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inequality violation: a numerical
experiment with the cavity QEDs
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Bell inequality violation has been widely tested by using the bipartite entangled
pure states and properly encoding the local observables in various experimental
platforms, and the detector-, local-, and random loopholes have already been
closed. A natural question is, how to deliver the Bell inequality violation by
properly encoding the local observables? Here, we show that the Bell inequality
violation is directly related to the coherence degree, which is controllable
by encoding the different local observables into the entangled state. With
the usual space-like correlation detections, we show that the coherence
degree can be measured and thus the Bell nonlocality can be tested. The
feasibility of the proposal is demonstrated by a numerical experiment typically
with the cavity quantum electrodynamic system, in which the coherence
degrees of the locally encoded bipartite entangled state can be conveniently
measured by the spectral detection of the driven cavity. The present work
might provide a feasible approach to verify the Gisin theorem, i.e., Bell
inequality can be violated for any bipartite entangled pure state, once the local
observables are properly encoded into the entangled state for keeping the
desirable coherence.

KEYWORDS

quantum coherence, quantum entanglement, bell inequality, spectral detection,
coherence degree

1 Introduction

It is well known that, the quantum entanglement is contradictory to the localization
and reality in classical theory [1–4]. Bell provides a mathematical criterion called later
as the Bell inequality [5–7] to test the existence of the nonlocal correlations between
the distant particles. Until now, the violation of such inequality has been experimentally
verified by using entangled states in various systems, and also the detector-, local-, and
random loopholes have been closed [8–12]. Therefore, using the nonlocal correlations to
implement quantum information processing, typically such as quantum communication
[13, 14], quantum computation [15], and quantum metrology [16, 17], etc., have been paid
much attention.

Basically, Gisin had proved that the Bell inequality can be violated for any entangled
pure bipartite state, if it is encoded properly by the local observables [18, 19]. This
implies that the violation of the Bell inequality not only depends on the existence
of the bipartite entanglement, but is also related to the local encodes of the bipartite
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entangled state. Furthermore, Horodecki et.al. gave the necessary
and sufficient conditions of the Bell inequality violation for the
entangled mixed states Horodecki et al. [20], and thus entanglement
andBell nonlocality are practically different quantum resources [21].
However, the inherent physical mechanism for the violation of the
Bell inequality seems still unclear. Recently, Liang et.al., showed
that [22]; [23, 24] the violation of the Bell inequality originated
from the nonlocality of the bipartite quantum state, i.e., the non-
diagonal part of the corresponding densitymatrix. Given the density
matrix ρ with only the non-diagonal elements does not exist, as
Tr(ρ) = 1 should be satisfied for any practical quantum state, here
we investigate the relationship between the quantum coherence and
the Bell inequality violation, as coherence degree is measurable [25].
Basically, quantum coherence can be quantified by such as fidelity,
trace distance, relative entropy, and l1 norm, etc. [26–29]. In this
paper, we use the l1-norm to quantify quantum coherence, which
can be measured by the proposed spectral detection.

The paper is organized as follows: In Sec. 2, beginning with a
brief review of the basic concepts of quantum locality, nonlocality,
and their relationships between the Bell inequality violations, we
propose a quantum coherence condition for the Bell inequality
violation. This argument is assisted with that from Gisin theorem
Gisin [18], i.e., Bell inequality can be violated for any bipartite
entangled pure state once the local observable encodes satisfy certain
conditions. In Sec. 3, we provide a numerical experiment to test
Bell inequality involved coherencemeasurements with a cavity QED
system, wherein the coherence measurements are implemented by
probing the spectral of the driven cavity. Finally, in Sec. 4, we
summarize our work.

2 Quantum coherence, nonlocality,
and bell inequality violation

Thewell-known Bell inequality for the experimental tests can be
expressed as the following CHSH form [7].

S = |E (θ1,θ2) +E(θ
′
1,θ2) +E(θ1,θ

′
2) −E(θ

′
1,θ
′
2) | ≤ 2, (1)

where S is the CHSH function, which can be calculated by
measuring the values of the correlation function E(α,β) for the local
observables: α,β = θ1,θ2,θ

′
1,θ
′
2. Gisin’s theorem states that, for any

bipartite entangled pure state, the Bell-CHSH inequality Equation
1 can be violated by properly selecting the local observables [18,
19]. Indeed, by properly encoding the local observables into the
generated entangled states, the violation of the Bell inequality has
been tested experimentally (see, e.g., [30–34]). The question is
how to properly select the local observables for the experimental
violation of such an inequality.

