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GNSS interference mitigation
method based on deep learning
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Binbin Ren1 and Qin Zhou1

1College of Electronic Science and Technology, National University of Defense Technology,
Changsha, China, 2Key Laboratory of Satellite Navigation Technology, Changsha, China

The interference environment faced by GNSS receivers is unknown, dynamic,
and uncertain, making it difficult for a single interference mitigation method
to address all interference threats. In this paper, we introduce an intelligent
interference mitigation approach. By leveraging a deep learning network model,
our method automatically selects the optimal interference mitigation technique
based on the specific characteristics of the interference. This enhances the
receiver’s anti-jamming performance and overall robustness. Our experimental
results show that the proposed method effectively suppresses narrowband
interference, pulse interference, and chirp interference, demonstrating
insensitivity to interference parameters. Statistically, it outperforms traditional
methods, with the proportion of the carrier-to-noise ratio (C/N0) above a given
threshold (initial C/N0 reduced by 3 dB) increasing by over 10%.
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1 Introduction

Global Navigation Satellite Systems (GNSS) provide users with positioning, velocity,
and timing (PVT) services. It is the only positioning and navigation system that offers high
precision, global coverage, and all-weather availability. After decades of development, GNSS
has been widely and deeply applied across various sectors.

Because GNSS plays a fundamental and key role in military, commercial and civil fields,
its vulnerability has also receivedmore andmore attention. As we all know, the power of the
signal emitted by the navigation satellite is very weak when it reaches the ground, and GNSS
users are extremely vulnerable to radio frequency interference and spoofing attacks [1, 2].
Studies have shown that [3] an interference source with a radiation power of only 1 W can
render GNSS receivers within a range of approximately 15 km unable to function properly.

Radio frequency interference can be categorized into unintentional and intentional
interference. Unintentional interference is generally caused by spectrum leakage or
improper operation of radar or communication systems adjacent to the navigation
frequency band. Intentional interference is typically used to attack an opponent’s navigation
equipment or to protect one’s privacy [4]. Typical GNSS interference includes continuous
wave interference, narrowband interference, pulse interference, sweep chirp interference
and broadband interference [5–7]. The impact of different types of interference on GNSS
receivers can be quantitatively characterized by the equivalent C/N0 [8].

To address the threat of radio frequency interference, researchers have proposed a series
of interference suppression methods. The basic principle is similar: utilizing the sparsity
of interference in a certain dimension to detect and eliminate it. For example, due to the
sparsity of continuous wave interference and narrowband interference in the frequency
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domain, Frequency Domain Pulse Blanking (FDPB) and Adaptive
Filtering (AF) [9–12] have been proposed for suppression. In light
of the sparsity of pulse interference in the time domain, Time
Domain Pulse Blanking (TDPB) [13, 14] has been proposed for
suppression. For chirp interference, it has been found that [15, 16] it
also exhibits time-domain sparsity within a specific sweep frequency
range, allowing it to be suppressed by setting the time-domain pulse
to zero. Broadband interference is unique in that it does not exhibit
sparsity in either the time or frequency domains; it must be received
by an array antenna or polarized antenna to demonstrate sparsity in
the spatial or polarization domain for suppression. This paper does
not address broadband interference.

The interference mitigationmethod of radio frequency has been
a topic not only in electronics but also in space and astrophysics.
Among these, deep learning methods were already employed.
References [17–19] investigate how to detect and identify radio-
frequency interference using deep learning methods, which have
achieved good results in the field of radio interferometry. However,
these methods do not provide further approaches for interference
cancellation or signal recovery. References [20, 21] study the
use of Bayesian methods to eliminate interference and restore
signals. This method performs well under the condition that the
prior distribution of the data is known. However, the interference
faced by GNSS receiver is unknown, dynamic, and uncertain.
Moreover, under different types of interference, the data exhibit
different probability distributions.Therefore, it is difficult to directly
apply this method in GNSS interference mitigation. For a given
type of interference, different mitigation methods yield varying
suppression effects. This paper aims to design an interference
mitigation method that not only identifies interference, but also
automatically selects the optimal approach to suppress interference
based on its characteristics, thereby enhancing the performance
and robustness of the receiver. This method is referred to as the
intelligent interference mitigation (IIM) method.

