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The island of Sicily has been displaying unusual rainfall behavior and unexpected
extreme precipitation events in recent decades. In this study, we investigate the
Granger causal (GC) dependencies in the network of precipitationmeasurement
sites of Sicily at different timescales (every 10 min, 1 h, 6 h, 12 h, and 24 h).
We study, across seasons and years, different parameters that characterize
the GC dependencies: the total in/out-degree of nodes, the total in/out
strength of nodes, the total number of links in the network, the number
of eastward/westward links, the strength of eastward/westward links, and
the maximum strength of links. We then investigate GC statistic intensities,
focusing on the temporal evolution ofmaximumvalues overmultiple timescales.
Our study of precipitation patterns in Sicily indicates that, since 2013, the
southern regions near Mount Etna (Catania, Siracusa, and Ragusa) have been
increasingly affected, while the western areas (Trapani, Palermo, and Agrigento)
have been the most affected. Granger causality networks reveal scale-invariant
dependencies, with stronger and sparser connections at timescales that extend
beyond 6 h, with a notable westward flow of predictive information. These
patterns, which are consistent across seasons, suggest localized perturbation
fronts, with stronger links indicating a more significant influence on westward
predictions. This study highlights shifts in Sicily’s water cycle that call for
adaptive management strategies in the face of the increasing frequency of
extreme events.
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1 Introduction

1.1 Overview

Climate changes at the global scale manifest themselves through a slight and constant
increase in parameters such as sea surface temperature, usually followed by the onset
of extreme weather events like heatwaves, droughts, wildfires, tropical cyclones, and
extreme precipitation. The literature reports that extreme weather events are becoming
more frequent and intense [1] and that this entails increased risks that can seriously affect
social and economic stability along with physical and mental health [2]. Therefore, the
characterization of climatic variables and the detection of their temporal trends enhance
both our awareness of what is happening and our ability to better forecast what is likely
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to occur. Rainfall constitutes an important climatic variable,
as lack of it can lead to severe droughts, and its excess can
trigger catastrophic events. Extreme precipitation is one of the
most dangerous and extreme weather events since its occurrence
is hard to predict, and consequently, it is difficult to warn
populations and provide emergency assistance [3]. The Sixth
Assessment Report (AR6) of the Intergovernmental Panel onClimate
Change (IPCC) [4] pointed out that, since the 1950s, the frequency
and intensity of heavy precipitation events has been growing
globally. Disasters generated by heavy precipitation represent only
the immediate consequence of an extreme phenomenon: long-
lasting effects that disrupt the equilibrium of local ecosystems
and biospheres along with human structures and activities. The
increasing extremity of precipitation volumes and the upward trend
of extreme precipitation events are signals of a deeper change in the
dynamics of rainfall regimes.

The Mediterranean basin is a region at the boundary of larger
climatic systems: it is characterized by high spatial and temporal
variability and is one of the regions most affected by climate change
and its effects [5]. The onset and recurrence of such events is an
indicator of the increasingly extreme Mediterranean pluviometric
regime and is correlated with the fluctuations in the NAO (North
Atlantic Oscillation), which influences the location of permanent
cyclones and anticyclones around the basin [6]. Observations in the
Mediterranean region until the 2000s showed a general precipitation
decrease over both the eastern and western Mediterranean basins
during the winter months [7]. In addition, extreme rainfall events
are becoming more frequent in winter in the eastern Mediterranean
part of the basin and in autumn in the western part [8]. Because of
its particularly central position with respect to the Mediterranean
basin, Sicily has recently experienced violent flash floods and more
severe dry periods.Themajority of observed extreme rainfall events
are concentrated in summer and mid-autumn [9–11], and their
occurrence has become more frequent and intense, particularly
in the eastern part of the island. In contrast, winter precipitation
volumes are decreasing [12, 13].

