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cracks in highway bridges based
on MAMBA network
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As an important component of transportation facilities, bridges have an
increasing demand for inspection and maintenance. However, traditional
manual detection methods have many problems in terms of efficiency,
accuracy, and safety, making it difficult to meet today’s fast and accurate
detection requirements. This article proposes an algorithm for detecting
apparent cracks in highway bridges based on MAMBA network and digital
image processing technology, this method adopts the detection box form,
which can effectively locate and qualitatively detect cracks in concrete bridges
accurately. To verify the effectiveness of the model, this paper created
a dataset of bridge crack images and used the dataset hyperparameter
evolution to obtain default parameters as initial parameters for training. During
the training process, we considered adding the CA attention mechanism
and the CBAM attention mechanism respectively for the trial process. By
comparing the training results, it was found that the model with CA attention
mechanism can effectively capture smaller disease features, thus achieving
better detection performance. This method has certain advantages in both
speed and accuracy, making it more effective in detecting cracks on the bottom
of bridges.
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1 Introduction

Concrete bridges, due to their low cost, wide material sources, strong plasticity, high
strength and durability, have been widely used in the construction of high-speed railway
bridges [1, 2]. However, the characteristic of easy shrinkage of concrete leads to some
cracks in the concrete bridge itself. Some cracks have a short duration and low degree of
occurrence and have little impact on bridge safety. There are also some cracks that occur
for a long time and have a large length and depth. These cracks affect the appearance and
durability of the bridge body, and in severe cases, even threaten the safety of the bridge
body, leading to bridge accidents [3, 4]. Therefore, timely detection of cracks in concrete
bridges can effectively prevent bridge damage and ensure the safety of high-speed rail
transportation. In recent years, the continuous innovation and development of computer,
Internet and AI technologies have promoted more and more application scenarios and
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led the rise of “smart ideas” [5]. Researchers are combining a variety
of technologies, including computers, the Internet, IoT and artificial
intelligence, to build a comprehensive intelligent solution. In the
field of bridge inspection, with the gradual application of mature
equipment and technology, traditional bridge inspection methods
will be gradually phased out [6–8].

At present, detection techniques based on deep learning have
been widely applied in fields such as agriculture, transportation, and
aviation. These skills.

Surgery can efficiently replace human eye recognition of image
features and has significant advantages such as high efficiency, low
cost, and high accuracy [9]. In bridge inspection, these technologies
are expected to improve inspection accuracy and efficiency, and
reduce inspection costs, thereby better ensuring the safety and
reliability of bridge structures.The use of digital imaging technology
for apparent disease detection has become a hot topic among
scholars at home and abroad, with crack detection being the focus
[10]. Merazi Meksen et al. [11] used mathematical morphology
methods to extract pixels related to the existence of discontinuities
and employed pattern recognition techniques to characterize
the discontinuities. Adhikari et al. [12] developed an integrated
model based on digital image processing to develop numerical
representations of defects and visualize defects through simulated
on-site visual inspection. Salman et al. [13] proposed a method
based on a linear Gabor filter to analyze the texture in a region to
determine whether there is content with a specific frequency in a
specific direction, which is very effective for detecting cracks with
rich texture. Xu et al. [14] used digital image technology to study the
performance evaluation of crack detection methods for reinforced
concrete bridges, and analyzed the effects of image grayscale, pixel
rate, noise filter, and edge detection considering crack quality.
Ahmed et al. [15] used Otsu’s method to detect cracks and multiple
filters in images.Wang et al. [16] proposed a local adaptive algorithm
for Otsu threshold segmentation and combined it with an improved
Sobel operator to remove isolated noise points, thereby extracting
crack edge information and improving the accuracy of crack
boundary localization. Fujita et al. [17] used a Hessian matrix-
based line filter to emphasize the line structures related to cracks.
Wang et al. [18] used thresholding to separate cracks from the
background. In recent years, with the help of cross-field fusion
methods, uncertainty propagation has made some progress in high-
dimensional data processing and highly nonlinear scenarios. L.
Chen et al. [19] proposed a spatial location feature reduction and
arrangement method to classify JFE, which can effectively reduce
the feature dimension and consider the integrity and relevance of
features. Then, the stacked autoencoder model was constructed and
updated by extracting the spatial location features of the sampled
JFEs to achieve high-precision classification of the remaining JFEs,
and the reliability interval was efficiently calculated according to the
classification results. In addition, unlikemost traditional uncertainty
propagation methods, the method proposed by Q. Chen et al. [20]
uses the Gaussian splitting method to divide the input random
variables into a Gaussian mixture model. These GMMs have a
limited number of components with very little variation. Therefore,
the input Gaussian components can be easily propagated to the
response and maintain the Gaussian distribution after the nonlinear
uncertainty propagation, which can provide an effective method for
high-precision nonlinear uncertainty propagation.

