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Traditional image-based wavefront sensing often faces challenges in efficiency
and stagnation. Deep learning methods, when properly trained, offer superior
robustness and performance. However, obtaining sufficient real labeled data
remains a significant challenge. Existing self-supervised methods based on
Zernike coefficients struggle to resolve high-frequency phase components.
To solve this problem, this paper proposes a pixel-based self-supervised
learning method for deep learning wavefront sensing. This method predicts the
wavefront aberration in pixel dimensions and preserves more high-frequency
information while ensuring phase continuity by adding phase constraints.
Experiments show that the network can accurately predict the wavefront
aberration on a real dataset, with a root mean square error of 0.017λ. resulting
in a higher detection accuracy compared with the method of predicting the
aberration with Zernike coefficients. This work contributes to the application
of deep learning to high-precision image-based wavefront sensing in practical
conditions.
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wavefront sensing, image-based wavefront sensing, phase retrieval, self-supervised
learning, neural Network

1 Introduction

Traditional image-based wavefront sensing methods, including model-based approach,
phase retrieval (PR), and phase diversity (PD), etc., have been widely applied in
the areas of adaptive and active optics [1], microscopy imaging [2], and laser
technologies [3]. Compared to other wavefront sensing methods (Hartmann sensor
[4, 5] or shearing interferometry [6]), it has lower optical hardware requirements
and does not require additional calibration [7]. The model-based approach leverages
predefined aberration modes and typically requires only a single iteration [8–10],
resulting in a faster convergence rate. However, its execution cost is significantly
greater, and its convergence accuracy is limited because it only has one iteration
[11, 12]. On the other hand, iterative methods like PR and PD achieve higher
accuracy by refining the solution over multiple iterations. Nevertheless, as these
methods involve solving a non-convex optimization problem, they are prone to
stagnation during the iterative process, compromising their robustness. Furthermore, the
iterative nature of these methods makes it challenging to optimize their computational

Frontiers in Physics 01 frontiersin.org

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2025.1537756
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2025.1537756&domain=pdf&date_stamp=2025-02-28
mailto:juguohao@ciomp.ac.cn
mailto:juguohao@ciomp.ac.cn
https://doi.org/10.3389/fphy.2025.1537756
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fphy.2025.1537756/full
https://www.frontiersin.org/articles/10.3389/fphy.2025.1537756/full
https://www.frontiersin.org/articles/10.3389/fphy.2025.1537756/full
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Liu et al. 10.3389/fphy.2025.1537756

efficiency using parallel computing platforms, such as
GPUs or FPGAs [13]. These challenges pose substantial barriers to
the widespread adoption and application of image-based wavefront
sensing technologies.

Deep learning networks have been introduced to image-based
wavefront sensing for many applications [14–17] due to their
superiorities in efficiency and robustness. The network predicts
the wavefront aberration based on the input point spread function
(PSF). Depending on the representation of the wavefront aberration,
it can be categorized into Zernike-based and pixel-based methods.
The Zernike-based method reconstructs the wavefront from the
Zernike coefficients predicted by the network. Ju et al. [12] represent
the features of PSFs in terms of Tchebichef moments and input them
to a multilayer perceptron (MLP) network. This method reduces
the complexity of the network while maintaining a comparatively
high accuracy. Qi et al. [18] use both in-focus and out-of-focus
PSFs to generate object-independent features as inputs to the long
short-term memory (LSTM) network for arbitrary objects, and
the network achieves comparable accuracy to the phase diversity
(PD) algorithm when predicting the 9-term Zernike coefficients.
Zhou et al. [19, 20] introduced a generalized Fourier-based phase
diversity wavefront sensing method. This approach accommodates
arbitrary objects and allows direct application to new systems
without additional training, even when the system parameters
are altered. Ge et al. [21] use a convolutional neural network
(CNN) to predict the wavefront aberration coefficients based on
PSFs and analyze the change in accuracy as the network outputs
with different coefficient orders. Abu et al. [22] demonstrate the
ambiguity that exists between the sign of the Zernike coefficients
and the PSF when using a single PSF to predict wavefront
aberrations and modify the Zernike polynomials to remove this
ambiguity.