The innovative contributions of this paper can be summarized
as follows: (a) We propose a GNSS IIM method that utilizes
spectrum sensing to convert input data into spectrograms, followed
by the application of a deep learning network to output the
optimal interference mitigation method. (b) We present an
implementation framework for the IIM method, which employs
Short Time Fourier Transform (STFT) for time-frequency two-
dimensional spectral sensing, with GoogLeNet chosen as the pre-
trained model to build our deep learning network. (c) Finally, we
conduct experiments using a data collector and a software-defined
receiver (SDR) for interference mitigation and signal processing to
evaluate the performance of the proposed method under various
interference conditions.The results demonstrate the effectiveness of
the proposed method and its ability to mitigate different types of
interfering signals.

The content of this article is organized as follows:
Section 2 establishes the signal model for the GNSS receiver;
Section 3 introduces three typical GNSS interference mitigation
methods—FDPB, AF, and TDPB—and analyzes their interference
suppression effects. Section 4 proposes the basic principles and
implementation framework of the GNSS IIM method. Sections 5, 6
design simulations and open-sky experiments to verify the
performance of the proposed method. Finally, the main conclusions
drawn from this study are presented.

2 Signal model

For the sake of simplicity, we consider the reception of a
single GNSS satellite signal due to the very low cross-correlation
of the pseudorandom spreading codes. The signal received by a
GNSS receiver, after being amplified, down-converted, filtered, and
sampled, can be expressed in complex baseband form as:

x(n) = √2Psd(n− τ0)p(n− τ0)ej(2πf0n+φ0) + η(n) + i(n) (1)

Where Ps is the power of the GNSS signal, d(n) is the navigation
information modulated in the signal, p(n) is the pseudo-random
code sequence, f0 is the Doppler frequency shift, τ0 and φ0 are
the pseudo-code phase and the carrier phase respectively, n is the
time subscript. i(n) is a generalized interference signal, and different
interference types have different expressions [4]. η(n) is the zero
mean additive white Gaussian noise (AWGN) in the complex form.
The real part and the imaginary part are independent and identically
distributed. The variance is σ2, which can be described by Equation
2 as follows:

σ2 = N0B fe (2)

Where N0 is the noise spectral density, B fe is the receiver front-
end bandwidth.

When the receiver adopts active interference mitigation
processing, the generalized interference mitigation process can be
modeled by Equation 3 as follows:

y(n) =Η[x(n)] (3)

In Equation 4, y(n) is the interference mitigation output,
Η[⋅] represents a certain mathematical transformation,
different interference mitigation methods have different
mathematical transformation forms, which will be introduced
in detail in Section 3.

After that, the receiver further performs correlation despreading
on the anti-jamming output. The goal is to estimate the Doppler
frequency shift and pseudo-code phase of the GNSS signal. This
process can be achieved by maximizing the ambiguity function [8]:

̂f, ̂τ = arg max
f ,τ
|C( f,τ)| = arg max

f ,τ
|
M

∑
n=1

y(n)p(n− τ)e−j2πfn| (4)

In Equation 4, C( f,τ) is the ambiguity function, the symbol
“argmax” is a mathematical notation used to describe the argument
that maximizes a given function or expression. In the above
equation, arg max

f ,τ
|C( f,τ)| are the value of f and τ that make |C( f,τ)|

as large as possible. ̂f and ̂τ are the estimated values of the doppler
frequency shift and pseudo-code phase, respectively.M is the length
of the sampled data used for the correlation despreading processing,
and the corresponding signal duration is T =M/ fs, where fs is
the sampling rate. This formula describes the relationship between
the ambiguity function and the doppler frequency shift as well
as the pseudo-code phase. The value of the ambiguity function is
maximized when the estimated values of the doppler frequency shift
and pseudo-code phase are equal to that of the input GNSS signal.

The purpose of anti-jamming is to suppress the interfering
signals and retain the useful signal to the greatest extent. The effect
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can be evaluated by the C/N0 after correlation dispreading, which
can be described by Equation 5 as follows:

C/N0 =
1
T
⋅
|E{C( ̂f, ̂τ)}|2

Var{C( ̂f, ̂τ)}
(5)

where E{⋅} represents the mean value and Var{⋅} represents
the variance.

3 Traditional GNSS interference
mitigation methods

Without considering special forms of receiving antennas such as
array antennas or polarized antennas, conventional GNSS receivers
employ three representative interferencemitigationmethods: FDPB,
AF, or TDPB. The following sections introduce each method
separately.