The method of detecting apparent defects in concrete bridges
based on deep learning can use drones equipped with cameras as
carriers to collect bridge images, train deep learning algorithms,
and ultimately achieve automated recognition [21]. Compared
with traditional methods, this approach can significantly reduce
labor costs and is more accurate and safer. The application of
this technology can effectively guide bridge maintenance and
managementwork and enhance our ability to ensure bridge safety. In
short, the development of this technology will bring more efficient,
accurate, and reliable solutions for bridgemaintenance in the future.

2 Related technology overviews

2.1 Traditional crack detection methods

The occurrence of bridge accidents is often due to a lack of
scientific and timely disease detection. According to relevant data,
cracks are the most common bridge disease, and most bridge
accidents are caused by cracks.Therefore, regular detection of bridge
cracks is of utmost importance in bridge inspection. Choosing
scientific and effective detection measures for regular inspection of
bridges is urgent. At present, there are two traditional detection
methods as follows.

Before the emergence of many crack detection instruments, the
detection of bridge diseases mainly relied on manual labor. People
used the naked eye to search and identify whether bridges had
diseases, which had many drawbacks. Firstly, the visual recognition
ability is weak, and people rely solely on experience. In many
cases, failure to identify diseases in a timely manner can lead
to unimaginable consequences. Secondly, the manual detection of
diseases has a long cycle, and generally requires scaffolding to be
erected under the bridge to observe whether there are cracks at the
bottom and sides of the bridge. These preparations require a lot
of time. In addition, many roads can only be constructed at night,
which poses a safety hazard.

There are currently many methods to replace manual bridge
image acquisition and detection, which use inspection vehicles or
drones to collect images and detect bridge diseases through image
processing, ultrasonic or radiographic scanning. Among them,
the detection methods of image processing are the most widely
used. The image processing method mainly consists of two steps:
capturing images and detecting diseases. Applying this method
to detect cracks can achieve the characteristics of fast detection
speed and high accuracy, without the need to block road sections
during the acquisition process. After the acquisition is completed,
appropriate algorithms can be used to detect cracks. However, using
image processing algorithms to detect cracks and extract crack
features requires manual setting and modification of parameters
based on the characteristics of the cracks, which places certain
demands on the designer’s experience. Moreover, this method often
cannot accurately represent the original data and has low robustness.

2.2 Crack digital image processing

The bottom surface of the bridge captured by the camera
contains a lot of information, which may include cracks on the
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FIGURE 1
Design scheme of crack detection nodes for highway bridges.

bridge deck, traces of pollution on the bridge deck, local raised
shadows on the cement on the bridge deck, or other debris.
By using digital image processing technology to process images,
some interference impurities can be eliminated and converted
into image information that is conducive to crack identification.
The commonly used digital image processing algorithms include
image grayscale correction, image denoising filtering, image
binarization, etc [22].

The image of the bridge deck bottom captured by the camera
is a color image. Due to the cumbersome processing and slow
processing speed of computers, color images are not conducive to
actual measurement and analysis. Therefore, we usually convert
the collected color images into corresponding grayscale images for
processing [23]. The process of converting a color image into a
grayscale image is called image grayscale. There are many methods
for grayscale image processing, and currently in the field of bridge
crack recognition, the most used is the weighted average method.
A color image is composed of three RGB channels, each with
a value ranging from 0 to 255. The three channels are stacked
together to generate a color image. The weighted average method
calculates the grayscale image by weighted averaging the three
channel components of the color image based on the importance of
each channel and other indicators. During the process of forming,
collecting, and transmitting digital images, they often suffer from
various types of noise pollution due to limitations in the collection
equipment, transmission media, and recording devices. These
noise signals are completely unrelated to the crack information
we need to identify, interfering with the normal recognition of
crack information. In severe cases, they can affect the normal
analysis of the image and potentiallymislead erroneous information.
The design scheme of crack detection nodes for highway bridges
is shown in Figure 1.