2.1 The relationship between the
nonlocality and the violation of bell
inequality

Following Liang et al. [22–24], the local- and nonlocal features
of a quantum system can be described by the diagonal part and the

non-diagonal one of the relevant density matrix, respectively. For
example, for the system in the pure state

|ψ〉 = cos ξ|eg〉 + eiη sin ξ|ge〉, (2)

with the density matrix:

ρ = |ψ〉〈ψ| =(

(

0 0 0 0

0 |c1|2 c∗1 c2 0

0 c1c
∗
2 |c2|

2 0

0 0 0 0

)

)

= ρlc + ρnlc, (3)

where c1 = cos ξ,c2 = e
iη sin ξ (with η and ξ being the arbitrary c-

number) and |c1|2 + |c2|2 = 1, its locality and nonlocality refer to.

ρlc =(

(

0 0 0 0

0 cos2 ξ 0 0

0 0 sin2 ξ 0

0 0 0 0

)

)

(4)

and

ρnlc =(

(

0 0 0 0

0 0 eiη sin ξ cos ξ 0

0 e−iη sin ξ cos ξ 0 0

0 0 0 0

)

)

, (5)

respectively. Certainly, any quantum state is not a pure nonlocal, as
its density matrix should satisfy the basic condition: Tr(ρ) = 1, and
thus, the diagonal elements should be included.

To test the Bell inequality Equation 1 with the entangled pure
state Equation 2, the local observables θj(j = 1,2) should be encoded
into the state Equation 2 typically by performing the following
single-qubit Hadamard-like gate operation Rj(θj),  j = 1,2 [35]:

Rj (θj) = R
(j)
z (θj/2)R

(j)
x (π/4)R

(j)
z (−θj/2) =

1
√2
(

1 −ieiθj

−ie−iθj 1
).

(6)

Obviously, after the above operations, the density matrix ρ of the
entangled pure state becomes

ρ′ = R1 (θ1)R2 (θ2) (ρlc + ρnlc)R
†
1 (θ1)R

†
2 (θ2) = ρ

′
lc + ρ
′
nlc, (7)

where

ρ′lc = R1 (θ1)R2 (θ2)ρlcR
†
1 (θ1)R

†
2 (θ2) =

1
4
(

ρ′11 ρ′12 ρ′13 ρ′14
ρ′21 ρ′22 ρ′23 ρ′24
ρ′31 ρ′32 ρ′33 ρ′34
ρ′41 ρ′42 ρ′43 ρ′44

), (8)

with

ρ′11 = ρ
′
22 = ρ
′
33 = ρ
′
44 = 1,ρ

′
12 = −ie

iθ2C (ξ) , ρ′21 = ie
−iθ2C (ξ) ,

ρ′13 = ie
iθ1C (ξ) , ρ′31 = −ie

−iθ1C (ξ) ,ρ′14 = e
i(θ1+θ2), ρ′41 = e

−i(θ1+θ2),

ρ′23 = −e
i(θ1−θ2), ρ′32 = −e

i(θ2−θ1),ρ′24 = ie
iθ1C (ξ) , ρ′42 = −ie

−iθ1C (ξ) ,

ρ′34 = −ie
iθ2C (ξ) , ρ′43 = ie

−iθ2C (ξ) ,

(9)
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and

ρ′nlc = R1  (θ1) R2  (θ2) ρnlc R
†
1  (θ1) R

†
2  (θ2) =

1
4
(

ρ″11 ρ″12 ρ″13 ρ″14
ρ″21 ρ″22 ρ″23 ρ″24
ρ″31 ρ″32 ρ″33 ρ″34
ρ″41 ρ″42 ρ″43 ρ″44

),

(10)

with

ρ″11 = ρ
″

44 = A (θ1,θ2) , ρ″22 = ρ
″

33 = −A (θ1,θ2) ,ρ″12 = e
iθ2B (θ1,θ2) ,

ρ″21 = e
−iθ2B (θ1,θ2) , ρ

″
13 = −e

iθ1B (θ1,θ2) , ρ
″

31 = −e
−iθ1B (θ1,θ2) ,

ρ″14 = e
i(θ1+θ2)A (θ1,θ2) , ρ″41 = e

−i(θ1+θ2)A (θ1,θ2) ,

ρ″23 = e
i(θ1−θ2)A (θ1,θ2) , ρ

″
32 = e

i(θ2−θ1)A (θ1,θ2) ,ρ
″

24 = e
iθ1B (θ1,θ2) ,

ρ″42 = e
−iθ1B (θ1,θ2) , ρ″34 = −e

iθ2B (θ1,θ2) , ρ″43 = −e
−iθ2B (θ1,θ2) ,

(11)

respectively. Above, A(θ1,θ2) = cos (θ1 − θ2 − η) sin (2ξ), B(θ1,θ2) =
sin (θ1 − θ2 − η) sin (2ξ), C(ξ) = cos (2ξ).

