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This study proposes a novel approach utilizing Conditional Generative
Adversarial Networks (CGANs) to accelerate wideband acoustic state analysis,
addressing the computational challenges in traditional Boundary Element
Method (BEM) approaches. Traditional BEM-based acoustic analysis requires
repeated computation of frequency-dependent systemmatrices acrossmultiple
frequencies, leading to significant computational costs. The asymmetry and
full-rank nature of the BEM coefficient matrices further increase computational
demands, particularly in large-scale problems. To overcome these challenges,
this paper introduces a CGAN-based modeling framework that significantly
reduces computation time while maintaining high predictive accuracy. The
framework demonstrates exceptional adaptability when handling datasets with
varying characteristics, effectively capturing underlying patterns within the data.
Numerical experiments validate the effectiveness of the proposed method,
highlighting its advantages in both accuracy and computational efficiency.
This CGAN-based approach provides a promising alternative for efficient
wideband acoustic analysis, significantly reducing computation time while
ensuring accuracy.

KEYWORDS
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1 Introduction

In the field of acoustics, the simulation and analysis of sound wave propagation through
complex structures [1, 2] are of paramount importance. Frequency sweep calculations [3]
are crucial for understanding the behavior of sound waves across a range of frequencies,
which is essential for designing effective acoustic barriers and noise reduction devices.
Traditional computational methods typically employ the Finite Element Method (FEM)
[4–6] or the Boundary Element Method (BEM) [7–10]. Among these, BEM [11]is widely
recognized for its superior accuracy and simplicity in mesh generation [12–14], making
it a preferred method for addressing acoustic problems. Its natural compliance with the
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Sommerfeld radiation condition at infinity further solidifies its
utility in external acoustic analyses [15], [9].

Conventional sound pressure calculations are typically
optimized for specific frequencies, limiting their application across
broader frequency ranges. To address this limitation, broadband
analysis [16] has been introduced, enabling the computation of
results over a wider frequency spectrum. However, in broadband
analysis [17–19], the frequency band is divided into segments,
necessitating the recalculation of the coefficient matrix and
boundary element system [20, 21], equations for each frequency.
This process imposes a significant computational burden. Recent
advancements in computational power and data-driven methods
have spurred the development of neural networks [22–25],
presenting promising opportunities for accelerating complex
acoustic analyses. For example, [26] proposed a noise prediction
model forwing structures, while [27] utilizedDeepNeuralNetworks
(DNN) to expedite uncertainty quantification in vibro-acoustic
coupling analysis. These studies underscore the potential of neural
networks in acoustic modeling and analysis.

This paper introduces an efficient method for accelerating
frequency sweep calculations in broadband acoustics using
Conditional Generative Adversarial Networks (CGANs) [28].
By employing CGANs, the computational overhead inherent in
broadband analysis is significantly reduced. Generative Adversarial
Networks (GANs) [29–32], initially proposed as a framework for
training generative models, offer several advantages: eliminating
the need for Markov chains, relying solely on backpropagation
for gradient computation, avoiding inference during learning,
and easily integrating various factors and interactions. However,
a major limitation of GANs is their inability to control the modes of
generated data in an unconditional model.

In contrast, Conditional Generative Adversarial Networks
(CGANs) incorporate a conditioning variable, enabling control
over the generative process and constraining outputs to a user-
defined distribution. This enhancement improves model stability.
The adversarial training mechanism in CGANs not only ensures
accurate and realistic data generationbut alsouncovers theunderlying
relationshipswithin the data [33–36].These capabilitiesmakeCGANs
particularly suitable for acoustic scattering problems characterized
by complex distribution features. This study focuses on integrating
CGANs with traditional numerical methods to predict the acoustic
scattering characteristics of barriers, thereby reducing computational
complexity, acceleratingcomputations, andestablishingnewsurrogate
models for acoustic scattering analysis [37, 38].

Neural network-based prediction methods are widely adopted
across various fields due to their dynamic capabilities [39–42]. These
methods leverage learning algorithms that achieve high prediction
accuracy by iterative training on simulated sound pressure and
sensitivity data. A key advantage of this approach is its ability to
construct highly nonlinear models [43–45], making it particularly
effective for complex noise analysis. Additionally, these methods
reduce computational workloads, provide high-precision predictions,
andmeet thedemandsof rapidanalysis in engineeringapplications.As
technologycontinues toadvance,neuralnetwork-basedmethodshave
evolved rapidly, finding applications across numerous disciplines.

