 2D
projections. If more qualifying phase variables exist, additional
schemes can be designed by considering all possible permutations
of phase-variable pairs and their respective 2D projections. In this
paper, we present three schemes for each method and demonstrate
that pseudorandom number generation is feasible for all possible
pairwise permutations of the chosen phase variables.

It is also important to mention that we have explained
our method using an example of an HCCS, specifically a
continuous-time dynamical system, through the Poincaré surface
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TABLE 1 Performance analysis of the three schemes in Method 1 using the NIST randomness test suite.

Test No. Statistical test
name

Scheme 1.1 Scheme 1.2 Scheme 1.3

P-valueT Proportions P-valueT Proportions P-valueT Proportions

1 Frequency 0.6475 0.992 0.8992 0.987 0.1709 0.988

2 Block Frequency 0.6205 0.988 0.8273 0.995 0.0257 0.989

3 Cumulative Sums 0.4827 0.994 0.3361 0.987 0.8629 0.987

4 Cumulative Sums 0.2506 0.99 0.7963 0.985 0.4410 0.988

5 Runs 0.5728 0.988 0.7676 0.990 0.2144 0.987

6 Longest Runs 0.9483 0.987 0.1529 0.983 0.9265 0.989

7 Rank 0.0325 0.989 0.8949 0.988 0.1806 0.996

8 FFT 0.4118 0.985 0.1334 0.987 0.0300 0.991

9–156
Non-Overlapping
Template

Min 0.0013 0.983 0.0056 0.982 0.0120 0.978

Max 0.9883 0.998 0.9918 0.997 0.9965 0.998

Avg 0.5082 0.990 0.4730 0.990 0.4792 0.990

157 Overlapping Template 0.7218 0.991 0.6559 0.9900 0.6766 0.981

158 Universal 0.7715 0.986 0.7279 0.9900 0.2940 0.989

159 Approximate Entropy 0.2716 0.989 0.2442 0.9910 0.1101 0.994

160–167 Random Excursion

Min 0.1368 0.986 0.0089 0.985 0.0084 0.981

Max 0.9845 0.998 0.8685 0.993 0.9029 0.990

Avg 0.6165 0.993 0.5705 0.989 0.4206 0.988

168–185
Random Excursion
Variant

Min 0.0015 0.989 0.0970 0.979 0.0363 0.979

Max 0.9156 0.998 0.9522 0.993 0.9611 0.995

Avg 0.4297 0.993 0.6114 0.988 0.3675 0.987

186 Serial 0.9153 0.992 0.3653 0.9840 0.7319 0.988

187 Serial 0.2156 0.983 0.1538 0.9940 0.3753 0.987

188 Linear Complexity 0.4373 0.989 0.9453 0.9910 0.0721 0.987

of section approach. However, the method can also be applied
to discrete-time HCCS (e.g., 2D Hamiltonian conservative chaotic
standard map) as long as the stated criteria are met. In such
cases, the Poincaré surface of section is not needed; instead,
phase variables and their corresponding 2D projections can be
directly obtained at discrete time steps from the following map
(difference) equations:

Xn+1 = (Xn +K sinYn)mod 2π,

Yn+1 = (Xn+1 +Yn)mod 2π.
(16)

In Figure 7, we depict the phase space (X,Y) behavior of the 2D
Hamiltonian conservative chaotic StandardMap and the histograms
of both phase variables for 106 iterations and the parameter value
K = 259.14. We observe that both phase variables exhibit a uniform
and invariant distribution in the asymptotic time limit, and the
phase space distribution is ergodic. Hence, it satisfies the criteria
stated above for pseudorandomnumber generation.Therefore, these
phase variables may be used for pseudorandom number generation
as described in the two methods (and their respective schemes)
mentioned above.
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TABLE 2 Performance analysis of the three schemes in Method 2 using the NIST randomness test suite.