Theoretically, the correlation between the bipartite in the state
|ψ′(θ1,θ2)〉 = R1(θ1)R2(θ2)|ψ〉 can be calculated by the expected
value of the operator M̂1,2 = σz,1 ⊗ σz,2 [35], i.e.,

E (θ1,θ2) = tr(M̂1,2ρ
′) = tr(M̂1,2ρ

′
lc) + tr(M̂1,2ρ

′
nlc) . (12)

One can easily check that tr(M̂1,2ρ
′
lc) = 0, which means that the

locality of the original entangled pure state |ψ〉 does not contribute
to the correlation between the entangled bipartite, and thus only
the nonlocality of the entangled state |ψ〉 determines the bipartite
correlation, i.e.,

E (θ1,θ2) = tr(M̂1,2ρ
′
nlc) = cos (θ1 − θ2 − η) sin (2ξ) . (13)

Obviously, the bipartite correlation E(θ1,θ2) originated from the
nonlocality of the bipartite entangled state, as argued previously in
Ref. [22, 23]. Of course, the correlation function E(θ1,θ2) and thus
the value of the CHSH function S is dependent on not only the
nonlocality of the entangled state |ψ〉 but also the local observables
θj, j = 1,2 encoded into such an entangled state. For the arbitrarily
given entangled parameters in the state |ψ〉, e.g., η = 0,ξ = π/4,
Figure 1 shows how the local observable encodings: {θ1,θ2,θ

′
1,θ
′
2},

influence the value of the CHSH function thus the violation of the
CHSH-Bell inequality (1). It is seen from Figures 1A–F that, for a
given bipartite entangled pure state, the inequality is violated within
the range of the white dotted lines, once the local observables are
encoded properly. Specifically, the Bell inequality can be maximally
violated, i.e., S = 2√2, if the local observables are encoded as θ1 =
3π/4,θ2 = π/2,θ

′
1 = π/4,θ

′
2 = π. Furthermore, it is shown in Figure 2

that, for arbitrarily selected local observable encodings, typically
such as θ1 = 3π/4,θ2 = π/2,θ

′
1 = π/4,θ

′
2 = π, one can always find the

corresponding bipartite entangled pure state to demonstrate the Bell
inequality violation. Following the Gisin [18, 19], Bell inequality
can be violated with any bipartite entangled pure state, once the
local observables are encoded properly. Therefore, the bipartite
entanglement is the necessary but not the sufficient condition for
the Bell inequality violation. Specifically, we verified the argument
in Ref. [22, 23] that the Bell inequality violation is due to the
nonlocality of the bipartite entangled pure state, and its locality does
not contribute to the nonlocal correlation between the bipartite.

Given the nonlocality of the entangled pure state is described
by a non-physical density matrix without diagonal elements, below
we discuss the relationship between the coherence, rather than
the nonlocality, of the bipartite entangled pure state and the Bell
inequality violation by properly local observable encodings.

2.2 Coherence condition for the bell
inequality violation

As demonstrated above, the nonlocality of the quantum state
cannot be existed alone, as the density matrix for any experimental
quantum state must be satisfied the condition: Tr(ρ) = 1. Physically,
quantum coherence originates from the superposition of quantum
states [25], and a series of approaches have been proposed to
measure the coherence of quantum state, typically such as fidelity,
trace distance, relative entropy, and l1 norm, etc. [27]. Without loss
of the generality, we simply use the l1 norm [26]:

Cl1 (ϱ) = ∑
m≠n
|ϱmn|, (14)

to quantify the quantum coherence of the quantum state described
by the density matrix ρ. Specifically, for the bipartite entangled
pure state Equation 2, we haveCl1(ρ) = 2|c1c2| = | sin (2ξ)|. Of course,
for the maximal mixed state, whose density matrix contains only
the diagonal elements, the degree of the coherence should be
zero, i.e., Cl1(ρlc) = 0. While, for the maximally entangled Bell-state,
i.e., the state Equation 2 with ξ = π/4, we have Cl1(ρ) = 1, which is
the maximal coherence.