Significant research progress in machine learning-driven sound
pressure [46] prediction has been made in recent years, both
domestically and internationally. Applications such as robotic fish,

noise barrier models, and submarines demonstrate the engineering
relevance of these advancements. In 2023, [47] applied deep
neural networks and Catmull-Clark subdivision surfaces [48, 49]
to perform vibro-acoustic analysis on various geometric models,
achieving sound pressure responses across multiple parameters and
dimensions. That same year, [50] used Loop subdivision surfaces to
model the robotic fish “Manta” and predicted the effects of geometric
and material parameters on sound pressure.

To improve the efficiency of broadband optimization and apply
CGANs to 2D acoustic problems, this paper presents the following
contributions:

• Development of a CGAN-based network for predicting data,
such as sound pressure.
• Validation of the CGAN network’s performance through an

infinitely long rigid model and an acoustic barrier model.

The structure of this paper is as follows: Section 2 outlines the
boundary element integral equations, while Section 3 details the
theory of CGAN networks and their loss functions. Section 4.1
validates the accuracy and efficiency of CGAN predictions using the
infinitely long rigid cylinder model, and Section 4.2 demonstrates
the feasibility of CGAN networks as surrogate models for acoustic
scattering analysis through an acoustic barrier model.

2 Acoustic boundary element method

Consider the Helmholtz equation for a 2D acoustic problem,
given as Equation 1.

∇2p (x) + k2p (x) = 0,∀x ∈Ω (1)

The Helmholtz half-space problem can be represented by
the following BIE and normal derivative boundary integral
equation (HBIE).

C (x)p (x) +∫
S
F (x,y)p (y)dS (y) = ∫

S
G (x,y)q (y)dS (y) + pinc (x)

(2)

and

C (x)q (x) +∫
S
H (x,y)p (y)dS (y) = ∫

S
K (x,y)q (y)dS (y) +

∂pinc (x)
∂n (x)

(3)

where y signifies the field point, x denotes the source point, and q is
the normal derivative of the sound pressure p: q(x) = ∂p(x)/∂n(x).
When x is located on a border that is smooth S, C(x) = 1/2.
Acoustic pressure incident at position x is given by pinc(x). Green’s
function G(x,y) and its derivative in Equation 2 and Equation 3 are
presented as follows

{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{
{

G (x,y) = i
4
H(1)0 (kr)

F (x,y) =
∂G (x,y)
∂n (y)
= − ik

4
H(1)1 (kr)

∂r
∂n (y)

K (x,y) =
∂G (x,y)
∂n (x)
= − ik

4
H(1)1 (kr)

∂r
∂n (x)

H (x,y) =
∂2G (x,y)

∂n (x)∂n (y)
= ik

4r
H(1)1 (kr)nj (x)nj (y) −

ik2

4
H(1)2 (kr)

∂r
∂n (x)

∂r
∂n (y)

(4)
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where the nth order first kind Hankel function is indicated by
H(1)n , k denotes by the wave number, i = √−1, nj is the Cartesian
component of n(x) or n(y) and the distance between the field and
source locations is represented by the formula r = |x− y|.

For exterior acoustic problems, using either Equation 2 or
Equation 3 alone can lead to non-uniqueness of the solution at certain
imaginary frequencies. According to the Burton-Miller idea, a linear
combination of Equation2 and Equation 3 can effectively resolve this
issue. The Burton-Miller formulation is expressed as follows

C (x) [p (x) + αq (x)] +∫
S
[F (x,y) + αH (x,y)]p (y)dS (y)

= ∫
S
[G (x,y) + αK (x,y)]q (y)dS (y) + pinc (x) + α

∂pinc (x)
∂n (x)

(5)

in which α represents the coupling parameter: defined as α = i/k
where k > 1 and α = i in other cases.

By discretizing the structural boundary into several elements
using constant elements and introducing the coefficient matrix,
Equation 5 can be reformulated as follows

Hp−Gq = pinc
f (6)

where H and G ∈ ℂN×N (N indicates the number of degrees of
freedom.) are the coefficient matrices. They are asymmetric, fully
populated, and frequency-related. The column vectors p and q,
respectively, represent the sound pressure and the acoustic flux
at the collocation locations. pinc

f is the vector of the incident
wave. To determine the sound pressure values at the boundary
surface nodes, Equation 6 needs to be solved. Subsequently, the
sound pressure can be computed at any point within the acoustic
domain by using Equation 5 with α = 0 and C(x) = 1.