For pixel-based wavefront sensing methods, the network
directly outputs pixel-dimensional wavefront aberrations that can
contain more high-frequency components than Zernike-based
methods [23]. Zhuang et al. [24] employ a fully connected retrieval
neural network (F-RNN) to directly predict wavefront aberrations.
They enhance network performance by extracting and integrating
multi-scale feature maps from various layers and stages through
fully-skip cross-connections. In addressing complex wavefronts,
Hu et al. [25] not only use the network to predict Zernike
coefficients but also employ an additional network that utilizes
these coefficients to predict wavefront aberrations on a pixel-by-
pixel basis further. Agarwal et al. [26] introduce cGULnet to directly
generate wavefront aberrations in scenarios with high turbulence,
training it using a generative adversarial network approach. Jeffrey
et al. [27] utilize U-Net to accurately represent fine details in the
phase, ensuring precise reconstruction of the PSF. Zhao et al. [28]
concentrate on the impact of networkmodels on detection accuracy.
They enhance U-Net by incorporating a Dense Block and Attention
Gates structure, further improving its accuracy in directly predicting
wavefront aberrations.

However, supervised training requires prior knowledge of the
true wavefront corresponding to the input PSF, referred to as the
wavefront label. In some practical applications, acquiring a large
number of real PSF images with their corresponding wavefront
labels can be challenging. Although a large number of images and
corresponding labels can be obtained through simulation, there are

inevitable differences between simulated and actual images. This
leads to poor model performance in the real case, as shown in
Figures 1B, C (The true value is shown in Figure 1A and the root
mean square error (RMSE) between each prediction and the true
value is marked above the wavefront maps).

Self-supervised learning allows the model to learn from
unlabeled data by leveraging inherent data structures or constraints.
In wavefront sensing, the PSF has a well-defined mathematical
relationship with the wavefront label, which can serve as a constraint
in self-supervised training. Several self-supervised trainingmethods
[29–31] for point and arbitrary objects have been proposed, all
of which utilize Zernike polynomials to represent the wavefront
to ensure phase continuity. However, fitting the high-frequency
components with Zernike coefficients is difficult and leads to
poor results when there is more high-frequency information in
the wavefront, as shown in Figure 1D. Whereas, if the wavefront
is output directly in the pixel dimension in the self-supervised
method, it results in an erroneous, discontinuous wavefront,
as shown in Figure 1E.

To solve the above problems, this paper introduces a new self-
supervised deep learning method for pixel-based high-precision
wavefront sensing, and the result is shown in Figure 1F.Themethod
operates without the need for wavefront labels and eliminates the
use of Zernike polynomials to represent the wavefront phase map.
It can predict wavefront aberrations in the pixel dimension while
guaranteeing phase continuity. In particular, the network output
is divided into two components: the main part capturing the low-
frequency component of the wavefront distortion to ensure phase
continuity and the high-frequency component used for predicting
detailed wavefront information. The final wavefront prediction
is achieved by combining these two components while ensuring
wavefront continuity.

2 Materials and methods

2.1 Basic theory

For an incoherent imaging system, the image at the i-th image
plane of the system can be represented as a convolution of the object
and the PSF of the system, as expressed in Equation 1

di(r) = o(r) ∗ hi(r) + ni(r) (1)

where di(r) is the corresponding light intensity distribution on
the i-th image plane, o(r) is the object, hi(r) is the PSF on
the corresponding image plane, ni(r) is the noise, ∗ denotes
the convolution operation, and r is a two-dimensional position
vector on the image plane. Further, the PSF of the system can be
expressed as:

hi(r) = |F{A(ρ) ⋅ ejφi(ρ)}|
2 (2)

where A(ρ) is the optical pupil amplitude, φi(ρ) is the wavefront
aberration, ρ is the 2D position vector on the optical pupil plane,
andF denotes the 2D Fourier transform. For different image planes
at different positions, the wavefront aberration can be represented as
Equation 3:

φi(ρ) = φ(ρ) +∆i(ρ) (3)
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FIGURE 1
Comparison of results of different methods. (A) truth value. (B–E) show the predicted wavefront using the supervised Zernike-based method,
supervised pixel-based method, self-supervised Zernike-based method, and self-supervised pixel-based method, respectively. (F) the self-supervised
pixel-based method proposed in this paper. The RMSE between each predicted result and the true value, as well as the RMSE for the C5-C9 terms, are
marked above the corresponding wavefront maps.

where φ(ρ) is the aberration that is unknown and needs to be solved
for, and∆i(ρ) is the wave aberration determined by the known image
plane position (e.g., defocus terms in Zernike coefficients). During
the imaging process of a real optical system, it is inevitable that it will
be interfered with by surface shape errors, airflow, and so on. These
interferences introduce high-frequency components into φ(ρ), so
φ(ρ) can be further divided into high-frequency and low-frequency
components [32],

φ(ρ) = φl(ρ) +φh(ρ) (4)

whereφl(ρ) andφh(ρ) denote the low-frequency and high-frequency
components that need to be solved, respectively.