Certainly, the degree of quantum coherence of a pure quantum
system can be engineered by the unitary quantum operation.
For example, for the entangled pure state Equation 2 with the
density matrix ρ, the l1 norm readsCl1(ρ) = | sin (2ξ)|. However, after
the Hadamard-like operations for the local observable encodings,
the state is changed as ρ′ with the coherence being changed
accordingly as

Cl1 (θ1,θ2) = ∑
m≠n
|ρ′mn| = 1+ 2√1− |A (θ1,θ2) |2. (15)

Obviously, from Equation 12 we get

Cl1 (θ1,θ2) = 1+ 2√1− |E (θ1,θ2) |2. (16)

Therefore, the coherence of the state ρ′ originated from
the state (2) by local observable encodings is measured by
experimental measurement of the correlation function E(θ1,θ2).
Consequently, by substituting Equation 16 into Equation 1, the
CHSH inequality Equation 1 can be written as the following form:

̃S =√4− [Cl1 (θ1,θ2) − 1]
2 +√4− [Cl1 (θ

′
1,θ2) − 1]

2

+√4− [Cl1 (θ1,θ
′
2) − 1]

2 −√4− [Cl1 (θ
′
1,θ
′
2) − 1]

2 ≤ 4,
(17)

which is determined by the coherence of the quantum states with
different local observable encodings.

Figure 3 shows that the relationship between the coherence
of the state Equation 7 and Bell inequality violation for the given
local observable encoding: θ1 = 3π/4,θ2 = π/2,θ

′
1 = π/4, and θ′2 =
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FIGURE 1
Testing the Bell inequality for a given bipartite entangled pure state |ψ〉 (with η = 0,ξ = π/4) for the different local observable encodings; (A) θ1 = π,θ2 =
π/2, θ′1 and θ′2 are variables, (B) θ1 = π/4,θ

′
1 = π/2, θ2 and θ′2 are variables, (C) θ1 = π,θ

′
2 = π/2, θ2 and θ′1 are variables, (D) θ2 = π/2,θ

′
1 = π/4, θ1 and θ′2 are

variables, (E) θ2 = π,θ
′
2 = π/2, θ1 and θ′1 are variables, and (F) θ′1 = π,θ

′
2 = π/2, θ1 and θ2 are variables. Here, the inequality is violated within the range of the

white dotted lines.

FIGURE 2
The value of the CHSH function S versus the entangled parameters η
and ξ in the bipartite entangled pure states |ψ〉, wherein the local
observable are encoded as: θ1 = 3π/4,θ2 = π/2,θ

′
1 = π/4, and θ′2 = π. The

inequality is violated within the range of the white dotted lines.

π for the different entangled pure state Equation 2. It is seen that,
within the range of the white dotted lines, the Bell inequality is
violated, i.e., ̃S > 4. The results are consistent with those tested
by performing the correlation measurements shown in Figure 2.
Therefore, by the measurements of coherence, instead of the

FIGURE 3
The CHSH function ̃S defined by quantum coherence versus the
entangled parameters η and ξ of the bipartite entangled pure states
|ψ〉, which is locally encoded as: θ1 = 3π/4,θ2 = π/2,θ

′
1 = π/4, and θ′2 = π.

It is seen that the regime for the Bell inequality violation is the same as
that shown in Figure 2.

nonlocal correlation, of the entangled pure state with the
local observable encodings, the test of the Bell inequality is
also feasible.
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FIGURE 4
A cavity QED system for the numerical experiments of Bell inequality test. Here, the two-qubit state can be non-destructively detected by the
transmitted spectral measurements of the driven cavity, which is dispersively coupled to the qubits [44–47].

3 Numerical experiments to test the
bell inequality by coherence
detections

In what follows, we numerically simulate the violation of CHSH-
Bell inequalityEquation17bymeasuring the coherenceof an arbitrarily
given entangledpure statewith thedifferent local observable encodings.
The experimental configuration considered here is shown in Figure 4,
wherein a two-qubit entangled pure state is prepared, and its
coherence for different local observable encodings is measured by
probing the spectra of the driven cavity, which is coupled to the
two qubits dispersively.

3.1 A spectral method to implement the
correlation detections of arbitrary
two-qubit states

The system of two qubits being dispersively coupled to a driven
cavity can be described by the Hamiltonian (ℏ = 1) [36–40].

Hd =(ω0 − iΓ)a†a+
2

∑
j=1

[

[

ωj

2
σz,j +

g2j
Δj
(a†a+ 1

2
)σz,j]

]
+ ∑

ϑ=L,R
∫
+∞

−∞
ωϑc
†
ϑ (ωϑ)cϑ (ωϑ)dωϑ

+ ∑
ϑ=L,R

i∫
+∞

−∞
κacϑ [ac

†
ϑ (ωϑ) − cϑ (ωϑ)a†]dωϑ.

