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LiDAR (Light Detection and Ranging) is an essential device for capturing
the depth information of objects. Unmanned aerial vehicles (UAV) can sense
the surrounding environment through LiDAR and image sensors to make
autonomous flight decisions. In this process, aerial slender targets, such as
overhead power lines, pose a threat to the flight safety of UAVs. These targets
have complex backgrounds, elongated shapes, and small reflection cross-
sections, making them difficult to detect directly from LiDAR point clouds. To
address this issue, this paper takes overhead power line as a representative
example of aerial slender targets and proposes a method that utilizes visible
light images to guide the segmentation of LiDAR point clouds under large depth
of field conditions. The method introduces an image segmentation algorithm
based on a votingmechanism for overhead power lines and designs a calibration
algorithm for LiDAR point clouds and images in the scenarios with large depth
of field. Experimental results demonstrate that in various complex scenes,
this method can segment the LiDAR point clouds of overhead power lines,
thereby achieving accurate positions and exhibiting good adaptability across
multiple scenes. Compared to traditional point cloud segmentation methods,
the segmentation accuracy of the proposed method is significantly improved,
promoting the practical application of LiDAR.
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1 Introduction

Light Detection and Ranging (LIDAR) is a crucial sensing device for Unmanned
Aerial Vehicles (UAVs), providing detailed three-dimensional information of the scene.
UAVs achieve autonomous flight through technologies such as LIDAR [1], visible light
cameras [2], and Simultaneous Localization and Mapping (SLAM) [3]. However, during
this process, aerial slender targets, primarily overhead power lines, pose a serious
threat to the autonomous flight of UAVs. This is mainly because overhead power
lines and similar targets have elongated and slender morphological features, small
reflection cross-sections, and complex backgrounds. Consequently, the detection and
spatial localization of such targets have become a research focus, with the main technical
approaches including detection algorithms based on LIDAR point clouds and detection
algorithms based on visible light images.
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Detection algorithms based on LIDAR point clouds primarily
rely on deep learning or clustering methods. Ma [4] proposed a
method that combines PCA (Principal Component Analysis) and
region growing algorithms. This approach leverages the spatial
distribution characteristics of overhead power lines, enabling
accurate and efficient extraction of individual overhead power lines.
Matti [5] determined the direction of overhead power lines to
obtain rough point estimates of the power lines.Then, the RANSAC
line fitting algorithm and nearest neighbor search algorithm were
used to accurately extract the overhead power lines. Kim [6]
proposed a classification system suitable for extracting power lines,
which integrates point cloud features and object features into two
independent feature sets.The system uses a random forest algorithm
to extract power lines that are characterized by point features.
Although the aforementioned methods are capable of extracting
point cloud data for overhead power lines, they do not take into
account the large volumeof point clouddata. InUAV-mounted point
cloud data, the overall volume of point cloud data is large, but the
point cloud corresponding to overhead power lines accounts for less
than 5% of the total data.Therefore, processing the entire panoramic
point cloud not onlymakes it difficult to transmit and process on the
UAV end, but also wastes significant computational resources.

Detection algorithms based on visible light images are primarily
divided into traditional image processing methods and deep
learning-based segmentation methods. The traditional algorithms
primarily rely on edge detection operators and line detection
algorithms as the main methods. Wang [7] proposed an image
processing method for measuring the ice thickness on transmission
lines, which, under given conditions, can detect the edges of iced
and non-iced transmission lines. Wang Hao [8] addressed the issue
of difficulty in recognizing transmission lines in complex ground
environments by proposing an overhead power line detection
algorithm based on adaptive Canny edge detection. However,
traditional methods only utilize shallow features of the image, and
they cannot consistently maintain good performance in complex
scenarios.

Deep learning-based semantic segmentation algorithms
can achieve pixel-level segmentation of overhead power lines.
Representative algorithms include Deep Convolutional Neural
Networks (DCNN). Cano-Solis [9] proposed a deep learning-based
method for overhead power line segmentation, using DeepLabV3
and U-Net segmentation networks to separate the power line
corridors from the vegetation background. Mao [10] used a
semantic segmentation algorithm to detect transmission lines and
proposed an end-to-end semantic segmentation model based on
binocular vision and a feature pyramid network—the Binocular
FPN. This model can detect transmission lines and their defects
on binocular images. However, due to the varying perspectives and
changing scenes captured by drones, the detection results tend to
be discontinuous (this phenomenon will be shown in the section of
experiment), making it difficult to obtain a useful result.

To address this problem, this paper proposes a detectionmethod
for aerial slender targets that guides the segmentation of LIDAR
point clouds using two-dimensional images in large-depth-of-
field environments. Compared to existing methods, this approach
balances detection accuracy, adaptability across multiple scenes,
and algorithm complexity, effectively promoting the development
of LiDAR technology. Considering practical applications, the aerial

slender targets discussed in this paper are specifically overhead
power lines.