3.1 FDPB

The FDPBmethod first transforms the signal into the frequency
domain through discrete Fourier transform (DFT):

X(k) =
N−1

∑
n=0

x(n)e−j2π
kn
N (6)

In Equation 6, X(k) is the frequency spectrum after the signal
is transformed to the frequency domain, and N is the length of
the DFT operation. At this time, if the interference is sparse in
the frequency domain, it will be pulse-like distribution. It could be
mitigated by setting a threshold and removing spectral lines with
amplitudes exceeding the threshold. How to set a threshold has
always been a difficult problem in engineering implementation.This
method requires prior information such as receiver noise power and
is difficult to adapt to changes in receiver noise background.

Borio et al. [9] proposes a more robust method:

Y(k) =
X(k)
|X(k)|

(7)

In Equation 7, Y(k) is the spectrum after the interference
spectrum line is eliminated.This method is a threshold-free method
and does not depend on any prior information.

Finally, the interference eliminated spectrum is transformed
back from the frequency domain to the time domain through inverse
discrete Fourier transform (IDFT) to obtain interference mitigation
output, which can be described by Equation 8:

y(n) = 1
N

N−1

∑
k=0

Y(k)e j2π
kn
N (8)

3.2 AF

AF can be achieved using finite impulse response (FIR) or
infinite impulse response (IIR) filters, which can adaptively adjust
coefficients based on certain algorithms and automatically form
zeros in the frequency band where interference occurs, thereby

achieving interference suppression. Considering that FIR filters are
more robust than IIR filters, this paper adopts adaptive FIR filters.

Assuming the length of the FIR filter is L, the signal filtered by
the FIR filter can be described as [11]:

y(n) =
L−1

∑
k=0

x(n− k)h(n)(L− k) (9)

In Equation 9, h(n)(k) is the kth coefficient of FIR filter at time n.
This formula describes the response of the signal x(n) after passing
through an FIR digital filter.

The coefficients of the FIR filter can be updated using the
Normalized Least-Mean-Square (NLMS) algorithm [11]:

h(n+1)(k) = h(n)(k) −
μ
|x(n)|2

x(n)(y(n))∗ (10)

In Equation 10, μ is the normalization step factor, and (⋅)
∗

represents the conjugate operation.The coefficients update is driven
by the error which is also the output y(n). The error represents
the difference between the desired output and the actual output of
the filter. The NLMS algorithm adjusts the learning rate through
the normalized step factor μ, the value of which directly affects the
convergence speed and steady-state error of the algorithm. A larger
μ value can make the algorithm converge faster, but may lead to a
larger steady-state error, a smaller value will make the algorithm
convergemore slowly, butwith a smaller steady-state error.Thevalue
of μ needs to be a trade-off between convergence speed and steady-
state error, in the subsequent experiments, we empirically choose 0.1
as the value for μ.

3.3 TDPB

The TDPB directly processes the sampled data, and the
threshold-free method is also used here. The process can be
described by Equation 11 as follows [9]:

y(n) =
x(n)
|x(n)|

(11)

3.4 Analysis of suppression performance
on different interfering signals

Wehave constructed aMATLAB simulation platform consisting
of a signal generator and a SDR, employing the Monte Carlo
simulation method to analyze the performance of interference
suppression. The analysis focuses on the effectiveness of traditional
anti-jamming methods against three types of interference:
narrowband (continuous wave interference can be considered as
a special form of narrowband interference), pulse, and chirp. The
configuration of the simulation platform is illustrated in the Figure 1.

The main parameter settings in the simulation are shown in the
table below.

3.4.1 Narrowband interference suppression
performance

Set the narrowband interference bandwidth to be randomly
distributed between 0 and 4 MHz (20% signal bandwidth), simulate
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FIGURE 1
Simulation configuration.

FIGURE 2
Comparison of narrowband interference suppression performance. (A) C/N0 results of the first 30 experiments. (B) Statistical results of C/N0 of 500
experiments.

narrowband interference with different bandwidths, and use three
methods of FDPB, AF, and TDPB for interference mitigation
processing. Conduct 500 Monte Carlo experiments, obtain 500
samples, and statistically analyze the output C/N0. The results
are as follows:

Figure 2A shows the C/N0 results of the first 30 experiments in
500 Monte Carlo simulations. It can be seen that the interference
suppression performance of the AF algorithm is similar to that
of the FDPB algorithm. The C/N0 obtained by the AF algorithm
is slightly higher than that of the FDPB algorithm in most cases,
but also slightly lower than that of the FDPB algorithm in a few
samples. The TDPB algorithm has a poor suppression effect on
narrowband interference, and its output C/N0 is generally lower
than 30 dB Hz. Figure 2B shows the statistical results of 500 Monte
Carlo experiments, with the horizontal axis representing the C/N0
threshold and the vertical axis representing the proportion of
experiments with a C/N0 exceeding the given threshold to the
total number of experiments. Figure 2B statistically illustrates that
the AF algorithm has the best suppression effect on narrowband
interference, followed by the FDPB algorithm and the TDPB
algorithm.