Its sound pressure, p f , can be written as follows if the
computation takes into account the external acoustic field.

p f = −|H fp−G fq| + p
inc
f (7)

where the matrices H f and G f as well as the vector pincf are similar
to those in Equation 6, except that the source point x is outside the
structure domain.

2.1 BEM formulas for shape sensitivity
analysis of acoustics

To derive the general formula for acoustic sensitivity
analysis by the direct differentiation method, we first
differentiate Equation 5 to obtain.

C (x) [ṗ (x) + αq̇ (x)] +∫
S
[Ḟ (x,y) + αḢ (x,y)]p (y)dS (y)

+∫
S
[F (x,y) + αH (x,y)] ṗ (y)dS (y)

+∫
S
[F (x,y) + αH (x,y)]p (y)dṠ (y)

= ∫
S
[Ġ (x,y) + αK̇ (x,y)]q (y)dS (y)

+∫
S
[G (x,y) + αK (x,y)] q̇ (y)dS (y)

+∫
S
[G (x,y) + αK (x,y)]q (y)dṠ (y)

+ ṗinc (x) + α
∂ṗinc (x)
∂n (x)

(8)

The basic solution and its derivatives are determined by
the coordinates of the field and source points. Therefore, under
continuous shape modification, their values might be impacted by
a change in a form design variable. In general, the sensitivities of the
coordinates can be used to express Ġ, Ḟ, K̇, Ḣ, ṗ and q̇.

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

Ġ (x,y) = − ik
4
H(1)1 (kr) ̇r

Ḟ (x,y) = − ik
4
H(1)1 (kr)[

[

(ẏj − ẋj)nj (y)

r
+ r,jṅj (y)]

]

+ ik
2

4
H(1)2 (kr) ̇rr,jnj (y)

K̇ (x,y) = − ik
4
H(1)1 (kr)[

[

(ẏj − ẋj)nj (x)

r
+ r,jṅj (x)]

]

+ ik
2

4
H(1)2 (kr) ̇rr,jnj (x)

Ḣ (x,y) = ik
4r
H(1)1 (kr)[ṅj (x)nj (y) + nj (x) ṅj (y)]

+ ik
3

4
H(1)3 (kr) ̇rr,jnj (x) r,lnl (y)

− ik
2

4
H(1)2 (kr)

nj (x)nj (y) ̇r
r

− ik
2

4
H(1)2 (kr) r,jnj (x) [ ̇r,lnl (y) + r,lṅl (y)]

− ik
2

4
H(1)2 (kr) r,lnl (y)[ ̇r,lnj (x) + r,lṅj (x)]

− ik
2

4
H(1)2 (kr)

2 ̇rr,jnj (x) r,lnl (y)
r

(9)

where Equations 10, 11 express the details of Equations 9.

̇r = r,j (ẏj − ẋj) (10)

̇r,lnl (y) + r,lṅl (y) =
(ẏl − ẋl)nl (y)

r
−
̇rr,lnl (y)
r
+ r,jṅl (y) (11)

where ̇() indicates differentiation concerning the design variables.
Once the form design variable has fully parameterized the border of
the studied domain, ẋj and ẏj will be assessed. ṅl(y) and dṠ(y) can be
written as Equations 12,  13

ṅl (y) = −ẏj,lnj (y) + ẏj,mnj (y)nm (y)nl (y) (12)

and

dṠ (y) = [ẏl,l − ẏl,jnl (y)nj (y)]dS (y) (13)

where the partial derivatives concerning the coordinate component
are indicated by an index following a comma, such as ẏj,m = ∂ẏj/∂ym.

The following matrix-form linear algebraic equations are
obtained by discretizing Equation 8 using the constant boundary
element and gathering the equations for each collocation point.

Hṗ+ Ḣp−Gq̇− Ġq = ṗinc (14)

where Ḣ and Ġ ∈ ℂN×N (The number of degrees of freedom
is indicated by N.) are the coefficient matrices. They are fully
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FIGURE 1
GAN network structure diagram.

FIGURE 2
CGAN network structure diagram.

populated, asymmetric, and dependent on frequency. The column
vectors ṗ and q̇ represent the sensitivity of the acoustic flux and the
sound pressure, respectively. ṗinc represents the sensitivity vector of
incident waves.