1.2 Granger causality and climate systems

Gaining knowledge of and measuring rainfall variations above
Sicily is a crucial challenge for both researchers and authorities.
Anomalous events such as flash floods or prolonged droughts are
hard to predict and lead to consequences well-known in other parts
of the world: lack of water for plants and animals, including humans,
and disruption of urban infrastructure, economic activity, and civic
life. Prolonged dry periods followed by prolonged wet periods
also have a deep impact on soil settlement and water reservoirs,
influencing the viability and biodiversity of vegetation. It is thus
important to investigate rainfall behaviors and their dependencies,
such as appropriate spatial and temporal resolution. Many authors
have investigated the spatial and temporal correlation between
climatic variables by performing theGranger causality test,—a linear
statistical method to quantify the gain in pairwise predictability of
time series [14, 33]. This approach has been successfully employed
to unravel connections between climatic parameters such as the
drought index [15] or sea surface temperature [16] and oscillations
in the atmospheric general circulation such as ENSO (El Niño

Southern Oscillation) to model and forecast climatic variables such
as extreme precipitation [17] and to explore correlations between
pollutants and temperature [18]. Granger causality networks have
been employed in order to constrain precipitation projections
under climate change [19] or to capture complex rainfall patterns
with higher resolution in the memory of the system [20]. In
particular, the scale-invariant nature of precipitation events has
been demonstrated to be a characteristic of complex precipitation
processes [21]; the application of Tsallis q-statistics [22] in this
context has been a valuable tool for capturing the out-of-equilibrium
nature of precipitation data in addition to the presence of long-range
correlations and memory effects.

1.3 Multiscale analysis and rainfall
dynamics

Scaling-type regularities in data provide valuable insights into
the underlying mechanisms of data generation. These regularities,
often observed as patterns that remain consistent or follow
predictable relationships across different scales, serve as “stylized
facts” that any theoretical model should aim to replicate [23]. For
example, scaling laws are evident when variables in a system follow
a power-law distribution, as is the case with precipitation [10]. Such
distributions reveal that the relationships between variables remain
consistent regardless of the timescale of observation. In practical
terms, these regularities suggest that the same underlying rules or
dynamics apply whether one looks at small or large scales of a
system, and often provide insights into the fundamental processes
that drive complex systems.This makes them valuable for modeling
because they act as a benchmark—any theoretical model that aims
to describe the system should ideally be able to reproduce these
scaling patterns. In the context of precipitation studies, temporal
scaling behavior has been investigated in many areas, such as the
forecasting of hydrological processes through machine learning
classification methods [24], the implementation of the computation
of rainfall-erosion soil indicators [25], rainfall run-off [26], the
reduction of uncertainty propagation [27], and the analysis spatio-
temporal web sensors [28]. Another intriguing element in the
implementation of hydrological calculations deals with multifractal
theory [29], since the scaling properties of temporal precipitation
dynamics display multidimensional fractal behavior, indicating that
the rainfall process can be described by a multiplicative cascading
process [30]. Recent advancements in transfer entropy, which
is equivalent to Granger causality for Gaussian variables, have
demonstrated its utility in handling climatic variables. For instance,
Smith et al. [31] explored these concepts in depth, offering valuable
insights into their application to climate-related research. In light of
thework conducted using the abovemethods, we investigate here for
the first time the Granger dependencies in the precipitation network
of the island of Sicily, taking into account only one parameter
(precipitation records) and exploring its spatial configuration at
different temporal resolutions (10 min, 1 h, 6 h, 12 h, and 24 h)
over 22 years. First, we built our network by using precipitation
records from nine rain gauges over one year as nodes and the
Granger causality (GC) strength between their seasonal time series
as links for the years 2002–2023. We have studied, across seasons
and years, different parameters: the total in/out-degree of nodes,
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FIGURE 1
Selected subset of the SIAS network represented by nine rain gauges
located in the main cities of Sicily, Italy.

the total in/out strength of nodes, the total number of links in the
network, the number of eastward/westward links, the strength of
eastward/westward links, and the maximum strength of links across
seasons and years.