3.4.2 Pulse interference suppression
performance

The pulse repetition period of pulse interference is randomly
distributed between 0.04 and 1 ms, and the duty cycle is
randomly distributed between 0 and 0.4 (Gaussian band-
limited noise modulated within pulse signals). The bandwidth
covers the entire front-end bandwidth of the receiver (20 MHz).
The Monte Carlo experimental results are shown in Figure 3,
indicating that statistically speaking, the TDPB algorithm
has the best performance for pulse interference, followed by
the FDPB algorithm, and the AF algorithm has the worst
performance.

3.4.3 Chirp interference suppression
performance

The sweep bandwidth of the chirp interference is randomly
distributed between 4 and 20 MHz, and the sweep period
is randomly distributed between 0.01 and 1 ms. The Monte
Carlo experimental results are shown in Figure 4. At this
time, statistically speaking, the TDPB algorithm has the
worst performance. When the C/N0 threshold is less than
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FIGURE 3
Comparison of pulse interference suppression performance. (A) C/N0 results of the first 30 experiments. (B) Statistical results of C/N0 of 500
experiments.

FIGURE 4
Comparison of chirp interference suppression performance. (A) C/N0 results of the first 30 experiments. (B) Statistical results of C/N0 of 500
experiments.

42 dB Hz, the FDPB algorithm performs better than the
AF algorithm, but when the C/N0 threshold is greater than
42 dB Hz, the AF algorithm performs better than the FDPB
algorithm.

From the above analysis, it can be seen that for different
types of interference, the optimal interference mitigation
method in a statistical sense is different. For example, the AF
algorithm has the best suppression performance for narrowband
interference, and the TDPB algorithm has the best suppression
performance for pulse interference. On the other hand, it
is not difficult to see from Figures 1A, 2A, 3A that even
for the same type of interference with different interference

parameters, the optimal interference mitigation method is
not the same.

4 IIM method

Considering that the interference environment faced by
the receiver is unknown, dynamic, and uncertain, this paper
proposes an IIM method, which automatically selects the optimal
method to suppress interference based on the characteristics
of interference, thereby improving the interference mitigation
performance and robustness of the receiver.
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FIGURE 5
Block diagram of the IIM method.

FIGURE 6
Time frequency two-dimensional spectra of different interference types. (A) Narrowband interference. (B) Pulse interference. (C) Chirp interference.

4.1 Basic principles

The schematic diagram of the IIM method is shown in Figure 5.
The input for IIM is the digital complex baseband signal received
by the GNSS antenna and processed by signal conditioning
(includingamplification, frequencyconversion,filtering,andsampling
quantization). On one hand, the IIM processing performs three types
of interference mitigation processing on the signal: FDPB, AF, and
TDPB; On the other hand, it performs two-dimensional spectrum
perception on the input signal. The deep learning network outputs
the optimal method among the three anti-jamming processing based
on the two-dimensional time-frequency spectrum and controls the
switch to direct the output of the optimal anti-jamming method to
signal acquisition, tracking, and PVT solution processing.

Different types of interference or different parameters of the same
interference will result in different time-frequency two-dimensional
spectra, which means that the differences in interference types and
parameters will be reflected in the time-frequency two-dimensional
spectra. Therefore, a deep learning network can be constructed to
automatically select the optimal interferencemitigationmethodbased
on the time-frequency two-dimensional spectrum of the input signal.
During the training stage, for each input sample, by traversing three

TABLE 1 Parameters used in simulation.

Parameter type Parameter values

GNSS signal type Beidou B3I (PRN 1)

Initial C/N0 44 dB Hz

Receiver front-end bandwidth 20 MHz

sampling rate 20.48 MHz

Interference to signal ratio (ISR) Random distribution between 40 and 70 dB

interference mitigation methods, the corresponding output C/N0 can
be obtained. The interference mitigation method with the highest
output C/N0 is selected as the output (or label) of the deep learning
network. After the network is trained, the network architecture and
weights are fixed. During the deployment stage, the deep learning
network automatically selects the optimal interference mitigation
method based on the input interference type and parameters, and
sends its interference mitigation output to subsequent processing
through switch switching.
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FIGURE 7
Comparison of interference suppression performance between proposed method and traditional methods. (A) C/N0 results of the first 30 experiments.
(B) Statistical results of C/N0 on the entire test set.

