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This mini-review focuses on He’s frequency formulation for fractal-fractional
nonlinear oscillators. It examines the significance and applications of
this formulation in understanding and analyzing the frequency-amplitude
relationship within a fractal space. The review analyses the key features
and advantages of He’s frequency formulation, highlighting its role in
providing a straightforward approach to fractal vibration systems compared
to traditional methods. Furthermore, it discusses an open problem for
future research.
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1 Introduction

The study of nanobeam vibrations is of great importance for the advancement of
microelectromechanical systems (MEMS) [1]. The vibration of a nanobeam is not merely
a mechanical phenomenon; rather, it is a critical element that drives the development
of these highly sophisticated systems. In 6G communication technology, the stability of
nano-antenna arrays directly depends on the precise control of nano-beam vibrations. Any
instability in the vibrations can lead to signal interference and a decrease in transmission
efficiency. For example, by optimizing the vibration modes of nano-beams, the radiation
pattern can be adjusted and signal gain can be enhanced, thereby improving the overall
performance of the communication system. Sensors based on the vibration of nanobeams
can detect subtle changes in biomolecule concentrations, enabling early disease diagnosis.
By modulating the vibrational characteristics (such as resonant frequency), the sensitivity
of these sensors can be significantly enhanced, to the point where the presence of individual
biomarkers can be detected. For instance, in early cancer screening, nanobeam sensors
identify specific proteins at very low concentrations in the blood, offering new avenues for
precisionmedicine. MEMS, with the potential to precipitate a revolutionary transformation
in domains such as sixth-generation (6G) communications [2], quantum computing [3],
and healthcare [4], rely heavily on an accurate understanding and control of nanobeam
vibrations.

Minor disturbances, such as those caused by air pollution and changes in humidity,
can impact the precision and dependability of the system by influencing the vibration
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characteristics of the nanobeam. Tian et al. were the first
mathematicians to model these factors in a fractal space, and they
concluded that in the fractal space, the pull-in instability can be
eliminated [5]. As a consequence, a new branch of knowledge,
known as fractal vibration theory [6, 7], has emerged. This
innovative theory is specifically crafted to handle the complex
and unconventional vibrating behaviors that traditional theories
fall short in explaining. In the editorial article [8], the fundamental
characteristics of fractional vibration theory and the fractal vibration
theory are elucidated in meticulous and transparent detail.

Traditional vibration analysis methods are typically based on
integer-order derivatives and assume that the system has regular
geometric shapes and linear behavior. However, these assumptions
no longer hold in fractal-fractional systems. For instance, when
dealing with the vibration of nanostructures that have self-similar
or irregular geometric structures, traditional methods cannot
accurately describe the inherent non-locality and memory effects
in the system. They often oversimplify complex physical processes,
leading to significant errors in predicting the frequency-amplitude
relationship and dynamic behavior of oscillators. In contrast, He’s
frequency formula, by considering fractal and fractional-order
characteristics, provides a more precise and powerful tool for
analyzing such complex systems.

He’s frequency formulation [9, 10] represents an exceptionally
potent analytical instrument within the domain of fractal vibration
theory. This formulation not only presents a profound method
of analysis but also offers significant promise for advancing our
comprehension and practical applications in this intricate field.
The formulation provides an efficient and highly efficacious means
of determining the complex frequency-amplitude relationship of
nonlinear oscillators. This relationship is of crucial importance for
understanding the behavior and characteristics of a broad spectrum
of systems, ranging frommechanical vibrations to electrical circuits
and beyond.

The importance of He’s frequency formulation is further
reinforced by a series of subsequent studies. He and Liu extended it
to fractal oscillators [11], and numerous authors have demonstrated
the applicability and versatility of He’s formulation in diverse
contexts, including the case of the Toda oscillator [12] and various
fractal vibration systems [13]. Moreover, numerous researchers
have further expanded and refined the understanding of He’s
frequency formulation for their applications, and a considerable
amount of literature has contributed to the expanding body
of knowledge surrounding He’s frequency formulation [14–18].
The extensive applications and continuous development of He’s
frequency formulation are documented in Refs. [19, 20]. Moreover,
the integration of this approach with other methods, such as the
homotopy perturbationmethod [21, 22], has the potential to expand
the research landscape of nonlinear oscillations. In conclusion, He’s
frequency formulation represents a fundamental contribution to the
field of nonlinear oscillations, offering a valuable and powerful tool
for both researchers and practitioners. The continued exploration
and application of this concept in a variety of studies serves to
demonstrate its significance and potential for further advancements
in our understanding and control of nonlinear systems. This paper
presents a concise overview of the applications of this formulation
to fractal-fractional oscillators.