Figure 1 depicts the design of the relevant nodes in the crack
detection process of a highway bridge. The solution includes a
brief description of the corresponding sensors, data storage, and
power supply. In order to improve the recognition and quality
of images, reduce excessive noise information, and prevent and
modify the links that are prone to noise during the acquisition

and transmission process. Filter and denoise the collected image
information to identify cracks more clearly and accurately.There are
many commonly used filtering methods, including mean filtering,
median filtering, etc.

3 Classification of highway bridge
cracks based on MAMBA network

Traditional bridge crack manpower detection methods have
many problems in terms of efficiency, accuracy and safety,
and it is difficult to meet today’s fast and accurate detection
requirements. Based on MAMBA network and digital image
processing technology, this paper proposes an algorithm for the
detection of apparent cracks in highway bridges.MAMBA simplifies
the deep sequence model architecture by merging the previous
SSM architecture with the Transformer’s MLP block into a single
block, resulting in a simple, homogeneous architecture design that
includes a selective state space. Like structured SSM, selective SSM
is an independent sequential transformation that can be flexibly
incorporated into neural networks. The method adopts the form of
detection frame, which can effectively locate and qualitatively detect
the cracks of concrete bridges. In this chapter, we will carry out
crack image preprocessing and crack identification analysis based
on MAMBA network.

3.1 Preprocessing of crack images

The bridge crack images in this article are completely collected
from different bridge crack samples in a random environment. The
images contain several low-quality images. In order to ensure that
the detectionmethod can copewith various complex situations, such
as uneven lighting, foggy and cloudy weather, and insufficient light
caused by building obstruction on the bridge, a series of special
treatments need to be carried out on the crack images. This chapter
first introduces basic preprocessing algorithms including Retinex
image enhancement algorithm, bilateral filtering, Laplace transform,
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FIGURE 2
Pretreatment Effect of Cracks. (a) Original image of crack. (b) Crack noise image. (c) Bilateral filtering. (d) Wavelet Transform. (e) BM3D method. (f) This
article’s method.

histogram equalization, etc. Then, in order to extract better quality
bridge crack texture information, a bilateral filtering method was
proposed that can preserve crack edge details to the maximum
extent and remove strong noise to filter out noise. Finally, a crack
image enhancement algorithm combining histogram equalization
and Laplace transform was proposed to improve image contrast for
subsequent processing.

The experimental software is Matlab R2014b, and the
effectiveness of the filtering algorithm in this paper is verified
by comparing different filtering algorithms. Figure 2 shows the
denoising effect of cracks. Figure 2a shows the original crack
image, and Figure 2b shows the noise image with added Gaussian
white noise of 0.09 intensity and salt and pepper noise of 0.2
noise density. Comparing the original bilateral filtering, wavelet
transform, BM3D method with the improved bilateral filtering
algorithm proposed in this paper, the experiment will analyze
the advantages and disadvantages of the four methods from both
subjective and objective perspectives.

As can be seen from Figures 2c-f, the improved bilateral
filtering algorithm can remove strong noise while maximizing
the retention of crack edge information. This article analyzes the
filtering effect from both subjective and objective perspectives and

obtains good conclusions. The HEL algorithm combines histogram
equalization and Laplacian sharpening to enhance image quality,
and its effectiveness has been validated through data analysis.
Finally, experimental verification was conducted on the bridge
crack images according to the preprocessing process described
in this paper. The experimental results showed that although the
preprocessing algorithm proposed in this paper consumed a certain
amount of computation time, it could not only remove the effects
of lighting and noise, cope with various complex situations in the
images, but also improve the contrast and quality of the images,
thereby improving the accuracy of deep learning algorithms in
identifying cracks.

3.2 Introduction to MAMBA network

MAMBA combines the previous SSM architecture design with
the MLP block of Transformer into one block, simplifying the deep
sequence model architecture and forming a simple, homogeneous
architecture design that includes a selective state space.