FIGURE 8
Open sky experiment configuration.

4.2 Implementation framework

4.2.1 Time frequency two-dimensional spectral
sensing

The purpose of time-frequency two-dimensional spectrum
sensing is to unfold the digital complex baseband signal after

signal conditioning in the time-frequency two-dimensional plane.
When there is interference, the unfolded time-frequency two-
dimensional spectrum will reflect the type and parameters of
interference.

This paper uses STFT to achieve time-frequency two-
dimensional spectral sensing, and the process can be described
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FIGURE 9
Output C/N0 for IIM and direct pass-through.

by Equation 12 as follows [22]:

Sx(j,k) = |
N−1

∑
n=0

x(j ⋅ P+ n)w(n)e−j
2π
N
nk|

2

(12)

where Sx(j,k) is a time-frequency two-dimensional spectral matrix,
which is a non-negative real number. j and k are time serial
number and frequency serial number respectively, w(n) is a
sliding window function with a length of N, which controls
the data length and windowing type of each participation in
Fourier transform, and P is the length of each sliding of the
sliding window.

Figure 6 shows a sample of time-frequency two-dimensional
spectra obtained for narrowband interference, pulse interference,
and chirp interference. Each time-frequency image is inRGB format,
with a size of 224 × 224 × 3.

4.2.2 Deep learning network
Using pre-trained deep learning networks for optimal

interference mitigation method selection, pre-trained network
are deep learning networks that have been trained in millions
of natural images and have good image feature extraction
capabilities. When applied to the specialized field of GNSS IIM,
only a small number of samples are needed to fine tune the pre
trained network.

The selection of pre-training network should strike a
balance between recognition performance (recognition accuracy)
and resource consumption (recognition time). In this paper,
GoogLeNet [23] is used as the pre-trained network model.
GoogLeNet connects multiple well-designed Inception blocks
in series with other layers (convolutional layer, fully connected
layer) to form a 22-layer deep network. GoogLeNet was
once one of the most effective models on ImageNet: it
provides high recognition accuracy with low computational
complexity.

5 Simulation analysis of IIM

Firstly, based on the simulation platform in Section 3, the
Monte Carlo simulation method is used to generate sample
data. The specific generation process is as follows: the signal
received by the GNSS receiver is generated according to the
signal model in Formula 1, and the global parameter settings
are shown in Table 1. The parameters of the three types of
interference are consistent with Section 3.4. 1,000 samples are
generated under each interference, and a sample set containing
3,000 samples is generated in total. For each sample, by traversing
three interference mitigation methods, one can obtain their
respective output C/N0. The interference mitigation method
with the highest output C/N0 is selected as the label for
the sample.

The entire sample set is divided into three parts: 2,400
samples are used as the training set (800 samples for each
disturbance), 300 samples are used as the verification set (100
samples for each disturbance), and 300 samples are used as the
test set (100 samples for each disturbance), so 80% of the whole
sample is used for training, and 20% is used for verification
and testing.

The experiment utilizes the PyTorch [24] deep learning
framework to complete the model construction, training and
testing. The hyperparameters of the neural network are set as
follows: the optimizer selects Adam; the learning rate is set
to 0.001; the batch size is set to 20; the maximum number
of training epoch is set to 10; and the loss function is cross
entropy loss.

Load the trained network model into the IIM method
proposed in Section 4, validate it on the test set, and compare
it with three traditional interference mitigation methods. The
comparison results of interference mitigation performance
are shown in Figure 7.

Figure 7A shows the C/N0 results obtained from the
first 30 samples in the test set (including 10 narrowband
interference, 10 pulse interference, and 10 chirp interference
samples each). It can be seen that traditional interference
mitigation methods have good suppression effects on one or
two types of interference, but it is difficult to achieve good
suppression effects on all three types of interference at the
same time. However, the IIM method proposed in this paper
can achieve this. Although the output C/N0 obtained by the
IIM method is not the highest on individual samples (because
there is also a probability of errors in the prediction results
of the network model), overall, the output C/N0 obtained by
it is the highest in most cases. Figure 7B shows the statistical
results on the entire test set. It can be seen from the figure
that the IIM method is the optimal interference mitigation
method in a statistical sense, and the proportion of the C/N0
above a given threshold (In engineering applications, it is
generally agreed that the initial C/N0 reduced by 3 dB is used
as the threshold.) is more than 12% higher than traditional
methods.