2 Fractal-fractional nonlinear
oscillator

Different from fractional models [23–26], the fractal-fractional
nonlinear oscillator [27, 28] constitutes a captivating area of study
within the domain of nonlinear dynamics. It amalgamates the
concepts of fractals and fractional calculus to model complex
systems. Fractals provide a means to depict irregular structures,
whereas fractional calculus offers a more accurate representation
of systems with memory and non-local effects. In a fractal-
fractional nonlinear oscillator, these elements converge to create a
model that can capture the intricate behavior of diverse physical
and engineering systems. This might include phenomena such as
damping, resonance, and chaos. By understanding and analyzing
these oscillators, researchers can obtain valuable insights into
the behavior of complex systems and potentially develop new
techniques for control and optimization [29–37].

Here, we consider a fractal-fractional (Equation 2) describes the
nonlinear vibration system of a restrained cantilever beam with an
intermediate lumped mass. [38].

(1+ au2 + bu4)d
2αu
dx2α
+ (au+ 2bu3)(d

αu
dxα
)
2
+Ω2u+mu3 + nu5 = 0

(1)

with the boundary conditions

u(0) = B, d
αu
dxα
(0) = 0 (2)

where dαu
dxα

is the two-scale fractal derivative [39–42], a and b
respectively represent the contributions of the high - order terms of
the nonlinear stiffness coefficient, m and n are the coefficients of the
fifth - order terms of the nonlinear restoring force, Ω is the linear
natural frequency, and α is the order of the fractal derivative, which
reflects the fractal characteristics of the system [42–45].

The two-scale fractal derivative is defined as:

d2αu
dx2α

u(x) = 1
Γ(1− 2α)

∫
∞

−∞

u(x′) − u(x)

(x′ − x)1+2α
g(x,x′, l1, l2)dx′

Among them, g(x,x′, l1, l2) is a weighting function related to the
fractal structure and the scales l1, l2. Consider the fluid velocity field
v(x) in the fractal porous medium, and its governing equation is:

ρ∂v
∂t
= −∇p+ μ(d

2αv
dx2α
+ βd

αv
dxα
)

where ρ is the fluid density, p is the pressure, μ is the viscosity, and
β is a coefficient related to the fractal characteristics. By solving
this equation with the two-scale fractal derivative, we can accurately
predict the flow patterns and velocities of the fluid in the fractal
porous medium, which is not possible using traditional derivatives.

The two-scale fractal derivative [39, 40] is an innovative concept
in the realm of mathematics and physics. It extends the traditional
derivative to take into account fractal behavior. Through two-scale
fractal derivatives, the flow patterns of fluids in fractal pores can be
accurately predicted, whereas traditional derivatives cannot capture
such complex behaviors.

This derivative considers two distinct scales, providing a more
accurate description of processes that display non-integer scaling.
It can be applied to various fields like fluid dynamics, material
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science, and signal processing. The two-scale fractal derivative aids
in understanding complex phenomena involving irregular or self-
similar structures. It offers new insights and tools for analyzing and
modeling systems with fractal characteristics.

The nonlinear vibrations of a restrained cantilever beam with
an intermediate lumped mass are an important area of study.
This system exhibits complex behavior due to the combination of
nonlinearities and the added mass. Understanding these vibrations
is helpful in designing more robust structures and analyzing their
dynamic responses.

Sun and his colleagues dedicated themselves to arduous research
on Equation 1 and finally obtained the following frequency -
amplitude relationship [38].

ω2 = 8Ω
2 + 6mB2 + 5nB4

8+ 4aB2 + 3bB4 =
Ω2 + 0.75mB2 + 0.625nB4

1+ 0.5aB2 + 0.375bB4 (3)

Their endeavors in this regard were truly outstanding. They
engaged in complex analysis that demanded a high degree of
expertise and intellectual rigor. Given the intricacy of their
approach, there is currently a significant need for a one-step simple
method, such as He’s frequency formulation [9, 10], which can offer
a more streamlined and accessible means to achieve similar results.

3 A brief review He’s frequency
formulation

Equation 4 presents the basic form of a fractional-order
nonlinear vibration system.

d2αu
dx2α
+ f(u) = 0,u(0) = B, d

αu
dxα
(0) = 0 (4)

The most used frequency formulations are respectively
expressed as [9, 10]

ω2 = {
f
u
}
 u = √3B/2

(5)

and

ω2 = {
d f
du
}
u=B/2

(6)

More generally, we can choose more than one
location points [34]:

ω2
i = {

f
u
}
u=NiB

(7)

and

ωj
2 = {

d f
du
}
uj = NiB

(8)

Where 0<N i<1 and 0<N j<1, and (Equation 9) provides the
average value of the frequency squared at multiple location points.