2.2 Overall framework

The overall framework of the proposed method is shown in
Figure 2A. In the training phase, the network inputs are PSFs
collected from a real optical system. Concerning Equation 4,
the output wavefront distribution of the network is split
into high and low frequencies using low-pass and high-pass
filters at specific frequencies. The final network prediction is
then derived by weighting and combining these two separate
components. The estimated PSFs are then computed from
the predicted wavefront aberrations employing an imaging
model corresponding to the real optical system. Ultimately,
the loss is calculated by comparing the estimated PSFs
with the actual PSFs, which is used to optimize network
parameters.

2.3 Network structure

A modified U-Net architecture, termed Atten-U-Net, is
employed for predicting wavefront aberrations, incorporating the
Convolutional Block Attention Module (CBAM) as the attention
mechanism [33, 34].The network structure is depicted in Figure 2B,
with both input and output image spatial dimensions set at 64 ×
64. Intermediate feature maps’ spatial and channel dimensions are
annotated on the left and top, respectively.

The Atten-U-Net consists of two main phases: encoding and
decoding. In the encoding phase, the feature map undergoes
two consecutive basic modules comprising 3 × 3 convolution,
Batch Normalization (BN), and Rectified Linear Unit (ReLU).
Subsequently, downsampling occurs through a Maxpooling layer,
reducing spatial dimensions and doubling channel dimensions to
extract higher-dimensional semantic information.

During the decoding stage, spatial dimensions of the features
are expanded, and channel dimensions are reduced through
transposed convolution. These features are then concatenated with
corresponding feature maps from the encoding phase to reintegrate
missing detail information. CBAM is applied to fuse features before
being output to the subsequent layer.

The CBAM structure, illustrated in Figure 2C, concurrently
enhances features in spatial and channel dimensions. It comprises
twomodules: the channel attentionmodule and the spatial attention
module. In the former, the input spatial dimension of the features is
compressed to one dimension throughMaxpooling and Avgpooling
layers, followed by processing through a MLP. The outputs are
summed andmultiplied with the original featuremap in the channel
dimension after the sigmoid function, enhancing the channel
dimension. In the latter, the channel dimension of input features is
compressed by Maxpooling and Avgpooling layers, fed into a 7 × 7
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FIGURE 2
Structure of the proposed self-supervised deep learning method. (A) represents the overall structure, (B) is the structure of Atten-U-Net and (C)
denotes the structure of CBAM.

convolution, and the result is multiplied with the original features
in the spatial dimension after a sigmoid function, augmenting the
spatial dimension.

2.4 Restrictive condition

First, a low-pass filter is used to suppress the high-frequency
components of the network outputs. This allows the network
to search for the correct solution that will make the wavefront
continuous during training. The frequency domain filtering process
can be expressed as:

̃φl(ρ) = F
−1{Φ̂l(v) ⋅ LF(v)} = F−1{F{ ̂φl(ρ)} ⋅ LF(v)} (5)

where ̂φl(ρ) is the wavefront output directly from the network,
and ̃φl(ρ) is the corresponding result after a low-pass filter. v is a
two-dimensional position vector in frequency space. LF(v) is the
spectrum of the filter, a Gaussian low-pass filter is employed which
is given by Equation 6:

LF(v) = e
−( |v|

2

2rl2
)

(6)

where rl controls the radius of the filter and is a trainable parameter.
Accordingly, to solve for the high-frequency components, a
Butterworth high pass filter is employed which frequency response
can be expressed as Equation 7:

HF(v) = 1
1+ (rh/v)

2n (7)

The cutoff frequency of the filter is represented by rh, while n
represents the order of the Butterworth filter. Similar to Equation 5,
̃φh(ρ) can be calculated as:

̃φh(ρ) = F
−1{F{ ̂φh(ρ)} ⋅HF(v)} (8)

To prevent additional discontinuities when adding the result
̃φl(ρ) of the low-frequency filtering to the result ̃φh(ρ) of the high-

frequency filtering, the maximum difference between neighboring
values in the low-frequency component is first calculated as
Equation 9:

Dl =max
ρ
| ̃φl(ρ) − ̃φl(ρ+ d)| (9)

where d is the direction vector which takes the values (0,±1),
(±1,0) respectively. The prediction of the wavefront distortion is
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FIGURE 3
Schematic of simulated wavefront distortion and PSF generation.