It should be particularly noted that, compared to traditional
methods, IIM incorporates a spectrum sensing module and a
deep learning network. The introduction of the deep learning
network significantly increases the computational complexity
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FIGURE 10
The in-phase and quadrature component of the prompt channel for IIM.

FIGURE 11
Interference mitigation performance for IIM. (A) Time-frequency diagrams of the output signals obtained from direct pass-through. (B)
Time-frequency diagrams of the output signals obtained from IIM.

by thousands of times. As a result, a dedicated GPU chip
must be added specifically to accelerate the inference process
of the deep learning model. Additionally, the inference
process of the deep learning model introduces an extra
processing latency of several milliseconds. The increase in
computational complexity and processing latency limits the
deployment of IIM in low-cost and real-time demanding GNSS
receivers.

6 Open sky experiment

To further verify the proposed method, an open sky
experiment is carried out. In this test, an antenna array
based data collector is placed at a fixed position in the open
wild for GNSS signal collection, while interfering signals are
simulated and added in our SDR. This method is often used
in GNSS jamming experiments [25, 26] to avoid impacting
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FIGURE 12
Comparison of interference mitigation performance.

civil GNSS users. The open sky experiment configuration
is shown in Figure 8.

The data collector includes 7 antennas, a front-end, an A/D
converter, and a lighting port output. It should be mentioned that
only data from antenna 1 (i.e., the center antenna) is used in
our experiment. The output baseband data (sampling frequency is
62/3 MHz and duration is 2,300 ms) of the data collector are stored
on a personal computer (PC) and processed by the SDR.

For the SDR, firstly, interference signals are generated and
added to the baseband data at 1,000 ms, the parameters of the
three types of interference signals are consistent with Section 3.4.
For each type of interference, 30 random samples are generated,
totaling 90 samples. For each sample, the SDR is used for processing,
and the performance of different interference mitigation methods
is compared.

Figure 9 shows the processing results of the SDR for the
B3I signal (PRN 1) under sweep chirp interference (ISR is
64.53 dB, sweep bandwidth is 16.27 MHz, and sweep period
is 0.935 ms). It can be observed that before the interference is
turned on (0–1000 ms), with direct pass-through processing,
the output C/N0 is around 43 dB Hz. After applying the IIM
algorithm, the output C/N0 is slightly lower than that of
the direct pass-through processing, due to the insertion loss
introduced by the interference mitigation processing. After
the interference is turned on (1000 ms–2300 ms), the output
C/N0 of the direct pass-through processing drops rapidly,
and the receiver loses track of the signal, while the output
C/N0 of the IIM algorithm remains essentially unchanged,
allowing the receiver to maintain normal tracking of the signal,
as seen in Figure 10.

Figure 11 compares the time-frequency diagrams of the output
signals obtained from direct pass-through and IIM. It can be
seen that after applying IIM processing, the power of the chirp
interference is significantly reduced, with a power level similar

to that of the surrounding thermal noise, indicating that the IIM
algorithm effectively suppresses the interference.

Finally, Figure 12 presents the statistical results across all 90
sample sets. For each sample, we take the average of the output
C/N0 results after the interference is turned on (with a duration
of 1.3 s) as the final output C/N0 result. It can be observed from
the figure that the IIM method is statistically the optimal method,
with its proportion above the threshold (initial C/N0 minus 3 dB,
i.e., 40 dB Hz) being more than 16% higher than that of traditional
methods. This result is basically consistent with the outcomes
derived from the simulation, with only minor differences in specific
numerical values.

7 Conclusion

This article examines the interference challenges encountered
by GNSS receivers and introduces a deep learning-based approach
for GNSS interference mitigation. The method begins by analyzing
the input signal in a two-dimensional spectrogram and then
employs a deep learning network to determine the optimal
strategy among three interference mitigation algorithms. The
selected optimal interference mitigation strategy is subsequently
conveyed to the signal capture tracking and PVT calculation
processes via a switching mechanism. Compared to traditional
interference mitigation techniques, the method outlined in this
paper is capable of adapting to various types of interference
and different interference parameters, demonstrating effective
suppression across a range of interference scenarios. Simulation
and open-sky experimental results have confirmed the efficacy of
this approach.

In conclusion, the proposed technique is a potent interference
mitigation tool that can substantially broaden the operational
range of GNSS receivers under interference conditions. Future
enhancements could focus on reducing computational complexity
and enhancing performance in scenarios with multiple concurrent
interference signals.
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