2 Data and methods

2.1 Dataset

The dataset, available on request from SIAS (Sicilian
Agrometeorological Informative System—www.sias.regione.sicilia.
it), contains the hourly precipitation records of nine rain gauges on
the island of Sicily from 2002 to 2023 (Figure 1). These rain gauges
from Messina (ME), Siracusa (SR), Catania (CT), Ragusa (RG),
Enna (EN), Caltanissetta (CL), Agrigento (AG), Palermo (PA), and
Trapani (TP) are only subsets of the robust and extensive rain gauge
network comprising 96 pluviometric stations.

2.2 Granger causality

In the context of linear regression [32–34], any target series Y
can be considered the weighted sum of its past states plus an error
term. Then, it is possible to make a second model by also summing
the past states of a source variable.The former, Equation 1, is referred
to as a “reduced model”, and the latter, Equation 2, as a “full model”.

Yt =
p

∑
m=1

amYt−m + ϵt (1)

Yt =
p

∑
m=1

amYt−m +
q

∑
m=1

bmXt−m + ϵt (2)

Equation 1 represents a univariate autoregressive process in
which Yt depends solely on its own past values up to p lags. The
coefficients am measure the influence of the past values. Equation 2
extends the autoregressive model by including the past values of
another time series, Xt (up to q lags).The coefficients bm capture the
influence ofXt onYt. If the coefficients bm are statistically significant,

FIGURE 2
Example of a 24 h timescale Granger network for the winter of 2002.
The color of the nodes (from blue to red) is proportional to their total
degree (the total number of node links), and their size shows the
strength of the GC statistics (the sum of the strengths of the node’s
links). The position of the nodes in the graph approximately
corresponds to the geographical positions of the sites. Directed edges
are reported as thin black arrows.

this suggests thatXtGranger causesYt. In both equations, ϵt accounts
for the unexplained variability. Since in this study X and Y are two
different rain gauge time series, in the full model, the future states of
the target rain gauge Y are predicted by its own past states p and the
previous states of the sourceX. In the reducedmodel, only the target
is taken into account. The GC strength, defined as the logarithmic
ratio between the variance of the error term of the reduced model
and that of the fullmodel, quantifies the soundness of the regressions
and tests whether the full model improves the predictability of the
target time series. Therefore, the existence of a link means that the
past source contains information about the future of the target.
The stronger the connection, the higher the predictability of the
target; in other words, the influence of the source on the future of
the target.

2.3 Granger causality networks

Following a procedure introduced in [35] in the context of
financial markets, we performed the Granger causality test between
couples of nodes—a source node and a target node, where each node
represents the hourly precipitation time series of a rain gauge in a
given year during a season. The whole dataset consists of 22 years
of hourly precipitation records: we decided to extract subsets with
a length of 3 months (i.e., one season). Following the choice usually
employed in econometrics, we operated on log-returs of Pt Equation
3, with the aim of achieving stable series [35]:

rt = ln(
Pt
Pt−1
) = ln(Pt) − ln(Pt−1) (3)

where rt is the log return at time t, Pt is the precipitation record at
time t, and Pt−1 is the precipitation record at time t− 1.

In order to obtain consistent results, the main assumption for
Granger causality is that the residuals in (1) and (2) must follow
a Gaussian distribution. Therefore, we performed the Jarque–Bera
test [36], a statistical goodness-of-fit test that assesses whether
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FIGURE 3
2D grid of winter out-link networks at the 12 h timescale. Years are placed on the x-axis, and the nine rain gauges ordered east (ME) to west (TP) are
plotted on the y-axis, so that each vertical line represents a single network in a single year. The color of the nodes (from blue to red) is proportional to
their out-degree (i.e., the total number of out-links), and their size shows the strength of the GC statistics (i.e., the sum of the strengths of the out-links).