Like structured SSM, selective SSM is also an independent
sequence transformation that can be flexibly integrated into neural
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networks. The H3 architecture is the foundation of the well-known
homogeneous architecture design, typically consisting of blocks
inspired by linear attention and interleaved MLP (Multi-Layer
Perceptron) blocks [24, 25].

MAMBA simplifies this architecture by combining these two
parts into one and stacking them evenly. They were inspired by
the Gated Attention Unit (GAU), which also performs similar
processing on attention.

l = √n+m+ a (1)

AmongEquation 1, n is the number of neurons in the input layer,
m is the number of output layer.

φi(x) = −e
‖x− ci‖

2

ri
2 (2)

In summary, the selective SSM and MAMBA architecture
extensions are fully recursive models, and several key features make
them suitable as the backbone of a universal foundationalmodel that
runs on sequences.

AmongEquation 2, ci ∈ Rm is the data core of the ith hidden layer
neuron; x ∈ Rm is the radial basis network input ri is a constant.

b =
[1− log (0.5)]0.5

spread
= 0.833

spread
(3)

Among Equation 3, spread is the expansion coefficient.
Selectivity brings powerful performance to intensive models

such as language and genomics. During the training process, the
amount of computation and memory are linearly related to the
length of the sequence, while during the inference process, since
there is no need to cache previous elements, the autoregressive
unfolding model only requires a constant amount of time for
each step. The combination of quality and efficiency has improved
the performance of actual data, with a sequence length of up to
one million.

The input vector of the Gaussian function is:

ki
q = √∑

j
(ω1ji − xjq) × b1i (4)

Among Equation 4, xjq is the input vector; ω1 is the weight
vector; b1 is the threshold.

g(z) = 1
1+ e−z

(5)

The corresponding function image is an S-shaped curve with
a value between 0 and 1. The value of the hθ(x) function has a
special meaning; it represents the probability. This is characterized
by Equations 5, 6.

∑
yi
σ2
i
eb(x1i+cx2i) =

∑ 1
σ2
i
e2b(x1i+x2i)

∑ x1i+x2i
σ2
i

e2b(x1i+x2i)
⋅∑
(x1i + x2i)yi

σ2
i

eb(x1i+x2i) (6)

4 Classification detection and
verification of bridge cracks

4.1 Technical performance test

Anetworkmodel based on the Pytorch deep learning framework
for the task of detecting apparent cracks in bridges. Due to

FIGURE 3
Network training results with CA attention mechanism added.

the time-consuming nature of hyperparameter optimization and
the need for good computer hardware, we chose to use the
default parameters evolved from hyperparameters on the large
dataset COCO (Microsoft Common Objects in Context) as initial
parameters for training and use the best training parameters
obtained from other fields to improve the accuracy of object
detection in this study. For small epigenetic diseases, the initial
recognition effect is poor, which increases the output scale. Among
them, set the number of early stop iterations to two to prevent
overfitting. This article has set some training parameters to optimize
the training performance of deep learning models. Firstly, set the
size of the input image to 640 × 640 × 3 to better process the
image data. Secondly, the momentum parameter is used to affect
the speed at which the gradient descent algorithm converges to the
optimal solution and setting it to 0.9 is beneficial for speeding up the
training process.

In addition, to avoid overfitting of the model, the weight
decay regularization term (decay) technique is used, set to 0.0005.
Learning rate is also an important parameter that controls the speed
of weight updates, with 0.002 chosen as the learning rate. For each
training session, we set the batch size to 8, which helps improve the
accuracy of the network gradient. Finally, a confidence threshold
(score = 0.4) was set, and only targets with a confidence level of 0.4
or above were marked to ensure the accuracy of the model output
results.TheMAMBAmodelwithCA attentionmechanism is used as
the best model for detecting apparent cracks in bridges.The training
process is shown in Figure 3.

The networkwith addedCA attentionmechanism performswell
in epigenetic disease recognition and has the shortest training time,
with broad application prospects. However, some issues were also
discovered during the testing and validation process. Mainly due to.

(1) The confidence level is not high. The confidence level of some
images is relatively low, reaching around 0.3–0.5. When the
confidence level is relatively low, it can lead to a certain degree
of misjudgment of the type of target.