TABLE 1 Settings of the 10 simulation datasets.

Type of dataset Dataset index α PV

Complexity level

1 0

1.0

2 0.125

3 0.250

4 0.375

5 0.500

Range level

6

0.250

0.5

7 1.0

8 1.5

9 2.0

10 2.5

then obtained by limiting the maximum value of ̃φh(ρ) by Dl and
then summing it with ̃φl(ρ), as expressed in Equation 10:

̃φ(ρ) = ̃φl(ρ) +
2π−Dl

2 max | ̃φh(ρ)|
̃φh(ρ) (10)

2.5 Imaging model and loss function

The PSF calculation for the ideal state has been given in
Equation 2, but in reality, the actual optical system will inevitably
be affected by micro-jitter during the imaging process. This micro-
jitter between the image on the image plane and the image plane
detector reduces the sensing resolution, thus presenting a Gaussian

blur [35, 36]. Assuming that the horizontal and vertical jitter are
independent of each other and that their means are 0 and the
variances are σ, the estimated PSF after accounting for micro-jitter
can be calculated as Equation 11:

̃hi(r) = |F{A(ρ) ⋅ ej[ ̃φ(ρ)+∆i(ρ)]}|
2 ∗ 1

2πσ2
e
−( |r|

2

2σ2
)

(11)

Note that for the deviation of the known position of the image
plane from its actual position, the methods based on the Zernike
fit need to additionally solve for the defocus and tilt terms to
compensate for the effect of the error. Whereas in this paper, no
additional compensation is required since the information about
the entire wavefront is solved directly in pixel dimension, which
automatically includes the defocus and tilt terms.

Smooth L1 loss [37] and structure similarity index measure
(SSIM) loss [38] were used to measure the difference between the
estimated PSFs and the real PSFs, and they were weighted by the
constant β to obtain the total loss L, as expressed in Equation 12.

L =∑
i
βLsmothL1( ̃hi(r),hi(r)) +LSSIM( ̃hi(r),hi(r)) (12)

3 Simulations

In this section, simulated images are used to demonstrate the
accuracy of the proposed method. The wavefront aberration of the
simulation experiment contains both simple and complex parts, as
shown in Figure 3. The simple wavefront has a lower frequency.
It is generated according to random Zernike’s C5-C21 terms. The
complex wavefront has a higher frequency and is generated based
on the airflow distribution [39]. The percentage of the two parts
is adjusted by parameter α. The wavefront labels are represented
using Zernike coefficients and pixels respectively. Where the labels
of Zernike coefficients are used to train supervised Zernike-based
networks. The pixel dimension labels are used to train supervised
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FIGURE 4
The average RMSE for each method on datasets with different wavefront complexity (datasets 1–5 in Table 1).

FIGURE 5
The average RMSE for each method on datasets with different wavefront PVs (datasets 6–10 in Table 1).

pixel-based networks. The self-supervised networks are all trained
by PSF only.

The simulation experiments are verified in two main ways,
i.e., wavefront aberration of different complexity and ranges.
As shown in Table 1, 10 sets of data are generated.The first 5 datasets
are generated by adjusting α and fixing PV = 1.0. the purpose

is to validate the model under conditions with different levels of
complexity of the aberration. The last 5 datasets are generated by
fixing α = 0.250 and adjusting PV. The purpose is to validate the
model under different ranges of aberration conditions.

For each dataset in Table 1, 10,000 pairs of training data
and 1000 pairs of test data are generated. The PSF size was 64
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FIGURE 6
Cross-dataset test results. (A) Test results across datasets 1–5 in Table 1 (supervised network trained with dataset 1 only). (B) Test results for
datasets 6–10 in Table 1 (supervised network trained with dataset 6 only).

FIGURE 7
The sketch (A) and physical map (B) of the optical system used in the experiment.