(18)

here, ω0 and Γ are respectively frequency and dissipation of the
cavity, gj is the coupling strength between the jth qubit (with the
transition frequency ωj) and the cavity, c†ϑ(ωϑ),cϑ(ωϑ)(ϑ = L,R) are
the generation and annihilation operators of the left/right traveling
wave photons, respectively. κacϑ is the coupling strength between the
cavity and the left/right traveling wave photons, and Δj = ω0 −ωj is
the detuning between the cavity and the jth qubit.

Suppose that the system satisfies the dispersive condition: 0 <
|gj/Δj|, |gjgj′/(ΔjΔjj′)|, |gjgj′/(Δj′Δjj′)| ≪ 1, j ≠ j′ = 1,2, and thus any
interaction between the qubits can be safely neglected [39]. As a
consequence, with the standard input-output theory, the transmitted
amplitude td = ⟨a

(R)
out(ω)⟩/⟨a

(L)
in (ω)⟩ of the driven cavity can be

obtained as [40, 41].

td =
√γLγR

γL+γR
2
+ i(ω0 −ω− iΓ+

g21
Δ1
〈σz,1〉 +

g22
Δ2
〈σz,2〉)
, (19)

with the phase shift

φd = arctan
[[

[

2(ω0 −ω+
g21
Δ1
⟨σz,1⟩ +

g22
Δ2
⟨σz,2⟩)

γL + γR + 2Γ
]]

]

. (20)

Above, γϑ = 2πκ
2
acϑ is the effective interaction strength between the

left/right traveling wave photons and the cavity, and a(R)out(ω) and
a(L)in (ω) represent the output field operator and the input field one,
respectively.

Specifically, for a given two-qubit quantum pure state: |Ψ〉 =
√0.1|gg〉 +√0.2|ge〉 +√0.3|eg〉 +√0.4|ee〉, Figure 5 shows the
transmitted spectra of the driven cavity, wherein the peaks are
located at ωgg = ω0 − g1/Δ1 − g2/Δ2 = 0.94ω0,ωge = ω0 − g1/Δ1+
g2/Δ2 = 0.98ω0,ωeg = ω0 + g1/Δ1 − g2/Δ2 = 1.02ω0, and ωee = ω0 +
g1/Δ1 + g2/Δ2 = 1.06ω0, respectively. Here, ω0 is the frequency of
the empty cavity, ωkl (with k, l = e,g) is the center frequency of
the transmitted peak corresponding to the state |kl〉 of the qubits.
Interestingly Huang et al. [37], we found that the relative height hkl
of the peak marking the state |kl〉 is equivalent to its superposed
probability Pkl = |ckl|2 in the state |Ψ〉 = ∑k,lckl|kl〉.

3.2 Testing bell inequality by the simulated
coherence measurements

One can see easily from Equation 15 that, the value of coherence
Cl1(θ1,θ2) for the bipartite entangled pure state Equation 7, delivered
by encoding the local observables into the original entangled
pure state Equation 2, is related to the parameter A(θ1,θ2).
Theoretically, this parameter can be obtained by the observed
relative heights of the transmitted peaks, i. e.,

ρ′gg = ρ
′
ee =

1+A (θ1,θ2)
4
,  ρ′ge = ρ

′
eg =

1−A (θ1,θ2)
4
. (21)

Therefore, by arbitrarily measuring one of the diagonal elements
(i.e., ρ′kl with k, l = e,g) of the density matrix Equation 7, the value of
A(θ1,θ2) can be obtained.
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FIGURE 5
The steady-state transmission spectra (A) and phase shift spectrum (B) of the driven cavity with the two-qubit superposed state: |Ψ〉 =
√0.1|gg〉 +√0.2|ge〉 +√0.3|eg〉 +√0.4|ee〉. The relevant parameters are set as: γL = γR = 10

−3ω0, Γ = 10−5ω0, g1/Δ1 = 0.04ω0, g2/Δ2 = 0.02ω0.