(2) There is a deviation in the target box. Some images have
situations where the target box cannot contain all the targets
or contains too much non target information.

(3) In some images, the neural network failed to correctly
recognize the presence of small area disease targets, resulting
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FIGURE 4
Accuracy and training after the initiation layer.

in these targets being missed. This phenomenon may affect the
performance and accuracy of the model.

(4) The previously used neural network model has singularity
in the output of disease categories, that is, when a target
box contains multiple different types of diseases, it cannot
recognize them simultaneously and can only recognize the
disease typewith themost obvious features. For example, in the
case where there are small cracks around the damaged disease,
the current model can only identify the damaged disease and
cannot simultaneously identify the crack disease.

4.2 Simulation of profile deformation of
foundation pit

In the process of training the improved MAMBA network
on the RLH processed dataset for bridge cracks, it was found
that the accuracy of Accuracy2 and Accuracy3 networks in the
network after training to the sixth initiation layer was basically
the same as the accuracy over time, and the values of loss2 and
loss3 were also similar. Since the accuracy and loss value of crack
recognition after the sixth initiation have reached the training effect
of the complete network, it is completely reasonable to remove the
seven and subsequent initiation layers, which can greatly reduce
the training time. After post analysis, the reason for the above
situation is that the model is a classification model for multiple
labels in the ILSVRC (ImageNet Large Scale Recognition Challenge)
competition, and some of the detailed features of individual
categories are difficult to extract, so more initiation layers are
needed to extract their small features. The crack texture is relatively
simple, so by the sixth initiation layer, its features can already
be extracted. Therefore, it is reasonable to remove unnecessary
initiation layers after the seventh layer to improve the training
speed of the network. Figure 4 shows accuracy and training after the
initiation layer.

This chapter mainly discusses the practical application of
object detection algorithm based on MAMBA network model

in the recognition of apparent diseases of concrete bridges.
Firstly, traditional object detection methods and deep learning-
based object detection methods were introduced, and their
respective advantages and disadvantages were analyzed. Finally,
the MAMBA network model was chosen as the deep learning
training model. Then, the structure and related principles of
the YOLOv5 model were introduced in detail, including the
input end, Backbone network layer, Neck layer, and Head,
while adjusting the corresponding parameters according to the
characteristics of the disease. Subsequently, a combination of
publicly available disease datasets and images collected by drones
was used to collect multiple concrete surface disease images
and manually annotate them. The samples were then subjected
to batch image enhancement processing and trained using the
YOLOv5 model. In addition, CBAM attention mechanism and
CA attention mechanism was separately added to the MAMBA
network model to improve its performance. Finally, the training
results of three different models were compared and evaluated,
the training effects were summarized, and the reasons for them
were analyzed.

5 Conclusion

This article mainly uses traditional digital image processing
techniques and deep learning principles to identify apparent
defects in concrete bridges. The problem of identifying apparent
defects in concrete bridges was studied, and a series of steps
were implemented from the collection of bridge apparent
defect information to detection and result output. This study
first preprocesses the collected crack image data, including
grayscale, filtering, and binarization operations. During this
process, several commonly used methods were compared and
the most suitable method for preprocessing crack images was
determined. Subsequently, edge detection, image stitching, and
geometric dimension analysis were performed on the crack images.
Finally, identify key features such as the width, length, and
direction of cracks.

This study uses the MAMBA network as the training model
for deep learning, and adjusts the corresponding parameters based
on the features of apparent disease images. Multiple disease images
were created and annotated, and a MAMBA network model was
built to train the samples. The CBAM attention mechanism and
CA attention mechanism was added to the MAMBA network
model for comparison and analysis. It was found that the MAMBA
network model with CA attention mechanism had the best
accuracy and was more suitable for detecting apparent diseases
in concrete bridges. Although deep learning frameworks perform
well in disease detection, the actual types of bridge diseases are
diverse, and there are interference factors such as incomplete
data, insufficient lighting, and shooting angles, which may have
a negative impact on the performance of the model. In order
to improve its accuracy and robustness, methods such as weakly
supervised learning and unsupervised learning can be considered,
and training methods and parameters can be optimized for the
inherent features of certain diseases, thereby further improving
model performance.
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