FIGURE 4
Example of the total sum of in-link strengths of the GC statistics per
node for winter 2002 at the 1 h timescale, reported on the y− axis.
Nodes on the x− axis are arranged in ascending order. Blue stands for
Trapani, Palermo, and Messina stations, which are located on
Tyrrhenian coast. Yellow is the color of Catania, Enna, and
Caltanissetta, in the central area near Mount Etna. Red is for the
stations of Ragusa, Siracusa, and Agrigento, on the southern coast.

the skewness and kurtosis of the sample data align with those
expected from a normal distribution by computing σJB Equation 4,
as follows:

σJB =
n
6
(S2 +
(K− 3)2

4
) (4)

wheren is the sample size, S represents its skewness, andK represents
its kurtosis. Such a test calculates nonnegative statistics, where values
of σJB significantly greater than 0 indicate a deviation fromnormality
in the data. We carried out the Jarque–Bera test on the log-return
time series, obtaining values near to 0 for all seasons and years. Since
the Granger stability assumption is fulfilled for each quarterly time

series, we generated 22 weighted and directed networks (one per
year) for each season (Figure 2). The grangercausalitytests function
in Python’s statsmodels library utilizes the GC statistics to evaluate
Granger causality.This function conducts a series of hypothesis tests
to determine whether the inclusion of lagged values from one-time
series significantly enhances the predictability of another, indicating
a potential causal relationship. Among the outputs provided, the
SSRftest (sum of squared residuals GC test) result includes the
GC statistics and its associated p-value. This test compares the
variance explained by the lagged predictor series to the variance
left unexplained, thereby quantifying the predictive power added
by the lagged terms. We set the p-value threshold at 0.01 and
a lag of one row with respect to each timescale (e.g., 10 min for
10 min resolution, 1 h for hourly resolution, and so on).We explored
the networks by separately analyzing the behavior of nodes and
links generating appropriate grids that enable a synoptic vision
of the parameters studied—the total in/out-degree of nodes, the
total in/out strength of nodes, the total number of links in the
network, the number of eastward/westward links, the strength of
eastward/westward links, and the maximum link strength across
seasons and years.

2.4 Steps of the method

Our method is based on the following steps:

1. Computation of logarithmic returns
2. Application of Granger causality on quarterly time series by

means of the function grangercausalitytests from Statsmodel’s
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FIGURE 5
Seasonal global number of links across years for the summer season at the 24-h timescale: y-axis represents the total number of links present in each
Granger network as a function of years (x-axis).

FIGURE 6
Spring global number of eastward (blue) and westward (red) links over multiple years at the 24-h timescale.

Python package: the test was performed between each
couple of nodes.

3. Building of the Granger network.
4. Seasonal grouping of the networks across years
5. Analysis of total in/out-degree and strength of nodes
6. Analysis of the total number of links in the network
7. Analysis of the total number and strength of eastward/

westward links in the network
8. Analysis of the maximum link strength across seasons and

years

3 Results

We started by focusing on the nodes, considering separately the
in- and out-link networks over the years through a synoptic seasonal
network grid. In Figure 3, there is an example of this view for the
winter season: the nodes corresponding to the nine rain gauges,
ordered fromwest (TP, Trapani, bottom) to east (ME, Messina, top),
are reported in the y-axis as a function of the years (x-axis), so
that each vertical line represents a single network in a given year.
In particular, we reported an example of winter out-link networks
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FIGURE 7
Matrices 2 x 22 per season for each timescale. The two rows represent the sum of the weight of eastward and westward links across the networks. The
columns refer to individual years. The cool–warm color map is normalized across years and directions for each season and timescale. From top to
bottom: 10 min, 1 h, 6 h, 12 h, and 24 h.

at 12 h time resolution. The color of the nodes (from blue to red)
indicates the out-degree (i.e., the total number of out-links of the
node), while their size is proportional to the strength of the GC
statistics (i.e., the sum of the strength of the out-links of the node).
Colors are normalized to the max out degree across years and sizes
to the max strength across years. In Figure 4, we also plotted for the
2002 winter season at the 1 h timescale the total sum of the in-link
strength of the GC statistics for each node—for each rain gauge.The
Trapani, Palermo, and Messina stations, located on the Tyrrhenian
coast, are colored in blue. Yellow is the color for Catania, Enna, and
Caltanissetta, located in the central area near Mount Etna. The red
stations are Ragusa, Siracusa, and Agrigento on the southern coast.