S.No. Statistical test Scheme 2.1 Scheme 2.2 Scheme 2.3

P-valueT Proportions P-valueT Proportions P-valueT Proportions

1 Frequency 0.8596 0.992 0.8514 0.985 0.9619 0.988

2 Block Frequency 0.7734 0.989 0.4391 0.990 0.6849 0.993

3 Cumulative Sums 0.2897 0.991 0.1437 0.987 0.9737 0.986

4 Cumulative Sums 0.8019 0.992 0.3012 0.984 0.6288 0.988

5 Runs 0.2570 0.991 0.1608 0.982 0.2100 0.992

6 Longest Runs 0.3237 0.991 0.9443 0.991 0.3056 0.983

7 Rank 0.6309 0.993 0.7519 0.991 0.1796 0.995

8 FFT 0.5524 0.992 0.6579 0.985 0.1796 0.982

9–156
Non-Overlapping
Template

Min 0.0051 0.983 0.0035 0.981 0.0035 0.980

Max 0.9979 0.998 0.9968 0.998 0.9956 0.996

Avg 0.5252 0.990 0.4871 0.990 0.4578 0.990

157 Overlapping Template 0.0640 0.977 0.0983 0.995 0.1690 0.993

158 Universal 0.4866 0.993 0.4541 0.986 0.0423 0.985

159 Approximate Entropy 0.1856 0.988 0.6413 0.991 0.8000 0.986

160–167 Random Excursion

Min 0.0717 0.983 0.2318 0.986 0.0861 0.984

Max 0.7587 0.995 0.9649 0.997 0.9582 0.997

Avg 0.4023 0.986 0.5458 0.992 0.6243 0.988

168–185
Random Excursion
Variant

Min 0.0815 0.986 0.1317 0.987 0.0047 0.985

Max 0.9430 1.000 0.9990 0.997 0.9873 0.993

Avg 0.4991 0.993 0.5862 0.993 0.4599 0.989

186 Serial 0.7578 0.991 0.8326 0.993 0.8093 0.988

187 Serial 0.8771 0.992 0.0904 0.993 0.0904 0.989

188 Linear Complexity 0.6725 0.990 0.9411 0.995 0.0949 0.993

4 The performance analysis and
statistical testing

We use the NIST randomness test suite [46] to analyze
the output of our proposed pseudorandom number generator.
For this purpose, for each scheme (explained in Section 3), we
generate 1,000 sequences, each of length 106 bits. To generate
each bit sequence, we randomly choose a set of initial conditions
from the hyperspherical phase space of radius 2, and the
system parameters are selected to ensure complete ergodic
behavior throughout the entire phase space (as explained in the
previous section).

All the generated sequences are tested using the NIST
randomness test suite, which comprises 15 tests, including both
parametric and non-parametric tests. The NIST test suite primarily
conducts tests based on specific test statistics and generates a p-value
that indicates the success or failure of each test, depending on the
p-value’s magnitude (with the significance level (α) = 0.01 chosen
for our analysis). A p-value is generated for each sequence and test
statistic, and the sequence passes the test if p− value ≥ α = 0.01.

Thus, for our 1,000 sequences generated by the proposed
pseudorandom number generator, the NIST test suite computes
1,000 p-values for each test statistic. There are 15 main tests, several
of which include multiple sub-tests based on different templates,
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FIGURE 8
NIST Test Suite Results for Method 1: The first, second, and third rows correspond to Scheme 1.1, Scheme 1.2, and Scheme 1.3, respectively.

parameter sets, or criteria. In total, 188 tests are performed
by the NIST test suite on each sequence, determining whether
that particular sequence passes or fails each test. For a detailed
description of all the tests in NIST randomness test suite, we refer
the readers to Bassham et al. [46].

We then calculate the proportion of sequences that pass each test
by dividing the number of sequences that passed by the total number
tested, providing a comprehensive evaluation of the randomness of
the sequences generated by our pseudorandom number generator.

We also check the uniformity of the p-values generated for each
sequence by applying the χ2 test and computing a p− valueT for each
test statistic. If the p− valueT ≥ 0.001 the distribution of the p-values
is considered uniform.