To determine all the unknown boundary state values for the
analysis of shape sensitivity, solve Equation 6 and use all the values
at the boundaries and known boundary sensitivity values to solve
Equation 14. By Equation 8, the value for any point x in the problem
domain can be computed with α = 0 and C(x) = 1. In the end, the
sensitivities of the objective function presented at certain computing
points in the fluid domain concerning shape design variables could
be calculated.

Since the Hankel function in Equation 4 and its derivative
in Equation 9 depend on the wave number k, Equation 6,
Equation 7 and Equation 14 are all dependent on frequency. The
computation of the system equation and coefficient matrix of
the BEM for 2D acoustic state and sensitivity analysis at each
discrete frequency point within a frequency band is necessary,

which results in a significant computational cost for tackling
multifrequency problems.

3 Theory of conditional generative
adversarial networks

3.1 Generate adversarial neural networks

The innovation of Generative Adversarial Networks (GANs)
lies in their combination of deep learning and probability theory.
They are made up of two rival neural networks that are capable
of autonomous learning and are intended to use unsupervised
learning to replicate the distribution of actual data [51, 52]. The
generator and discriminator engage in an iterative training process
that resembles a game, where the generator aims to produce data that
closely resembles real data, while the discriminator continuously
improves its ability to distinguish between real and generated data.
Together, they form the fundamental architecture of GANs. The
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FIGURE 3
CGAN network structure diagram.

FIGURE 4
The infinite cylinder serves as the design domain for sound scattering.

TABLE 1 Parameters used in the simulations.

Parameter Symbol Value Unit

The density of the air medium ρ f 1.21 kg/m3

The speed of the sound cair 343 m/s

The step size of frequency fstep 1.0 Hz

goal is to make the generated data as similar as possible to the
characteristics of the actual data [53]. The generator aims to create
data that closely resembles real data to deceive the discriminator,
while the discriminator’s role is to distinguish between real data

and the fake data produced by the generator. As they strive
toward achieving a Nash equilibrium in game theory-where the
produced data is indistinguishable from actual data-both networks
are always learning and improving. Figure 1 displays the GAN’s
process flowchart.

The generator takes random noise as input and generates
samples resembling the distribution of real data [54]. The
discriminator receives either real data or fake data produced by
the generator. When the input is real data, the discriminator
outputs 1; when the input is generated data, it outputs 0. Both
the discriminator’s and the generator’s capabilities are continually
enhanced by iterative training, leading to a balanced state where
the discriminator is unable to discriminate between the two input
data categories. This indicates that the generator has successfully
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FIGURE 5
The Generator’s network structure of CGAN.

FIGURE 6
The Discriminator’s network structure of CGAN.
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FIGURE 7
Training loss varies with different hyperparameters: (a) Different learning rates; (b) Different number of hidden layers.

FIGURE 8
Training loss varies with different optimizers.

simulated the distribution of real data. The loss value of a
GAN is closely tied to the loss values of both the generator
and the discriminator, and its loss function can be expressed
as Equation 15.

min
G

max
D

V (D,G) = Ex∼Pdata(x) [log D (x)] +Ez∼Pz(z) [log (1−D (G (z)))] (15)

In this context,Pdata(⋅) andPz(⋅) represent the distributions of the
sample data and noise data, respectively. However, GANs still have
a number of difficulties, though, such as non-synchronous training
between the discriminator and generator, poor data accuracy,
high sample variability, and trouble reaching a level of stability.
The CGAN architecture is used in this study to overcome these
constraints. A thorough overview of CGAN will be given in the
sections that follow.

3.2 Conditional generation adversarial
neural network

By adding conditional information, the Conditional Generative
Adversarial Network (CGAN) [55] improves on the classic GAN
architectureandsuccessfullyconverts it fromanunsupervisedlearning
model to amodelwith supervised learning.CGANconstrains thedata
production process by adding conditional variables, which allows for
the targeted and accurate generation of desired outputs. The CGAN’s
design is quite similar to that of a typical GAN, as seen in Figure 2,
but it incorporates extra conditional variables in the discriminator
and generator. Because of this improvement, CGAN can function as
a supervised, regulated network model.