Immediately, with the numerical experiments demonstrated
above, all the diagonal elements of the density matrix Equation 7
can be obtained by observing the transmitted peaks of the driven
cavity coupled dispersively to the two qubits, which are prepared in
the state ρ′. As motioned previously, the relative height hkl(θ1,θ2) of
the peak marking the two-qubit state |kl〉 is related to the diagonal
element ρ′kl, i.e.,

hgg =
1+Agg (θ1,θ2)

4
,  hee =

1+Aee (θ1,θ2)
4
,

hge =
1−Age (θ1,θ2)

4
,  heg =

1−Aeg (θ1,θ2)
4
. (22)

However, due to the practically existing measurement
errors, the value of the Akl(θ1,θ2)-parameter obtained
by observing the different peaks might be different.
As a consequence, the value of the CHSH function ̃S
defined in Equation 17 can be measured as ̃S = ̃S± δ ̃S with
̃S = ∑k,l ̃Skl/4,  ̃Skl = √4− [C

kl
l1
(θ1,θ2) − 1]

2 +√4− [Ckl
l1
(θ′1,θ2) − 1]

2+

√4− [Ckl
l1
(θ1,θ
′
2) − 1]

2 −√4− [Ckl
l1
(θ′1,θ
′
2) − 1]

2, Ckl
l1
(θ1,θ2) = 1+

2√1−A2
kl(θ1,θ2), and δ ̃S is the standard deviation of the measured

value of ̃S.
For example, by using the transmitted spectra shown in

Figure 6 for the given quantum state Equation 2 with η = 0,ξ =
π/16 and the corresponding local observable encodings, the values
of the parameter A′kl(θ1,θ2) listed in Table 1 can be obtained.
Consequently, the CHSH functions ̃S′kl defined by quantum
coherence can be calculated, ̃S′ = 1.6902± 0.1186, which indicates
that the inequality Equation 17 is not violated. Similarly, by using
the transmitted spectra shown in Figure 7 for the given quantum
state Equation 2 with η = 0,ξ = π/4 and the same local observable
encodings, the values of parameter Akl″(θ1,θ2) can also be gotten,
see Table 2. As a consequence, the CHSH functions ̃S″kl, defined
by quantum coherence, can be calculated as ̃S″ = 4.4822± 0.1179,
showing that the inequality Equation 17 is now violated.

To check if only the nonlocality of the bipartite entangled pure
state contributes to the Bell inequality violation, we now consider

the contribution from the locality of the state Equation 2, which is
described by the local density matrix Equation 4. The steady-state
transmission spectra related to such a density matrix are shown in
Figure 8. The observed values of the A‴kl (θ1,θ2)-parameter and thus
the calculated CHSH functions ̃S‴kl are listed in Table 3. It is seen
clearly that ̃S‴ = 0.0399≪ 4, which indicates that the locality of the
bipartite entangled pure state does not contribute to the violation
of the Bell inequality Equation 17, whatever the local observable
encodings of the entangled state.

The above discussions with the relevant numerical experiments
showed clearly that the Bell inequality violation can be tested by
measuring the coherence of the bipartite entangled pure state
encoded by the proper local observable encodings. Physically,
the coherence of the quantum pure state is related to the
non-diagonal elements of the physical density matrix and
thus can be experimentally measured. Test the Bell inequality
Equation 17 provides a feasible approach to verify the arguments
given in Refs. [22] on the relationship between the Bell inequality
violation and nonlocality of the entangled pure state.

3.3 Numerical experiments to verify the
equivalence between the inequalities
Equation 1 and Equation 17

Usually, Bell’s theorem is verified by testing the violation
of the inequality Equation 1 by performing the local space-like
measurements. For a generic bipartite entangled pure state with the
local observable encodings: θ1 and θ2:

|ψ′ (θ1,θ2)〉 = αgg|gg〉 + αge|ge〉 + αeg|eg〉 + αee|ee〉, (23)

where αkl is the superposed probability amplitude of the two-
qubit states |kl〉, the nonlocal correlation function E(θ1,θ2) can be
theoretically calculated as [35, 42].

E (θ1,θ2) =
Psame (θ1,θ2) − Pdiff (θ1,θ2)
Psame (θ1,θ2) + Pdiff (θ1,θ2)

= Pee + Pgg − Peg − Pge. (24)
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FIGURE 6
The steady-state transmission spectrums of the driving cavity versus the driving frequency when the local observables {θ1,θ2,θ

′
1,θ
′
2} = π/2,π/2,5π/8,π/8

are encoded on the quantum state Equation 2 (with η = 0, ξ = π/16). Here, the local observables corresponding to (A–D) are (θ1,θ2) = (π/2,π/2), (θ
′
1,θ2) =

(5π/8,π/2), (θ1,θ
′
2) = (π/2,π/8), (θ

′
1,θ
′
2) = (5π/8,π/8), respectively. The other parameters are the same as in Figure 5.

