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The bandwidth of multimode W-type microstructured plastic optical fibers
(mPOFs) is analyzed using the time-dependent power flow equation (TD
PFE). The results demonstrate that increasing the wavelength enhances the
bandwidth in W-type mPOFs, depending on the inner cladding width and the
launch beam distribution width. We observed that bandwidth improves with
thinner and shallower inner cladding, as well as a narrower centrally launched
beam. This characterization aligns with the fibers’ effectiveness in increasing
bandwidth, allowing for the customization of various W-type optical fibers for
specific applications at different wavelengths.
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1 Introduction

Optical fiber communication systems offer greater reliability and flexibility compared to
wireless communication, serving as the backbone of modern telecommunication networks
[1]. Microstructured optical fibers (MOFs) or photonic crystal fibers (PCFs), represent a
specialized optical fiber technology designed for light guiding [2]. In certain types of PCFs,
a high refractive index (RI) material, such as silica or polymer, is used as the base, with
periodically distributed air holes. This hole pattern lowers the effective refractive index
(RI) of the fiber cladding, allowing the optical fibers to guide light [2–7]. The cladding
hole pattern design enables modifications to the refractive index (RI) profile of the optical
fiber. PCFs demonstrate exceptional performance, as their microstructure offers increased
flexibility for adjusting the cross-section during the design process. Various types of PCFs
can be utilized for different applications [8–24]. The spacing between the cladding holes
determines the numerical aperture (NA) of the fiber, typically around 0.5 to 0.6 [25–27].
Additionally, certain PCFs incorporate heavy metal oxide glass fibers [28] and liquid-filled
hollow-core fibers for specialized applications [29]. High NA PCFs have also exhibited
excellent resolution in lensless focusing [30].

PCFs offer outstanding bandwidth performance and versatility, making them ideal
for sensing and transmission applications. The propagation characteristics of PCFs are
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FIGURE 1
(A) The cross section of the W-type mPOF. Λ is the pitch, dq and dp are
the diameters of inner and outer cladding air-holes, respectively. (B)
The RI of the referent W-type mPOF.

essential for their practical applications and are affected by
modal dispersion, mode attenuation, mode coupling. Mode
coupling primarily arises from light scattering caused by intrinsic
perturbations within the fiber. One of themost effectivemethods for
predicting mode propagation characteristics of multimode optical
fibers involves using the PFE [31–39].This study seeks to investigate
the impact of wavelength on the fiber’s bandwidth across different
configurations of multimode W-type mPOFs, taking into account
variations in the intermediate layer width and the distribution of the
centrally launched beam.

2 W-type mPOF

The effective refractive index (RI) profile of a chosen optical
fiber layer can be modified by altering the geometric parameters
dq, dp and Λ (Figures 1A). We employed the TD PFE to simulate
this system (Figure 1B).

3 TD PFE

The TD PFE for multimode optical fibers is given as [31, 35]:

∂p(θ,z, t)
∂z
+ τ(θ)

∂p(θ,z, t)
∂t
= −α(θ)p(θ,z, t) + 1

θ
∂
∂θ
[D(θ)

∂p(θ,z, t)
∂θ
]

(1)

where t is time; p(θ,z, t) is power distribution over propagation
angle, length, and time; τ(θ) is modal delay; D(θ) is the coupling
coefficient; and α(θ) ≈ αd(θ) is the attenuation [31, 35]. One should
note that the condition of validity of themodel proposed in this work
is that guiding modes can be treated as a modal continuum. This
is the case with all types of multimode optical fibers, such as a W-
type mPOF investigated in this work. A more detailed explanation
of the method for solving Equation 1 and calculating the bandwidth
ofW-type optical fibers can be found in our earlier publication [38].

W-type optical fiber (Figure 1) can be considered as a system of
a SCq optical fiber and cladding, in which the angle θq ≅ (2Δq)

1/2

is the critical angle for the guided modes–where Δq = (n0 − nq)/n0.
Similarly, the angle θp ≅ (2Δp)

1/2 is the critical angle for the guided
modes of a SCp optical fiber, where Δp = (n0 − np)/n0. The modes

whose propagation angles are between θp ≅ (2Δp)
1/2 and θq ≅

(2Δq)
1/2, where Δq = (n0 − nq)/n0 and Δp = (n0 − np)/n0, are leaky

modes. Attenuation constants of leakymodes (Equation 2) are given
as [35]:

αL(θ) =
4(θ2 − θ2p)

1/2

a(1− θ2)1/2
θ2(θ2q − θ2)

θ2q(θ2q − θ2p)
exp[−2δan0k0(θ2q − θ2)

1/2] (2)

where k0 = 2π/λ, a is the core radius and da is the width of the
intermediate layer (inner cladding).The attenuation in this fiber can
be expressed as [35]:

αd(θ) =
{{{
{{{
{

0 ;θ ≤ θp
αL(θ) ;θp < θ < θq
∞ ;θ ≥ θq

(3)

In this study, to the best of our knowledge, we are
the first to explore how bandwidth in multimode W-type
mPOFs can be improved by transitioning from smaller to
larger wavelengths, taking into account various widths of the
intermediate layer (Equation 3) and different FWHM of the
centrally launched beam distribution. The findings could be useful
in the design of W-type mPOFs for communication and sensing
applications.