In Equation 16, the CGAN’s goal function is shown, where
conditional probability is introduced to form a constrained
maximization-minimization function.

min
G

max
D

V (D,G) = Ex∼Pdata(x) [log D (x|y)] +Ez∼Pz(z) [log (1−D (G (z|y)))]
(16)

After incorporating conditional variables, the discriminator
and generator in CGAN are tasked with two key responsibilities:
the discriminator must distinguish between real and generated
data under specified conditions, while the generator aims to
produce data that aligns with the real data distribution under those
same conditions. Random noise and the associated conditional
information are inputs to the generative model, generating
samples that mimic the distribution of real data. Conversely, the
discriminator receives real data, conditional information, and the
generated sample G(y,z) as input, outputting either 0 or 1 to classify
the input as real or generated. Fundamentally, the discriminator
functions as a binary classification model. This structured approach
effectively addresses the limitations of GANs.

During the adversarial optimization process, the generator and
discriminator continuously refine their performance, ultimately
achieving a state of equilibrium where the discriminator can no
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TABLE 2 CGAN’s network architecture and training parameter configurations.

Network Hidden layers Loss function Activation function Optimizer Learning rate

Generator 4 MSE Sigmoid Adam 0.0005

Discriminator 4 MSE Sigmoid Adam 0.0005

TABLE 3 Development environment.

Operating system Framework Language Memory GPU

Windows 11 TensorFlow 2.6.0 Python 3.7 16 GB NVIDIA GeForce GTX 1650

FIGURE 9
Comparison of CGAN Prediction Results Under Unknown Conditions (Training set:361, Test set: 40): (a) Sound Pressure; (b) Sensitivity.

longer differentiate between real and generated data. The training
process for CGAN alternates between updating the generator
and the discriminator, linking the overall loss function to the
individual loss functions of both components. This relationship is
represented in Equation 17:

L (G,D) = Ex,y,Pdata(x,y) [log D (x,y)] +Ey,py(y),z,pz(z) [log (1−D (G (y,z) ,y))]
(17)

In this context, x represents the real data, y denotes the
conditional information, and Pdata(x,y) indicates the distribution of
the input data. The functions D(⋅) and G(⋅) represent the outputs
of the discriminator D and the generator G, respectively, while z
denotes the random noise. The loss functions for D and G can be
expressed as Equation 18 and Equation 19:

LD = −Ex,y,Pdata(x,y) [log D (x,y)] −Ez,pz,y,py(z,y) [log (1−D (G (z,y)) ,y)]
(18)

LG = Ez,pz,y,py(z,y) [log (1−D (G (z,y)) ,y)] (19)

It is important to note that, due to its generative nature,
CGAN has the ability to produce a wide range of data. This

generated data also contributes to the training process of the
network, which significantly reduces the amount of data required
for modeling. As a result, the CGAN network is well-suited to
address the issues examined in this paper. Compared to other
neural networks, CGANcanbe applied to small-scale data problems.
However, the training time is slightly longer than that of other
neural network models.

4 Numerical example

This section presents two computational examples to evaluate
the performance of the proposed algorithm. The acoustic scattering
data were generated using numerical simulations implemented in
the Fortran 90 programming language.Thedatasetwas subsequently
divided into training and testing sets for the CGAN. Figure 3
illustrates the training process of the entire CGAN network,
which can be systematically divided into two primary stages. All
computations were conducted on a laptop equipped with 16 GB
of RAM and an Intel(R) Core(TM) i5-9300H Central Processing
Unit (CPU).
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FIGURE 10
Comparison Between CGAN and DBEM(Training set:361, Test set: 40): (a) Sound Pressure; (b) Sensitivity.

TABLE 4 Comparison of DBEM and CGAN results across different Frequencies (Sound pressure).

Frequency Sound
Pressure with

Sound Pressure with
Analytical

Error with (%) Computation Time (s)

DBEM CGAN DBEM CGAN DBEM CGAN

300 0.63559 0.63565 0.63556 0.005 0.015

189.2725
1.3589(Prediction)
227.003 (Training)