TABLE 1 The relative heights h′kl(θ1,θ2) of the peaks, the A′kl(θ1,θ2)-
parameters, and the CHSH functions ̃S′kl defined by quantum coherence,
corresponding to the states |kl〉 in the Figures 6A–D, respectively.

(θ1,θ2) (θ′1,θ2) (θ1,θ
′
2) (θ′1,θ

′
2) ̃S′kl

h′gg 0.3389 0.3317 0.2809 0.2451

A′gg 0.3556 0.3268 0.1236 −0.0196 1.5716

h′ge 0.1513 0.1584 0.2092 0.2451

A′ge 0.3948 0.3664 0.1632 0.0196 1.8088

h′eg 0.1513 0.1584 0.2092 0.2451

A′eg 0.3948 0.3664 0.1632 0.0196 1.8088

h′ee 0.3389 0.3317 0.2809 0.2451

A′ee 0.3556 0.3268 0.1236 −0.0196 1.5716

here, Psame(θ1,θ2)(Pdiff(θ1,θ2)) represents the probability of the two
qubits being at the same (different) logic states, i.e., Pkl = |αkl|2 with
∑k,l=e,gPkl = 1. Experimentally, the correlation function Equation 24
can be determined by performing the local space-likemeasurements
on the bipartite. With the obtained correlation functions for
different local observable encodings (θ1,θ2), (θ1,θ

′
2), (θ
′
1,θ
′
2) and

(θ′1,θ
′
2) sequentially, the CHSH-Bell function S can be obtained and

then the inequality Equation 1 can be tested.
With the numerical experiments proposed above, the

probabilities Pkl(θ1,θ2) for the different local observable encodings
can also be determined by observing the relative height hkl(θ1,θ2)
of the peak in the spectra marking the state |kl〉. As a consequence,
the correlation function E(θ1,θ2):

E (θ1,θ2) = hee (θ1,θ2) + hgg (θ1,θ2) − heg (θ1,θ2) − hge (θ1,θ2) (25)

can be obtained by reading out the parameters hkl(θ1,θ2) (with k, l =
e,g) from the relevant spectra. Specifically, from the observed relative
heights of the peaks shown in Figures 6A–D and thus the CHSH
function S in Equation 1, defined by the correlation functions,
can be calculated as S′ = 0.8653 < 2. Thus, the Bell inequality
Equation 1 is not violated for the entangled pure state Equation
2 (in which η = 0,ξ = π/16) encoded by the local observable
encodings: {θ1,θ2,θ

′
1,θ
′
2} = {π/2,π/2,5π/8,π/8}. Similarly, from the

spectra shown in Figures 7A–D the relative heights h″kl(θ1,θ2) of
the transmitted peaks and also the CHSH function is obtained as
S″ = 2.2611 > 2 for the entangled pure state Equation 2 (in which
η = 0,ξ = π/4) with the same local observable encodings. Therefore,
the inequalities Equation 1 and Equation 17 are formally equivalent
for Bell inequality tests.

Certainly, we can also check that the Bell inequality violation
just originated from the nonlocality of the entangled pure state
Equation 2, and its locality does not contribute practically to
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FIGURE 7
The steady-state transmission spectrums of the driving cavity versus the driving frequency when the local observables {θ1,θ2,θ

′
1,θ
′
2} = π/2,π/2,5π/8,π/8

are encoded on the quantum state Equation 2. Wherein (A–D) shows the steady-state transmission spectrum of the quantum state Equation 2 with the
superposition parameters of η = 0,ξ = π/4. Here, the local observables corresponding to (A–D) are (θ1,θ2) = (π/2,π/2), (θ

′
1,θ2) = (5π/8,π/2), (θ1,θ

′
2) =

(π/2,π/8), (θ′1,θ
′
2) = (5π/8,π/8), respectively. Other parameters are the same as in Figure 5.

TABLE 2 The relative heights h‴kl (θ1,θ2) of the peaks, the A‴kl (θ1,θ2)-
parameters, and the CHSH functions ̃S″kl defined by quantum coherence,
corresponding to the states |kl〉 in the Figures 7A–D, respectively.