By integrating the results shown in the previous two figures,
we were able to highlight the network dynamics in their spatial
resolution. It appears that Messina is the city less involved in the
dynamics of the Granger networks across all seasons and timescales.

Palermo and Trapani, also on the Tyrrhenian coast, are the most
influenced areas since the 6 h timescale. The central nodes of
Catania, Enna, and Caltanissetta play, as expected, a role both as
influencing and influenced areas; in particular, the Catania results
are strongly connected to other nodes, especially after 2012. Siracusa
and Ragusa, located on the southern coast, are often involved as
influencing regions, while Agrigento is usually an area strongly
influenced by other nodes. From a seasonal point of view, the
most relevant shape is observed in summer, when the area most
influenced is Palermo to 2012 across all timescales, and also in
autumn, when the same situation arises for Agrigento. Moreover,
the highest number of out-links and out-strength per node comes
after 2012 in summer and autumn. Up to the 12 h timescale, the
nodes with a high in/out degree do not coincidewith thosewith high
in/out strength (i.e., the red nodes on the grid are not the largest). At
the level of the 24 h timescale, it is possible to observe that the two
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FIGURE 8
Behavior of the maximum GC statistic intensity computed across all
seasons and timescales: on the y-axis is reported the intensity of the
GC statistics, on the x-axis are shown multiple timescales. Blue, green,
yellow, and red stand respectively for winter, spring, summer, and
autumn. Circular markers refer to the 2002–2012 interval; triangular
markers are related to the 2013–2023 period. Filled markers represent
eastward records; unfilled markers indicate westward ones.

characteristics always belong to the same node, which appears to be
a peculiarity of this temporal scale across all seasons.

Focusing on the GC network links, the total number of possible
links in any network is given by n(tot) = n(n− 1). In this study, each
network consists of n = 9 nodes, and so the total number of possible
links is n(tot) = 72. In the two-dimensional plot reported in Figure 5,
we addressed the seasonal behavior of the global number of links
present in each Granger network across years for the 24 h timescale.
By inspecting the global number of links across years, seasons, and
timescales, the summer season at the 10-min scale appears to be the
networkwith the highest number ofn(tot), as it reaches the value of 50
connections. For the other seasons and time-scales, n(tot) varies from
20 to 30, except for winter and spring at the 24 h resolution, since
n(tot) ≤ 10. For winter and spring, n(tot) increases or at least remains
constant after 2012 across all timescales.The same is true for summer
but after 2007. The behavior of autumn is more peculiar, as, since
2012, the total number of connections starts to oscillate yearly.

Going deeper into the network’s temporal dynamics, we chose
the westward and eastward directions of the Granger networks in
order to determine whether a privileged path exists across seasons
and years. We analyzed this issue by plotting the seasonal number of
eastward (blue) andwestward (red) links overmultiple years for each
timescale. For example , in Figure 6 we reported the spring season
for the 24h timescale.We found also that at the 10min timescale, the
number of westward links is comparable to the number of eastward
links.Westward connections emerged as the privileged direction for
all seasons at 1 h, 6 h, and 12 h, while for summer this was also
the case for the 24 h timescale. At the latter timescale, in winter,
westward becomes the preferred direction for consecutive years after
2012. For spring, this trend is evident before 2012, while for autumn
the pattern oscillates across all 22 years.

Finally, as displayed in Figure 7, we investigated the magnitude
of the GC-statistical connections by generating 2× 22 matrices per
season for each timescale, where the two rows represent the sum
of the weight of eastward and westward links across the networks.