320 0.65251 0.65258 0.65247 0.006 0.018

340 0.67979 0.68011 0.67982 0.003 0.042

360 0.69433 0.69438 0.69429 0.006 0.013

380 0.71508 0.71504 0.71485 0.032 0.026

400 0.73545 0.73516 0.73541 0.005 0.034

420 0.74895 0.74889 0.74896 0.001 0.009

440 0.76985 0.76987 0.76975 0.013 0.016

460 0.78442 0.78451 0.78512 0.089 0.077

480 0.79936 0.79917 0.80024 0.11 0.133

500 0.81642 0.81523 0.81628 0.017 0.129

4.1 Infinite-length rigid cylinder model

The acoustic scattering from a cylinder can be simplified to
a two-dimensional problem by assuming that a plane wave beam
strikes an infinitely rigid cylinder (see Figure 4). The plane wave
propagates along the positive x-axis. The cylinder is centered at
(0 m, 0 m) with a radius of 1 m, and its circumference is discretized
using 720 constant boundary elements. Additionally, the coordinates
of the calculation points are (10 m, 0 m) (see Figure 4). Other
parameters for the numerical simulation are provided inTable 1.The
problem of acoustic scattering by an infinitely rigid cylinder has the

analytical solution, which is represented as Equation 20.

p (r,θ) = −
∞

∑
n=0

εnin
nJn (kr0) − kr0Jn+1 (kr0)

nH(1)n (kr0) − kr0H
(1)
n+1 (kr0)

H(1)n (kr)cos (nθ) (20)

In the above equation, ε0 = 1 for n = 0, and εn = 2 otherwise,
where εn represents the Neumann symbols. The expansion consists
of 50 terms, and at the detection point, θ = 0. To assess the
accuracy of the proposed method, the relative error between the
traditional Boundary Element Method (DBEM) and the analytical
solution, and that between the CGAN-predicted results and the
analytical solution, have been calculated. The relative error is
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TABLE 5 Comparison of DBEM and CGAN results across different Frequencies (Sensitivity).

Frequency Sensitivity with Sensitivity with Analytical Error with (%) Computation Time (s)

DBEM CGAN DBEM CGAN DBEM CGAN

300 0.54974 0.54967 0.54973 0.001 0.011

378.1168
1.5467(Prediction)
215.483 (Training)

320 0.57099 0.57094 0.57098 0.001 0.007

340 0.59166 0.59161 0.59165 0.002 0.006

360 0.61179 0.61164 0.61178 0.002 0.022

380 0.63110 0.63101 0.63092 0.003 0.012

400 0.65007 0.65011 0.65005 0.003 0.008

420 0.66843 0.66839 0.66841 0.004 0.002

440 0.68628 0.68644 0.68625 0.004 0.027

460 0.70379 0.70379 0.70375 0.006 0.006

480 0.72075 0.72078 0.72070 0.007 0.010

500 0.73655 0.73601 0.73651 0.006 0.069

FIGURE 11
The design domain of the semi-curved sound barrier model.

determined using Equation 21:

Relative Error =
|Xoutput −Xanalytical|

|Xanalytical|
× 100% (21)

Here, Xoutput represents the results obtained from DBEM-
CGAN, andXanalytical represents the results of the analytical solution.
Before training the neural network, data preprocessing is essential.
First, a portion of the dataset is randomly selected as the test
set to evaluate the model post-training. Additionally, to enhance
training efficiency and prediction accuracy by addressing the
scale differences among features, data standardization is a critical

step. Standardization not only improves the model’s adaptability
across different datasets but also increases its sensitivity to feature
variations, thereby improving its generalization capability. The
standardization process can be implemented using Equation 22:

x′ =
x− xmin

xmax − xmin
(22)

In this context, x′ represents the value of a single data point,
xmin is the minimum value in the corresponding column, and
xmax is the maximum value in that column. After standardization,
all features in the dataset are rescaled to a uniform range,
ensuring that differences in feature magnitudes do not affect model
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FIGURE 12
Comparison of CGANâ€™s Prediction Results on the Test Set with DBEM Results (Training set:361, Test set: 40): (a) Sound Pressure; (b) Sensitivity.

FIGURE 13
Comparison of CGANâ€™s Prediction Results with DBEM Results (Training set:361, Test set: 40): (a) Sound Pressure; (b) Sensitivity.

training and prediction. The standardized dataset is then divided
into two subsets: the training set, used to train the model, and
the test set, employed to evaluate its performance. Following
evaluation, the predicted outputs are post-processed as described
in Equation 23.

x = x′ ⋅ (xmax − xmin) + xmin (23)

Based on the acquired dataset (sound pressure and sensitivity
from 100Hz to 500 Hz), the data is input into the CGAN model
for training. Figures 5, 6 present a simplified diagram of the CGAN
structure, illustrating the discriminator’s and generator’s training
procedure. Z1 and Z2 represent the random noise inputs to the
generator, and y denotes the label information corresponding to
the frequency information of the real data. The generated data x1
symbolizes the sensitivity and sound pressure at the observing point.
In the discriminator, x2 represents the real data, ŷ represents the label
information of the generated data corresponding to its frequency
information, and d̂ represents the discrimination result, stating if
the data is fake or true.