2 Method

The method proposed in this paper is a 3D detection approach
for overhead power line in large depth-of-field environments, which
uses 2D images to guide 3D point cloud segmentation. It consists of
two key parts:

(1) Overhead power line extraction algorithm in visible light
images based on a voting mechanism is proposed, which
demonstrates good scene adaptability.

(2) A joint calibration technique under large depth-of-field
conditions is employed to accurately map the 3D point cloud
onto the 2D image. Based on the above two parts, the 3D point
cloud of the aerial power line can be distinguished, achieving
the goal of 3D detection.

2.1 Aerial power line image extraction
algorithm based on voting mechanism

The main idea of this method is to first use deep learning-
based detection algorithms and traditionalmethods to detect images
containing aerial power lines, and then apply a voting algorithm to
fuse the results of both approaches, achieving the detection goal.

The deep learning detection algorithm uses the image
segmentation networkDeeplabv3+ [11, 12] for power line detection,
with the results shown in Figure 1B. As can be seen, although this
method eliminates interference from the surrounding environment,
the detected line segments are discontinuous. On the other hand,
traditional algorithms use the MCMLSD algorithm [13], which
combines the advantages of image-domain perceptual clustering and
Hough transform [14, 15]. Detection results are shown in Figure 1C.
It can be seen that the integrity of line segment detection is
ensured, but, the interference from linear textures in the background
is apparent.

Based on the above methods, a fusion algorithm based on the
voting mechanism is proposed, which combines the advantages
of both approaches to complement each other, enabling overhead
transmission line detection in multiple scenarios. Since the results
of the above two methods are required, the output of both methods
is first calibrated. For the detection results of the DeepLabv3+
algorithm, they are represented as a binary grayscale image. To
facilitate the algorithm description, the set of positions of non-zero
pixels is labeled as {P̂k}, where the subscript k indicates the k-th
non-zero pixel, and P̂k = (xk,yk) represents the coordinates of the k-
th non-zero pixel. The detection results of the MCMLSD algorithm
consist of line segment information, represented by the coordinates
of the two endpoints of each line segment. We use the set { ̂Lj}
to represent each line segment, where j denotes the line segment
number, and L̂j = (x

s
k,y

s
k,x

e
k,y

e
k), with superscripts s and e indicating

the start and end points of the line segment, respectively. Clearly,
{ ̂Lj} represents the coordinates of the start and end points of the j-th
line segment. The steps of the fusion algorithm based on the voting
mechanism are as follows:
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FIGURE 1
Overhead Transmission Line Based on Voting Mechanism Detection Method: (A) Image to be detected; (B) Detection results based on DeepLabv3+; (C)
Detection results based on MCMLSD algorithm; (D) Detection results based on voting mechanism.

(1) For the j-th line segment, based on the coordinate information
of L̂j, define a rectangular region Rj with L̂j as the diagonal.

(2) For each point P̂k contained in Rj, calculate its distance to the
line represented by ̂Lj.
(3)Set a distance threshold d0, and count the number of P̂k
values in the results from step (2) that are smaller than d0.This
count is used as the vote value for ̂Lj, denoted as V J .

(4) Repeat steps (1) to (3) for all line segments to obtain the set of
vote values {V J}.

(5) Sort the non-zero elements of {V J} in descending
order. Empirically, select the top 50%–75% of the sorted
elements as the chosen result, and the line segments
corresponding to these indices are the final selected line
segments.

The experimental result of the voting-based overhead line
extraction method is shown in Figure 1D. It can be observed that
thismethod has high accuracy, as it preserves the complete overhead
line (marked in green). Compared to traditional algorithms
(as shown in Figure 1C), this method demonstrates better
resistance to interference. Its scene robustness will be presented in
Section 3.

2.2 Calibration method for “Point
Cloud-Image” in large depth-of-field
environments

Traditional methods use an object (such as chess board) to
calibrate the LiDAR, with the calibration board placed in multiple
poses at a single depth. However, during drone flight, the images
captured are typically large depth-of-field images, and traditional
methods may result in mismatches between the LiDAR point

cloud and the target. This paper adopts a simple but effective
calibration method for “Point Cloud-Image” in large depth-of-field
environments.

The calibration system is shown in Figure 2A, where the optical
axes of the LiDAR and the visible light camera are parallel.The black
solid line represents the common field of view of the two sensors. In
this method, we use polar coordinates to describe the placement of
the target. We define the depth of the visible light camera’s lens as
0 m, with the longitudinal direction of the calibration scene parallel
to the camera’s optical axis.The depth at which the calibration board
is placed is denoted as Z.