ω2 = 1
n
(ω1

2 +ω2
2 +⋯+ωn

2) (9)

Equation 10 demonstrates the method for calculating the average
frequency at multiple location points.

ω = 1
n
(ω1 +ω2 +⋯+ωn) (10)

The selection of u = √3B/2 in Equation 5 is derived from the
sensitivity of the nonlinear system to frequency changes near the
critical amplitude. While the selection of u = B/2 in Equation 6
captures the trend of frequency changes through the local behavior
of the derivative at the mid - amplitude point. Sampling at multiple
position points (Equations 7, 8) takes the average values over different
amplitude ranges, which effectively reduces the error of single - point
estimation and is applicable to highly nonlinear systems.

Equations 11–17 illustrate the frequency calculation methods
at different location points and the derivation process of their
average values.

d2αu
dx2α
+ f(u, d

αu
dxα
, d

2αu
dx2α
) = 0,u(0) = B, d

αu
dxα
(0) = 0 (11)

The frequency formulation is

ω2 = {
f
u
}
u=√3B/2, d

αu
dxα
=−ωB/2, d

2αu
dx2α
=−√3Bω2/2

(12)

or

ω2 = {
f
u
}
u=NB, d

αu
dxα
=−√1−N2Bω, d

2αu
dx2α
=−NBω2

(13)

He-Liu frequency formulation [11] recommends the form

ω2 =
∫
A

0
(w f)du

∫
A

0
(wu)du

(14)

where w is a weighting function.

4 An example

For Equation 1, f can be expressed as

f = (au2 + bu4)d
2αu
dx2α
+ (au+ 2bu3)(d

αu
dxα
)
2
+Ω2u+mu3 + nu5 = 0

(15)

By the frequency formulation, we have

ω2 = {(au+ bu3) d
2αu
dx2α
+ (a+ 2bu2)( d

αu
dxα
)
2
+Ω2 +mu2 + nu4} u = √3B/2

dαu
dxα
= −ωB/2

d2αu
dx2α
= −√3Bω2/2

= (a
√3
2
B+ b 3
√3
8
B3) (−

√3
2
Bω2)+(a+ 2b 3

4
B2) ( 1

4
ω2 B2)+Ω2 +m 3

4
B2 + n 9

16
B4

(16)

After a simple calculation, we obtain

ω2 =
Ω2 + 3

4
mB2 + 9

16
nB4

1+ 1
2
aB2 + 3

16
bB4

(17)

The result obtained through this approach is
much closer to Equation 3. When we consider adopting the
simple approach, it truly stands out. As Ji-Huan He said, “The
simpler is better.” The simplicity of this approach not only brings
convenience in implementation but also leads to a remarkable
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TABLE 1 Relative errors for different cases: Case 1 a = 0.1; b = 0.05; m = 2.0; n = 0.5; case 2 a = 0.3; b = 0.1; m = 1.5; n = 0.8.

Parameter combination a b m n B Relative error (%)

Case 1 0.1 0.05 2.0 0.5 0.2 2.3

Case 2 0.3 0.1 1.5 0.8 0.5 4.7

FIGURE 1
Comparison of the He formula and Equation 3 under different conditions:(a) a = 0.1; b = 0.05; m = 2.0; n = 0.5; (b) a = 0.3; b = 0.1; m = 1.5; n = 0.8.

result. It offers a more straightforward way to reach a conclusion
that is highly comparable to what would be expected from more
complex methods. The obtained result is indeed remarkable in that
it showcases the effectiveness and efficiency of a less convoluted
approach. It proves that sometimes simplicity can lead to outcomes
that are just as valuable, if not more so, than those achieved through
intricate and time-consuming methods.

Using a different location point, we have

ω2 = {(au+ bu3) d
2αu
dx2α
+ (a+ 2bu2)( d

αu
dxα
)
2
+Ω2 +mu2 + nu4} u = NB

dαu
dxα
= −√1−N2ωB

d2αu
dx2α
= −NBω2

= (aNB+ bN3 B3)  (−NBω2) + (a+ 2bN2 B2)  ((1−N2) ω2 B2) +Ω2 +mN2 B2 + nN4 B4

(18)

From Equations 18, 19 further analyzes the frequency squared
values under different parameter combinations.