For the tasks of sound pressure and sensitivity prediction,
these can be considered a regression problem. Thus, the mean
squared error (MSE) function is employed as the loss function,
as shown in Equation 24. Since the discriminator operates as a
binary classifier, the Sigmoid function is used as the activation
function. To ensure balanced performance between the generator
and discriminator, the same activation function is applied to both.
Additionally, the parameter dimensions are kept within a compact
range to enhance the model’s efficiency.

Figure 7 illustrates the variation in the generator’s training
loss under different learning rates and optimizers, while Figure 8
demonstrates the impact of the number of hidden layers on the
training loss.

MSE = 1
n

n

∑
i=1
(ŷi − yi)

2 (24)

As the learning rate decreases, the model loss decreases.
When the learning rates are set to 0.005 and 0.0005, the losses
are similar, but the model accuracy is higher at a learning rate
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TABLE 6 CGAN testing input parameters and results.

Sound pressure CGAN Relative error (%) Sensitivity CGAN Relative error (%)

1.178 1.180 0.19 0.294 0.295 0.36

1.164 1.165 0.04 0.159 0.161 1.33

1.171 1.172 0.04 0.045 0.043 3.08

1.176 1.177 0.03 0.346 0.352 1.60

1.179 1.179 0.03 0.192 0.188 2.55

1.176 1.176 0.02 0.251 0.255 1.51

1.151 1.149 0.20 0.761 0.743 2.52

1.075 1.073 0.21 0.840 0.862 2.50

1.077 1.076 0.09 0.565 0.578 2.36

1.087 1.087 0.03 0.361 0.372 2.90

1.093 1.092 0.12 0.377 0.391 3.62

1.099 1.098 0.09 0.443 0.453 2.03

1.241 1.241 0.00 0.467 0.482 3.03

1.245 1.245 0.01 0.499 0.511 2.25

1.338 1.338 0.01 0.548 0.556 1.53

FIGURE 14
The relative errors between DBEM and CGAN under different models: (a) Sound pressure; (b) Sensitivity.

of 0.0005. Furthermore, when comparing different activation
functions, Adam significantly outperforms SGD. The effect
of varying the number of hidden layers was tested, and by
comparing the loss to actual results, it was determined that a
configuration with four hidden layers yields the best performance.
Finally, Table 2 displays the CGAN model’s network framework
configuration, with the detailed configuration parameters provided
in Table 3.

To evaluate the predictive accuracy of the CGAN network,
the classical infinite-length rigid cylinder model was selected as
the benchmark. By splitting the data, a portion is selected as
the test set, while the remaining data is used as the training set
for training. The total number of sound pressure and sensitivity
data is 401, with 10% of the dataset (i.e., 40 data points) selected
as the test set, and the remaining data used as the training
set. Figure 9a presents the sound pressure prediction results on
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TABLE 7 Development environment.

Variables RMSE MAE R2

Sound Pressure 0.00146 0.000891 0.998

Sensitivity 0.00926 0.00688 0.997

the test dataset, while Figure 9b provides a comparative analysis
of sensitivity predictions on the test dataset. In this context,
Unknown Conditions refers to the test set, as the data patterns
in the test set are unknown to the trained model. The results
demonstrate that the CGAN model consistently achieves a high
level of agreement with analytical solutions in both sound pressure
predictions and sensitivity analyses. This indicates that the CGAN
model effectively captures the underlying patterns within the data,
even under unknown operating conditions, showcasing exceptional
predictive accuracy and reliability. In addition, the sound pressure
sensitivities were calculated using both the DBEM method and
the CGAN model, with the results compared to the analytical
solution, as shown in Figure 10. The figure clearly demonstrates
that the CGAN model significantly outperforms the DBEM method
in terms of accuracy, producing predictions that exhibit neither
oscillatory behavior nor spurious frequency points. Furthermore,
the CGAN model offers a substantial advantage in computational
efficiency over the DBEM method. A detailed comparison of
the results and corresponding computation times is provided in
Tables 4, 5.