4 Numerical results and discussion

We examined the bandwidth of a multimode W-type mPOF
with a solid core (Figure 1) at various wavelengths. Its effective V
parameter is given as:

V = 2π
λ
ae f f√n

2
0 − n

2
fsm (4)

where n0 is the RI of the core, nfsm is the effective RI of the cladding
and ae f f = Λ/√3 [33]. The effective RI of the cladding n1≡nfsm, can
be obtained from Equation 4, using the following equation [33]:

V( λ
Λ
, d
Λ
) = A1 +

A2

1+A3 exp (A4λ/Λ)
(5)

with the fitting parameters Ai (i = 1–4) given as:

Ai = ai0 + ai1(
d
Λ
)
bi1
+ ai2(

d
Λ
)
bi2
+ ai3(

d
Λ
)
bi3

(6)

where the coefficients ai0 to ai3 and bi1 to bi3 (i = 1–4) in Equations
5 and 6 are provided in our earlier works [36, 37].

The W-type mPOF was developed from the singly-clad (SC)
mPOF, which we analyzed theoretically in our recent publication
[39]. The SC mPOF had n0 = 1.492, diameter b = 1 mm, and
coupling coefficient D = 1.649 × 10−4 rad2/m (typical value of D
for conventional multimode POFs and multimode mPOFs). In the
calculations, the air-holes diameters dq = 1.5 and 2 μm, and dp =
1 μm, and pitch Λ = 3 μm, are assumed.The two widths of the inner
cladding δa = 2.4 µm (δ = 0.008) and δa = 7.2 µm (δ = 0.024), where
2a = 600 μm, are assumed in the calculations. We examined cases
of launch beam distributions with FWHM = 1° and 10o. The EFDM
was used to solve the TD PFE (1) for this type of mPOF [34, 36–39].

Our numerical solution of the TD PFE is shown in Figures 2,
3, which illustrate the evolution of the W-type mPOF’s bandwidth

Frontiers in Physics 02 frontiersin.org

https://doi.org/10.3389/fphy.2025.1537525
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Drljača et al. 10.3389/fphy.2025.1537525

FIGURE 2
Calculated bandwidth at 30 m vs. wavelength for W-type mPOF with δ = 0.008 and 0.024, and dp = 1 μm, for Gaussian beam excitation with FWHM =
1o, (A) dq = 1.5 μm and (B) dq = 2 μm.

FIGURE 3
Calculated bandwidth at 30 m vs. wavelength for W-type mPOF with δ = 0.008 and 0.024, and dp = 1 μm, for Gaussian beam excitation with FWHM =
10o, (A) dq = 1.5 μm and (B) dq = 2 μm.

at 30 m across different visible wavelengths, considering various
widths of the intermediate layer δ and different diameters of the
inner cladding air holes dq. These figures depict Gaussian launch
excitation with FWHM values of 1° and 10°, respectively. It is
apparent in Figures 2, 3 that the fiber bandwidth increases with
increasing wavelength for both analyzed widths of the intermediate
layer. This is explained by the rise of the leaky mode losses with
increasingwavelength as fewer leakymodes remain guided along the
fiber; which decreases modal dispersion and increases bandwidth.
Notably, Figure 3 indicates lower bandwidth compared to Figure 2,
as the wider launch beam distributes energy more uniformly among
guided modes, which increases modal dispersion and reduces
bandwidth. As the width of the inner cladding decreases (smaller
dq), the bandwidth improves because fewer leaky modes persist
along the fiber, thereby reducing modal dispersion. Additionally,
Figures 2, 3 demonstrate that a thinner inner cladding (smaller
δ) results in increased bandwidth, as leaky modes are filtered out
sooner along the fiber, leading to a quicker reduction in modal
dispersion. Although the W-type optical fibers investigated in this
work have a step-index distribution of the fiber core (Figure 1),

which is simpler than the graded index distribution of a fiber core, a
significant enhancement of the bandwidth of such W-type optical
fibers could be achieved by increasing the operating wavelength,
with appropriate choice of the excitation type and the width of
intermediate layer of theW-fiber. It is worth noting that in a recently
reported work [40], the effect of the structural parameters on the
dispersion and attenuation of theMOFs has also been demonstrated.
Furthermore, a realization of attenuator and amplifier using MOFs
as well as a proposal for vacuum ultraviolet torch using plasmonic-
based MOFs have been reported [41, 42].

The results presented in this work can be useful for employment
the investigated W-type mPOF for data communication in short-
range communication systems, such as those within buildings. The
visible spectrum is themost commonly utilizedwavelength range for
consumer electronics. W-type POFs can also be used for decorative
and automotive lighting, especially in applications where flexibility
is important (e.g., car interiors or illuminated signs). Also, the
obtained results can be useful for employment of the W-type POFs
as a part of various sensory systems which operate at different visible
wavelengths.
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5 Conclusion

Bandwidth is numerically determined across a range of visible
light beam wavelengths for W-type mPOFs with varying widths
of the intermediate layer and different FWHM values of the
launch beam. We showed that bandwidth increases with larger
wavelengths, as well as with thinner and shallower inner cladding
and narrower centrally launched beams.This characterization aligns
with the observed effectiveness of these fibers in minimizing
modal dispersion and enhancing bandwidth. Such findings enable
the customization of various W-type optical fibers for specific
applications at different wavelengths. In our future work, the W-
type mPOF with graded index core distribution will be investigated,
which is a promising fiber design for further enhancing the
bandwidth.
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