The columns refer to individual years. The cool–warm color map
is normalized across years and directions for each season and
timescale. The results show that the higher values are westward
across all seasons and timescales and are usually observed after
2012. Summer displays the highest values of the GC statistics
across all seasons and timescales, whereas, for other seasons, the
link strengths are comparable. In Figure 8 we also reported the
behavior of the maximum GC statistic intensity computed across
all seasons and over each timescale. Circular markers refer to the
2002–2012 interval, and triangular markers refer to the 2013–2023
period. Fully filled markers represent eastward records and unfilled
markers indicate westward records.The results confirm the behavior
observed in the previous figure and highlight that the highest
maxima were observed after 2012. Moreover, the strength of the
GC statistics during winter, spring, and autumn decreases from 1 h
up to 24 h resolution. Around summer, the trend appeared to be
more pronounced as the decline is drastic and stops at the 12 h
timescale.

4 Discussion and conclusion

These results reveal that, across Sicily, the southern areas near
Mount Etna—Catania, Siracusa, and Ragusa—have become the
most affected since 2013, while Trapani, Palermo, and Agrigento
are the most affected. Messina’s limited presence in the Granger
network may reflect its unique coastal location at the convergence
of the Nebrodi, Peloritani, and Etna regions, hinting at distinctive
local dynamics. This configuration holds across all timescales and
seasons, revealing a spatial scale invariance within the temporal
one. Over 2002–2012, the higher number of connections across
all seasons up to the 6 h timescale indicates a homogeneous
dependence over the whole island, reflecting a high reciprocal
predictability. From the 12 h timescale, many connections start to
disappear and result in a sparser structure.Nevertheless, the strength
of the surviving links becomes higher.The 24-h timescale represents
a peculiar timescale, as the nodes with a higher in/out degree
coincidewith thosewith a higher connection strength. Furthermore,
the prevalence of westward connections with high strength is a
characteristic emerging with a temporal resolution higher than
10 min. We can visualize each connection as a perturbation front,
which does not contain the weather phenomenon itself but the
information about future perturbations of another location. In
this study, we determined that the privileged direction of such
motion is westward: this does not imply that perturbation fronts
effectively move on a westward trajectory. The result deals with
the underlying information; the strength of the information shared
between the source and target is based on the significance and
goodness of a prediction by means of linear regression. This means
that we have detected perturbation fronts, localized in a source, that
have a significant influence on the target prediction, and the best
predictions (i.e., the strongest connections) included targets located
to the west with respect to the source. Therefore, we were able to
interpret the directionality of the edges as the presence of intense and
localized frontsmoving across Sicily.The analysis of theGC statistics
highlighted significant temporal and directional patterns. Across all
timescales and seasons,westward connections consistently exhibited
higher values, with pronounced intensities observed after 2012.
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Among the seasons, summer stood out as having the strongest GC
statistics, while other seasons displayed comparable link strengths.
Additionally, the intensity of the GC statistics tended to decrease
with increasing timescale resolution; this was particularly evident
in summer, where a sharp decline was observed down to the 12-h
timescale. These findings underscore the variability in directional
and seasonal dynamics, with notable changes occurring after 2012.
These results are in agreement with the increasing frequency and
intensity of extreme events reported previously [10].

In conclusion, we analyzed the Granger dependencies in the
precipitation network of the island of Sicily. The aim was to study,
at different temporal resolutions, the causal relationship between
different areas of the island during the last 22 years. This research
represents an application of Granger causality to a local climate
system bymeans of a single parameter. Using network configuration
results, it is easy to include a spatial dimension and explore the
temporal evolution of information flows between rain gauges. The
Granger causality test allows the visualization of the predictability
information flow as a perturbation front containing not only the
weather phenomena themselves but also the information about
future perturbations at other locations. These results represent
a new description of Sicily’s rainfall that is complementary to
those obtained using common statistical approaches or clustering
algorithms, as the complex nature of pairwise interactions was
taken into account here. These results indicate, together with a wide
range of literature, that a deep change is ongoing; authorities and
inhabitants should realize that these clear anomalies in the water
cycle are important warning signals. Therefore, new strategies for
managing resources and damage are urgently needed in order to
reduce human and economic losses.
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