(θ1,θ2) (θ
′
1,θ2) (θ1,θ

′
2) (θ

′
1,θ
′
2) ̃S″kl

h″gg 0.4901 0.4715 0.3389 0.2451

A″gg 0.9604 0.886 0.3556 −0.0196 4.3643

h″ge 0 0.0187 0.1513 0.2451

A″ge 1 0.9252 0.3948 0.0196 4.6001

h″eg 0 0.0187 0.1513 0.2451

A″eg 1 0.9252 0.3948 0.0196 4.6001

h″ee 0.4901 0.4715 0.3389 0.2451

A″ee 0.9604 0.886 0.3556 −0.0196 4.3643

the nonlocal bipartite correlations and thus the Bell inequality
violation. Again, with the transmitted spectra shown in Figure 8
for the two-qubit being prepared in the state ρ′lc, one can easily
find that the values of all the correlation functions are zero, i.e.,
E(θ1,θ2) = E(θ

′
1,θ2) = E(θ1,θ

′
2) = E(θ

′
1,θ
′
2) = 0. This indicates that

the locality, described by the density matrix ρlc in Equation 4,

does not contribute to the nonlocal correlations of the bipartite,
although it can still be locally encoded as ρ′lc. Therefore, nonlocal
correlations of the bipartite originated from the nonlocality,
described by the density matrix ρnlc of the entangled pure state
Equation 2, once the local observables are encoded properly.
Given the nonlocal density matrix ρnlc is not physical, and
thus we perform alternatively the numerical experiments to
check if the Bell inequality violation, i.e., Equation 17, by
performing the coherencemeasurements demonstrated in the above
subsection.

4 Conclusion

In summary, based on the Gisin theorem and the basic idea
proposed in Ref. [22], we confirm the relationship between the
Bell inequality violation and the nonlocality of the bipartite
entangled pure state, which can be encoded by different local
observables. Given any quantum state is not the pure nonlocal,
as its density matrix should satisfy the basic condition: Tr(ρ) =
1, we treat the nonlocality of the entangled pure state by its
coherence rather than the non-physics density matrix ρ without
any diagonal elements, and deliver a new Bell inequality with
the quantum coherence measurements, instead of the correlation
function measurements. To confirm the validity of the proposal,
we demonstrated the relevant numerical experiments with a
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FIGURE 8
The steady-state transmission spectrums of the driving cavity versus the driving frequency when the local observables {θ1,θ2,θ

′
1,θ
′
2} = π/2,π/2,5π/8,π/8

are encoded on the local quantum state Equation 4. The local observables corresponding to (A–D) are (θ1,θ2) = (π/2,π/2), (θ
′
1,θ2) = (5π/8,π/2) and

(θ1,θ
′
2) = (π/2,π/8), (θ

′
1,θ
′
2) = (5π/8,π/8), and the other parameters are the same as in Figure 5.

TABLE 3 The relative heights h‴kl (θ1,θ2) of the peaks, the A‴kl (θ1,θ2)-
parameters, and the CHSH functions ̃S‴kl defined by quantum coherence,
corresponding to the states |kl〉 in the Figures 8A–D, respectively.

(θ1,θ2) (θ′1,θ2) (θ1,θ
′
2) (θ′1,θ

′
2) ̃S‴kl

h‴gg 0.2451 0.2451 0.2451 0.2451

A‴gg −0.0049 −0.0049 −0.0049 −0.0049 0.0399

h‴ge 0.2451 0.2451 0.2451 0.2451

A‴ge 0.0049 0.0049 0.0049 0.0049 0.0399

h‴eg 0.2451 0.2451 0.2451 0.2451

A‴eg 0.0049 0.0049 0.0049 0.0049 0.0399

h‴ee 0.2451 0.2451 0.2451 0.2451

A‴ee −0.0049 −0.0049 −0.0049 −0.0049 0.0399

cavity QED system, by which any elements of the density
matrix of quantum state, encoded by arbitrarily chosen local
observables, can be non-destructively measured via spectral
measurements. As a consequence, both the local correlation
function and the quantum coherence can be determined for
the Bell inequality tests. Formally, instead of the usual Bell

nonlocality tests by measuring the local correlation functions,
here the Bell inequality violation is tested by the coherence
measurements.

Note that Bell inequality has been tested by a series of cavity
QED experiments. For example, with the cavity QED with the
superconducting qubits (with the distance being about 3.1 mm),
the Bell inequality violation had been confirmed by the correlation
detections with the durations being about 30ns [30]. Furthermore,
such an experiment has been generalized to that, wherein the
distance of two qubits are lengthened to be 78 cm, and the duration
of the correlation detections of the qubits is shortened to be
about 20ns [43]. The result showed again that, the Bell inequality is
really violated. Therefore, the application of the cavity QED systems
to test Bell inequality by coherence degree measurements should be
feasible, at least theoretically. It is expected that, the present proposal
could be tested experimentally in future and also generalized to the
cases with either the multiple entangled pure states or the entangled
mixture states.
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