The data in the table indicate that DBEM and CGAN exhibit
similar error performance. While DBEM demonstrates a slight edge
in accuracy, CGAN significantly surpasses DBEM in computational
time, achieving a notable reduction in the time required. This
underscores the clear superiority of CGAN in computational
efficiency. Thus, despite the minimal difference in error, CGAN
offers a substantial advantage in time efficiency, making it the
preferred choice for applications where computational speed is
paramount.

4.2 Sound barrier model

As urbanization accelerates and the use of transportation
vehicles becomes more widespread, traffic noise has become an
increasingly severe issue, causing numerous inconveniences and
hazards to peopleâ€™s daily lives andwork. Consequently,mitigating
the harm caused by traffic noise is essential. Sound barriers
are widely used in acoustic and noise control engineering as
structures or devices designed to block or reduce the transmission
of sound waves.

To evaluate the effectiveness of sound barriers, the accuracy
and efficiency of the CGAN model were first validated using
the infinitely long rigid cylinder model. In this section, a more
complex noise barrier model is considered to comprehensively
assess the CGAN modelâ€™s performance in terms of both
precision and computational efficiency. The sound pressure and
related data are generated from a plane wave incident parallel
to the x-axis, which is scattered by the sound barrier. The

sound barrier model is discretized into 1,118 elements, and the
sound pressure at the point (12 m, 2 m) is calculated using
the DBEM. From the obtained sound pressure and sensitivity
data, the frequency range of 100â€”500 Hz is selected as the
training dataset for the CGAN model. The sound barrier model is
illustrated in Figure 11.

The data processing method and the relative error calculation
are consistent with those used in the infinitely long rigid cylinder
model. The prediction results on the predefined test set are shown
in Figure 12. As illustrated in the figure, the sound pressure
and sensitivity predicted by the CGAN model exhibit the high
degrees of consistency with the actual data, demonstrating excellent
agreement. These findings highlight the generalization capability of
the CGAN model when applied to unseen datasets. Furthermore,
a comparative analysis between DBEM and CGAN was conducted
within the frequency range of 200â€”400 Hz, with the results
presented in Figure 13.

Table 6 presents the relative errors for several test points.
It can be observed that all relative errors fall within a narrow
range, with the maximum error not exceeding 3.62%. Unlike
the infinite-length rigid cylinder model, the sound barrier model
lacks analytical solutions and features more complex geometrical
configurations. As a result, both DBEM and CGAN exhibit certain
deviations. Nevertheless, the overall error remains within a small
range, further validating the CGAN model’s ability to accurately
learn patterns embedded in the data and deliver high-precision
predictions.

In particular, the CGAN model demonstrates exceptional
consistency and accuracy in sound pressure predictions. Figure 14
illustrates the relative error between the predicted values of
the CGAN model and the calculated values of DBEM under
different model configurations. For sensitivity predictions,
although the data is inherently more complex and exhibits
slightly higher errors compared to sound pressure, the CGAN
model still maintains remarkably high prediction accuracy. This
highlights the modelâ€™s capability to handle diverse data types
while demonstrating robust performance and reliability. The
regression model evaluation metrics were calculated using the
specified formula, and the detailed statistical results are presented
in Table 7.

Overall, these results comprehensively highlight the CGAN
model’s outstanding capabilities and exceptional performance in
sound barrier data prediction, reaffirming its effectiveness in
addressing complex computational challenges. In the face of more
complex models in the future, DBEM will require more time. The
accuracy of the CGAN model has been demonstrated through the
numerical example. Therefore, when calculating other models, it
is sufficient to use the DBEM method to compute a portion of
the data, and the remaining data can be generated using CGAN,
which significantly reduces the computation time compared to the
DBEM method.

5 Conclusion

This paper proposes a method to enhance computational
efficiency by utilizing the CGAN network for the

Frontiers in Physics 13 frontiersin.org

https://doi.org/10.3389/fphy.2025.1539545
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Hu et al. 10.3389/fphy.2025.1539545

rapid and accurate prediction of sound pressure and
sensitivity:

1. The integration of the Boundary Element Method (BEM) with
CGAN is investigated to evaluate the applicability of CGAN in
solving such problems.

2. The predictive model developed through CGAN demonstrates
a significant reduction in computation time, thereby improving
the efficiency of sound scattering analysis.

3. Adjustments to specific parameters and structures of CGAN
have proven effective in addressing the regression challenges
were encountered in this study.

Future research will aim to extend the application of CGAN to
the structural optimization of sound barriers.
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