(1) Design and Placement Method of Calibration Object: The
calibration object selected is a checkerboard target board. The
object is placed at a depth of Z = d1,d2,d3, with the polar
angle of the placement position denoted as θ = θ1,θ2,θ3.It is
important to emphasize that, due to the significant perspective
effects in a large depth-of-field environment, the size of
the calibration object should be enlarged as the distance
increases, as shown in Figure 2B. The purpose of this design
is to ensure that the features of the calibration board do
not become weakened due to perspective effects during the
calibration process.

(2) At each position, the Zhang Zhengyou calibration method
is used to obtain the intrinsic parameters of the visible
light camera and apply the method of Direct Linear
Transform (DLT) [16] to measure the transformation matrix
between the LiDAR and the camera, denoted as Hdi,θk . The
size of matrixHdi,θk is 3 × 4.

(3) For each depth, calculate the transformationmatrixHdi , where
Hdi =

1
K
∑
k
Hdi,θk .

(4) Construct the look-up tableH , whereH = {Hd1⋯Hdn}.
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FIGURE 2
Calibration method (A) Scheme of calibration experiment (B) Calibration result using traditional method; (C) Calibration result using proposed method.

TABLE 1 Experimental environment and training parameters.

Name Parameters

operating system Ubuntu20.04

CPU Intel Core i9-10900K

GPU NVIDIA GTX3080ti

RAM 125G

Batch size 6

Epochs 200

(5) In practical applications, suppose the point cloud dataset
measured by the LiDAR is {Pj}, and the distance from point Pj
to the sensor’s origin is dj. Then, using the lookup tableH , the
transformationmatrix corresponding to the depth closest to dj
can be found.The chosen transformation matrix is denoted by
H j

In order to validate the accuracy of the proposed method,
comparative experiments were conducted. The experimental results
are shown in Figures 2B, C. To intuitively show the calibration results,
we apply this result directly to the point cloud, and then overlay them
on the visible light image in the form of pseudo-color. Figure 2B
presents the matching results using the traditional method, which
shows insufficient accuracy, with noticeablemismatches at the railing.
In contrast, Figure 2C presents thematching results using themethod
proposed in this paper, showing a better alignment performance.

2.3 Point cloud extraction

Once the joint calibration and line segment extraction in the 2D
image are completed, the final step is to extract the 3D point cloud
of the overhead power lines. We traverse all the point clouds and,
using the transformationmatrix obtained from the joint calibration,
map their coordinates from the 3D coordinate system to the image
coordinate system. Assume the coordinate of one point in the
LiDAR point cloud is represented as Pj = [X j,Y j,Zj,1]

T , and the
corresponding pixel coordinate in the image is ej = [uj,vj,1]

T . The
mapping process of the point cloud to image can be expressed as
ej =H jPj.Then, we compare whether the mapped results fall within
the region of the overhead power lines extracted from the 2D image,
thereby determining the point cloud corresponding to the overhead
power lines.

3 Experiment

The experimental section includes the following results: the line
segment extraction results in visible light images, the point cloud
segmentation results for the overhead power lines, and the extended
applications of this method.

3.1 Extraction of power lines in 2D images

We build a dataset for Deeplabv3+. This dataset in this
paper contains 1,025 images with overhead power lines, each
with a resolution of 1920 × 1,080 pixels. The dataset was
augmented by techniques such as mirroring, adding noise, and
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FIGURE 3
Detection Results of Overhead Power Lines in visible light images. (A1–C1) Visible light images of different scenarios; (A2–C2) Extraction results by
MCMLSD; (A3–C3) Extraction results by Deeplabv3+; (A4–C4) Extraction results by the proposed method.

FIGURE 4
Extraction of the LiDAR point cloud of the Overhead Power Lines; (A1–C1) The visible light images of three local scenes; (A2–C2) The LiDAR point
clouds of three local scenes; (A3–C3) In the visible light images, extraction of the overhead power lines; (A4–C4) The extraction of overhead power
lines from LiDAR point clouds.

adjusting brightness, increasing the total number of images to
4,100, which serves as the experimental dataset for this paper.
The experimental dataset is split into a training set and a
validation set in a 9:1 ratio, with 3,690 images used for training
and 410 images used for validation. The hardware, software

environment, and training parameter settings used in this paper
are shown in Table 1.

The results of MCMLSD, DeepLabv3+, and the proposed
method were compared, as shown in Figure 3. It can be seen that
the traditional algorithms maintain complete extraction of the
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TABLE 2 Experimental comparison of accuracy for different methods.