× 64. The axial defocusing distance between each pair of PSFs
(one PSF is obtained in front of the focus point and another is
obtained behind the focus point) is 1.6mm, and a position error
of each PSF in the range of [-0.1mm, 0.1 mm] is further imposed.
40dB Gaussian noise is added to each PSF. For the Zernike-based
approaches, the ResNet-50 network is used (the same as Refs. [4,
40, 41]). A GeForce RTX 3060 graphics card was used to train the
network using the Adam optimizer with a learning rate of 0.001
and weight delay of 10−6. The batch size for training was 32, the
total epoch was 200, and the learning rate was halved every 40
epochs.

3.1 Impact of wavefront aberrations of
different complexity on detection accuracy

In order to quantitatively analyze the performance of
the different methods. The first five datasets in Table 1
are selected for training and testing, respectively. Figure 4
demonstrates the average RMSE of each method on different
datasets. The following three conclusions can be drawn from
Figure 4:

(1) On all datasets, pixel-based methods outperform the Zernike-
based methods when the training methods are the same.
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TABLE 2 Prediction accuracy of different deep learning methods on the
real dataset.

Methods RMSE (C5–C9)

Supervised
Zernike-based [40] 0.102λ

Pixel-based [22] 0.111λ

Self-supervised
Zernike-based [29, 30] 0.046λ

Pixel-based (proposed) 0.020λ

(2) The supervised method outperforms the self-supervised
method on all datasets.

(3) In self-supervised methods, when the wavefront is simple,
the performance difference between pixel-based and
Zernike-based methods is not significant. The more
complex the wavefront is, the better the performance
of the pixel-based method than the Zernike-based
method.

3.2 Effect of wavefront aberrations of
different PVs on detection accuracy

Figure 5 shows the performance of the different methods for
wavefront aberrations at different PVs for quantitative analysis. The
last five datasets in Table 1 are selected for training and testing,
respectively.

The following three conclusions can be drawn from Figure 5:

(1) Regardless of the training method employed, pixel-based
approaches consistently outperform Zernike-based methods.
Moreover, supervised training methods exhibit better
performance across all PV ratios, accurately recovering low-
frequency components within the wavefront. These findings
align with those in section 3.1.

(2) The performance of self-supervised training methods is poor
at PV = 0.5, but as PV increases, the accuracy of wavefront
recovery gradually improves. This is because as the wavefront
aberration decreases, the spot size of the PSF becomes
smaller, containing less information, making it difficult for
self-supervised methods to measure the difference between
predicted wavefront and ground truth solely based on PSF.

(3) As PV increases, the gap between pixel-based and Zernike-
based methods gradually widens (for both supervised
and self-supervised methods), which differs from the
conclusion in section 3.1. This demonstrates that Zernike-
based methods are more challenged by higher PV wavefronts
compared to more complex wavefronts.

3.3 Cross-dataset performance

Due to the challenge of obtaining a large number of labels in
practical scenarios, supervised training inevitably faces the scenario
of cross-dataset application, where the distribution of training and

testing data differs. To simulate this situation. First, the supervised
method is trained using the 1st dataset in Table 1 and tested with the
1st through 5th datasets, and the results are shown in Figure 6A. In
addition, it is also trained using the 6th dataset in Table 1 and tested
with the 6th through 10th datasets, and the results are shown in
Figure 6B. Since self-supervised methods do not require wavefront
labels during training, they can easily adapt the network to new
distributions when dataset distributions change, avoiding this issue.
Therefore, their results remain consistent and are the same as in
Figures 4, 5.

The following two conclusions can be drawn from Figure 6:

(1) The larger the gap between the training and the test dataset,
the worse the performance of the supervised methods. The
supervised method is worse than the self-supervised method
at both a > 0.125 in Figure 6A and PV > 0.75 in Figure 6B. It
proves that self-supervised methods are more suitable for use
in real scenarios.

(2) An increase in PV leads to a more dramatic decrease in the
performance of the supervised trained network compared to
an increase in wavefront complexity. It is demonstrated that
supervised networks aremore sensitive to the aberration range.

In practice, real systems will be affected by more complicated
effects, including the effects of air turbulence, high-order surface
error of the mirrors, vibration, and the unknown distribution of
noise, etc. In other words, it is usually difficult to obtain a large set
of real labeled data that is used to train the network.