The results of p− valueT and proportions of sequences passing
the tests for all the six schemes have been summarized in Table 1,
2, and are also depicted in Figures 8, 9. We clearly observe that
the pseudorandom sequences generated by our novel approach
pass all the tests in the NIST randomness test suite. Therefore,
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FIGURE 9
NIST Test Suite Results for Method 2: The first, second, and third rows correspond to Scheme 2.1, Scheme 2.2, and Scheme 2.3, respectively.

the proposed PRNG is robust and complies with the randomness
standards required for cryptographic applications.

As pointed out earlier, the Method 2 is 1.5 times faster than
Method 1, giving it a computational speed advantage. Bothmethods
have different variants (as referred to by schemes) based on the
number of phase variables and their corresponding 2D projections
that satisfy the predefined criterion. A higher-dimensional
HCCS inherently employs more phase variables, leading to a
greater number of valid 2D projections and, consequently, more

scheme variants. Ideally, the superiority amongst the schemes
corresponding to the same method is trivial. However, the
suitability of a method for pseudorandom number generation is
ultimately determined by its performance in the NIST statistical test
suite. This evaluation hinges on two key metrics: (i) Uniformity
of p-values across the test (assessed by p− valueT) and (ii)
Proportions of sequences that pass the tests. Amethod is considered
cryptographically secure if its results fall within the allowable
ranges specified by the NIST guidelines (based on the chosen
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significance level). Importantly, direct numerical comparisons of
p-values or passing proportions are not inherently meaningful.
Instead, the focus should remain on adherence to the NIST
criteria. Furthermore, valid comparisons between methods require
identical testing environments (e.g., significance level, number
of sequences, and bit-length per sequence). For this reason, we
avoid explicit comparisons based on raw p-value magnitudes or
passing rates and instead emphasize compliance with the NIST
recommendations.

TheDependence on high-entropy sources and periodic behavior
are common challenges in most pseudorandom number generators
(PRNGs). Every PRNG has a characteristic period after which
its sequence repeats. A PRNG is considered secure for a specific
application only if its period significantly exceeds the required
sequence length. Additionally, all PRNGs require a seed value to
initialize pseudorandom sequence generation. A larger seed space
(i.e., more possible seed values) corresponds to higher entropy,
which directly enhances security. In our approach, we ensure
the Hamiltonian Conservative Chaotic System (HCCS) exhibits
ergodic behavior before employing it for PRNG applications.
By leveraging the entire phase space of the HCCS as the seed
domain, a feature unattainable in dissipative chaotic systems
or conservative systems with coexisting regular and chaotic
dynamics (which are non-ergodic), the number of possible
seed values becomes theoretically infinite. However, in practice,
finite computational precision imposes a finite (albeit extremely
large) upper bound on the seed space, a limitation shared
by most chaos-based PRNGs. For an HCCS-based PRNG with
ergodic behaviour, the periodicity is theoretically infinite, as the
system can traverse its entire phase space without repetition.
Nevertheless, finite computational precision restricts the practical
implementation to a finite period length. Although this period
remains astronomically large compared to conventional PRNGs,
it underscores the inherent constraints of digital computation in
chaotic systems.

5 Conclusion

This paper presents a novel approach to pseudorandom number
generation (PRNG) using a Hamiltonian conservative chaotic
system (HCCS) derived from the 4D Euler equations. The key
contribution of our work lies in the systematic pre-analysis of
HCCSs to ensure a uniform and ergodic distribution of phase space
variables along with their invariant measure, which is crucial for
achieving robust pseudorandomness. This pre-analysis framework,
which involves identifying suitable Poincaré sections and phase
space variables, not only ensures the statistical rigor of the generated
sequences but also guides the selection of parameter ranges for
initial seeds-an aspect often overlooked in existing chaos-based
PRNGs, including those based onHCCSs.The proposed approach is
readily extendable to any Hamiltonian conservative chaotic system
exhibiting the desired ergodic behavior, provided the pre-analysis
steps outlined in this paper are rigorously followed.We demonstrate
the proposed approach by generating high-quality pseudorandom

sequences using two alternative methods and multiple schemes
associated with each method, tailored to the number of variables
satisfying the uniformity and ergodicity criteria. Comprehensive
testing with the NIST randomness test suite confirms the excellent
statistical properties of the sequences, meeting the stringent
standards required for cryptographic applications.
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