Method mIoU mAcc

Point Net 89.7% 82.5%

Point Net++ 93.5% 83.9%

The method proposed 97.9% 90.5%

TABLE 3 Experimental analysis of overhead line point cloud data.

Scene Number of
points in the

scene

Number of
extracted
power line
points

Proportion
of reduced
point cloud

data

Scene 1 64,632 3,076 95.24%

Scene 2 73,052 2,439 96.66%

Scene 3 83,744 4,527 94.59%

wire shape, but are significantly interfered with by background
textures. DeepLabv3+ (the third column) shows a significant
improvement in accuracy, with almost no extraction of other
types of objects. However, its drawbacks are also evident, as
the integrity of the extracted power lines is poor. The results of
the fused segmentation algorithm (fourth column of Figure 3)
combine the advantages of the MCMLSD and DeepLabv3+. It can
be seen that the proposed method can extract nearly complete
overhead lines and is largely unaffected by external environmental
interference, demonstrating the superiority of the method
in this paper.

3.2 Extraction of LiDAR point cloud for
overhead power lines

An unmanned aerial vehicle equipped with LiDAR and a
visible light camera was used to inspect the overhead power
lines. This resulted in comprehensive point cloud data collection
for a 475-meter section of the overhead power line, consisting
of a total of 24, 426, 219 points, as well as several images
captured in visible light.

We selected three scenes, including some trees, houses, and
overhead lines, as shown in Figures 4A1–C1. Figures 4A2–C2
displays the colored point clouds of the partial scenes. The
coloring process involves using the calibration method described
in Section 2.2 to compute the transformation matrix for each
element in the LiDAR point cloud and then mapping the
corresponding colors from the images onto the point cloud.
These results demonstrate the effectiveness of our calibration
approach. Figures 4A3–C3 shows the detection results of overhead
power lines in visible light images using the method proposed
in this paper. It can be observed that the detection accuracy
is high, further validating the effectiveness of our method.
Finally, Figures 4A4–C4 presents the extraction results of LiDAR

point clouds of overhead power lines in the three scenes. It is
evident that the results shown in Figures 4A4–C4 are minimally
affected by the surrounding environment, allowing for the precise
acquisition of the three-dimensional information of the overhead
conductors.

Here, we quantitatively evaluate the results of our algorithm.
Currently, widely used evaluation metrics are Accuracy (Acc) and
Intersection over Union (IoU).Themodel performance is evaluated
using themean Intersection overUnion (mIoU) andmeanAccuracy
(mAcc).ThemIoU function measures the overlapping area between
the predicted extraction and the ground truth labels, providing
a comprehensive assessment of segmentation accuracy. The mAcc
function, on the other hand, takes into account the balance between
different categories. Experiments were conducted on the dataset
using the classic PointNet, PointNet++ [17] algorithms, as well as
the method proposed in this paper.The results of these experiments
are presented in Table 2.

As can be seen from Table 2, compared to the classic PointNet
and PointNet++, the proposed model performs better overall in
the power line inspection point cloud segmentation task. The
improved method mIoU increased by 8.2% and 4.4% compared
to PointNet and PointNet++, respectively. This indicates that the
proposed method is better at capturing the boundaries and shapes
of different objects. The improvement in mAcc suggests that
the model’s classification accuracy has been enhanced, achieving
better classification performance even when handling individual
categories.

Furthermore, as shown in Table 3, the size of point cloud
data significantly decreases by using the proposed method,
which is beneficial for the processing by the onboard system,
thereby providing data support for the real-time obstacle
avoidance of UAV.

4 Conclusion

We propose an approach that uses visible light images to drive
the extraction of LiDAR point clouds of the slender objects in the
air. Essentially, LiDAR-acquired point cloud data is characterized
by large-scale data with limited semantic information. Although
variousmethods for processing point clouds exist, research focusing
on UAVs avoiding aerial linear obstacles remains limited. The
proposed method in this paper utilizes the rich semantics of 2D
images to compensate for the lack of semantic information in point
clouds, thereby enabling the segmentation of linear targets within
the point cloud. Furthermore, this method shows promise for edge
devices, offering real-time processing potential and providing a
technical safeguard for UAV safety.

Moreover, this method exhibits strong cross-domain
adaptability. For example, in the field of autonomous driving,
the algorithm can be applied to detect linear targets such as road
markings, cables, or guardrails. Furthermore, it has the potential for
real-time operation on edge devices, making it particularly suitable
for application scenarios that demand high responsiveness and
low power consumption. This cross-domain transferability lays
a solid foundation for the broader application of the method. It
should be noted that although this study does not utilize point cloud
segmentation networks for processing, it still requires traversing
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the coordinates of each point in the point cloud, which reduces the
algorithm’s efficiency. Designing a regional traversal method will be
one of the focuses of future research.
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