4 Experiment

In this work, an off-axis three-mirror anastigmatic (TMA)
optical system is taken as the experimental optical system to verify
the effectiveness of the proposed approach. The sketch and physical
map of the experimental optical system are shown in Figures 7A, B,
respectively.The interferometer (PhaseCam 4020) has two functions
in this experiment. On one hand, it is used to measure wavefront
maps which will serve as the reference value to evaluate the accuracy
of different deep learning methods; on the other hand, the focus of
the interferometer will serve as a point source and a PSF is finally
obtained with CCD after the laser light (the wavelength is 632.8 nm)
is reflected by the flat mirror. The aperture of the system is 500 mm,
the focal length of the system is 6000 mm, and the CCD pixel size
is 5.5 µm. It is important to note that the beam splitter introduces
aberrations between the optical paths of the interferometer and the
camera. These aberrations were calibrated and removed during the
comparison to ensure precise results.

In this experiment, 300 unlabeled PSF images acquired from
real systems are collected to fine-tune the network trained on the
simulated images. Besides, 20 labeled PSF images are collected for
testing. To ensure diversity, we introduced different misalignments
into the system before capturing each PSFs. In addition, we
acquired data from five different fields of view (FoV), including
the center FoV and four edge FoV. The size of each PSF image is
64 × 64.

The performance of different algorithms using the real dataset
is summarized in Table 2. Because in practice, Zernike’s C5–C9
terms are of more interest than the higher-order terms, the
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FIGURE 8
Comparison of wavefront prediction results for different detection methods on the real dataset. (A) shows the truth value of the phase map. (B–E)
show the recovered wavefront maps using the supervised Zernike-based method, supervised pixel-based method, self-supervised Zernike-based
method, and the proposed self-supervised pixel-based method, respectively. The RMSE between each predicted result and the true value, as well as
the RMSE for the C5–C9 terms, are marked above the corresponding wavefront maps.

TABLE 3 Comparison of some network predictions with interferometer data (C5 to C9 coefficients for Fringe Zernike).

C5 C6 C7 C8 C9 RMSE

Pixel-based (proposed) 0.351λ −0.010λ −0.123λ −0.094λ 0.022λ
0.009λ

Interferometer 0.338λ −0.006λ −0.130λ −0.106λ 0.035λ

Pixel-based (proposed) 0.239λ 0.011λ −0.021λ 0.018λ 0.036λ
0.034λ

Interferometer 0.213λ 0.043λ −0.032λ −0.064λ 0.019λ

Pixel-based (proposed) 0.222λ −0.080λ −0.003λ 0.068λ 0.041λ
0.015λ

Interferometer 0.204λ −0.061λ 0.022λ 0.052λ 0.044λ

Pixel-based (proposed) −0.030λ −0.264λ 0.010λ −0.190λ 0.046λ
0.015λ

Interferometer −0.018λ −0.289λ 0.015λ −0.189λ 0.026λ

Pixel-based (proposed) 0.148λ −0.124λ 0.011λ −0.004λ 0.045λ
0.017λ

Interferometer 0.132λ −0.145λ 0.008λ 0.031λ 0.049λ

Pixel-based (proposed) 0.076λ 0.031λ −0.119λ 0.010λ 0.043λ
0.019λ

Interferometer 0.099λ 0.063λ −0.089λ 0.010λ 0.045λ

TABLE 4 Average RMSE for U-Net with different settings on real datasets
(λ = 632.8 nm).

Different settings for U-Net
(Self-supervised)

Low-frequency restrictive
conditions

√ √ √

High-frequency restrictive
conditions

√ √

CBAM √

RMSE (C5–C9) Training failed 0.025λ 0.023λ 0.020λ

performance of the model is measured here by the accuracy of
the C5–C9 terms only. For supervised deep learning approaches,
due to the challenge of acquiring a substantial amount of labeled

real data, these methods typically train networks with simulated
data and test them on real images. Considering the substantial
discrepancies between simulated and real images (due to unknown
high-frequency figure errors), these supervised approaches often
struggle to achieve satisfactory results, with an average RMSE of
about 0.110 λ (here the RMSE is calculated using C5–C9). In
contrast, self-supervised learningmethods can fine-tune pre-trained
networks with real images to adapt to real data distribution, thereby
attaining superior performance. Importantly, the method proposed
in this study retains high-frequency and low-frequency information
in images, leading to higher detection accuracy than methods based
on Zernike polynomials, reducing the average RMS to 0.020 λ (λ
= 632.8 nm).