ω2 = Ω2 + 0.69mB2 + nN4B4

1+ a(2N2 − 1)B2 + b(3N4 −N2)B4 (19)

To further analyze the comparison between the results of He’s
frequency formulation and Equation 3, we calculate the relative
error for various parameter values. The results are given in Table 1
and illustrated in Figure 1.

From the table, it can be seen that the relative error varies
with different parameter values. The error mainly stems from
the approximation and neglect of higher-order terms in the He
formula, while the numerical solution of Equation 3 may produce

deviations due to the accumulation of algorithmic truncation errors.
Additionally, the selection of position points may not fully cover the
system response in strongly nonlinear regions.

Figure 1 illustrates the comparison of the frequency squared
values obtained from He’s frequency formulation and Equation 3 as
a function of the amplitude. The blue curve represents the results
from He’s frequency formulation, while the red curve represents
those from Equation 3.

The potential sources of discrepancy between the two methods
are multi-faceted. He’s frequency formulation makes certain
approximations to simplify the calculation. For example, in the
process of deriving the formula, some higher-order terms might
be neglected. In contrast, Equation 3 is obtained through a more
comprehensive and complex analysis process. Numerical errors
also play a role. The calculation of Equation 3 may involve more
complex numerical algorithms, and small errors in these algorithms
can accumulate and lead to differences in the final results. Moreover,
the choice of location points in He’s formulation is based on general
principles, but it may not cover all the characteristics of the system
in some special cases.

In practical applications, the implications of these differences
are significant. For applications with relatively low accuracy
requirements, the simplicity of He’s formulation makes it a
convenient choice. However, for applications that demand high
precision, such as in the design of high-performanceMEMSdevices,
understanding these differences is essential. It allows engineers and
researchers to make more informed decisions when choosing the
appropriate method and provides a basis for further improving the
formulations to achieve better accuracy.
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The question of how to choose an optimal value of N remains
an open problem that has yet to be fully resolved. There are
possible approaches to optimization of its choice by various modern
technologies, e.g., the genetic algorithm, the gradient descent
method, and AI-powered problem solving method [46].

5 Conclusion

In conclusion, He’s frequency formulation for fractional
nonlinear oscillators represents a valuable contribution to the
field of nonlinear dynamics. This formulation offers a novel
approach to analyzing and understanding the complex behavior
of fractional nonlinear oscillatory systems. By providing a more
accurate description of frequency and other characteristics, it has
the potential to enhance our understanding of various physical
phenomena and engineering applications. Future research could
further explore the generalization and extension of this formulation,
as well as its application in different types of nonlinear systems.
Additionally, combining He’s frequency formulation with other
advanced techniques may lead to even more powerful tools for
the study of fractional nonlinear oscillators. Overall, He’s frequency
formulation holds great promise for advancing our knowledge and
capabilities in dealing with nonlinear oscillatory systems.

Looking ahead, several promising research directions emerge in
the context of He’s frequency formulation. One avenue is to explore
its integration with advanced numerical techniques. For instance,
combining it with the finite element method would enable a more
detailed analysis of complex systems with irregular geometries and
varying material properties. In such an approach, the domain of
the problem could be discretized using finite elements, and He’s
frequency formulation could be applied within each element to
account for the fractal-fractional behavior. This would enhance the
accuracy of predicting the vibration characteristics of structures like
those found in MEMS devices with intricate designs.

Another excitingdirection lies in its application to emergingfields.
In nanorobotics, where the precise control of nanoscale motions
is essential, He’s frequency formulation can potentially be used to
optimize the design of actuators and sensors. By understanding the
frequency-amplitude relationships of the nanocomponents, we can
improve the performance and reliability of nanorobotic systems. In
biomolecular dynamics, it could offer new perspectives on the study
of molecular vibrations and their role in biological processes. For
example, it may help in elucidating the energy transfer mechanisms
within biomolecules, which could have implications for drug design
and understanding diseases at the molecular level.

Moreover, the development of more efficient parameter
determination algorithms is of utmost importance. With the
increasing complexity of systems, traditional methods for
finding optimal parameters in He’s frequency formulation may
become computationally expensive. Incorporating machine learning

algorithms, such as genetic algorithms or neural networks, could
potentially accelerate the search process and improve the accuracy
of the determined parameters. This would make the application of
He’s frequency formulation more practical and efficient in dealing
with large-scale and complex systems.

In summary, the future of He’s frequency formulation research
is rich with opportunities, and continued efforts in these directions
are expected to yield significant advancements in our understanding
and control of nonlinear oscillatory systems.
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