A set of data is selected from the dataset for visualization,
which has a major part of the aberration as astigmatism (C5 and
C6), and the results are shown in Figure 8, where (A) includes
the phase truth acquired by the interferometer and the PSF
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TABLE 5 Average RMSE for networks with different sizes on real datasets (λ = 632.8 nm).

Atten-U-Net Atten-U-Net-M Atten-U-Net-L

RMSE (C5-C9) 0.020λ 0.019λ 0.017λ

FIGURE 9
Box plots of RMSE between the recovered wavefront and the true
wavefront for networks with different sizes on real datasets. It can be
seen that after increasing the network size, the accuracy is improved
gradually.

image acquired by the detector, (B) and (C) correspond to the
Zernike-based and pixel-based methods with supervised training,
respectively, and (D–E) are the corresponding methods with
self-supervised training.

The following three conclusions can be drawn from Figure 8:

(1) By comparing the true phase with the phase recovered by the
network, it can be seen that all methods recognize that the
aberrations are dominated by astigmatism (C5) in this image.
This demonstrates that the network can learn the relationship
between PSF and aberration and maintains a certain level
of recognition after changing the dataset regardless of which
method is used.

(2) When the training methods are the same (both supervised
or self-supervised training), the pixel-based approach
outperforms the Zernike-based approach, proving that the
former is more generalized and more suitable for applications
in complex scenarios in real situations.

Table 3 shows some of the results of the interferometer
measurements and network predictions. The values of astigmatism
(C5/C6) and coma (C7/C8) correspond to the Fringe Zernike
and they are both converted to Standard Zernike coefficients
when calculating the RMS. The RMS for most of the results
was around 0.018 λ and the best and worst results are 0.009 λ
and 0.034 λ, respectively, as shown in the first and second rows
of Table 3.

5 Ablation experiments

To further validate the effectiveness of the proposed method,
ablation experiments were conducted using real datasets. The
experimental results are summarized in Table 4, which compares the
average RMSE of networks under different configurations. The low-
frequency and high-frequency restrictive conditions correspond to
Equations 5, 8, respectively. The training process followed the same
approach as outlined in Section 4.

The results indicate that without any constraints, the pixel-
based self-supervised method fails to produce accurate results. It
leads to erroneous and discontinuous wavefronts. The addition
of frequency constraints ensures the reliability of the network’s
solution. Furthermore, the use of frequency-based restrictive
conditions and the CBAM attention mechanism significantly
enhances the detection accuracy. As these additional components
are incrementally incorporated, the RMSE decreases from 0.025λ
to 0.020λ (with a wavelength of λ = 632.8 nm), confirming the
effectiveness of the proposed method.

6 Discussions

The effect of network size on wavefront sensing accuracy is
investigated by applying three networks with different network
sizes to a real dataset. These networks include the Atten-U-Net
as introduced in Section 2.2, the Atten-U-Net-M with doubled
network width, and the Atten-U-Net-L with both increased width
and depth. The results are shown in Table 5 and Figure 9, where we
can see that there is a gradual improvement in wavefront sensing
accuracy with the increased complexity of the network architecture.
This result demonstrates that deep learning methods can improve
their accuracy to some extent by scaling up computational efforts.

7 Conclusion

In this paper, we propose a self-supervised deep learningmethod
based on pixel dimensionality, which enhances the accuracy of
detection by constraining the output of the network through low-
pass filtering and high-pass filtering to ensure that some of the
high-frequency information is retained under the premise of phase
continuity.

We first confirm the accuracy of the supervised learningmethod
is higher than the self-supervised learning method on a simulation
dataset because a large amount of labeled data provides a clear
learning target for the network. However, when transferred to a real
scenario lacking a large number of labels, the network trained on
the simulated data performs poorly in terms of detection accuracy
due to the discrepancy between simulation and reality. In contrast,
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self-supervised learning methods can directly utilize real data for
fine-tuning and adapting to the real data distribution, thus achieving
satisfactory results.

In addition, experiments on both simulated and real datasets
show that when dealing with complex wavefronts, the pixel-based
prediction strategy proposed in this paper can effectively retainmore
high-frequency information and achieve higher detection accuracy
compared to the Zernike polynomial-based approach.

We also explore methods to further improve detection
accuracy, including the increase of network width and depth. The
experimental results show that all these methods can effectively
improve the detection accuracy. By increasing the complexity of the
network, we can improve the detection accuracy without relying on
additional prior knowledge.
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