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Photovoltaic scenario generation plays a critical role in power systems
characterized by high diversity and fluctuation. Despite recent theoretical
advancements, effectively evaluating the performance of photovoltaic scenario
generation remains a significant challenge. Existing studies predominantly rely
on metrics such as mean, variance, and probability density functions for
assessment. However, these approaches struggle to disentangle the underlying
mechanisms of morphological features and environmental stochastic factors
(e.g., cloud cover, seasonal variations) from individual or batch-generated
samples. To address these limitations, this paper proposes an evaluation
framework based on the wide-sense stationary process. By analyzing
historical photovoltaic scenario data, a solar irradiance distribution model
is first constructed to characterize its dynamic behavior. Subsequently, an
autoregressive model is employed to quantify the influence of environmental
randomness on photovoltaic scenarios. The proposed evaluation model not
only comprehensively validates the reliability of various photovoltaic scenario
generation techniques but also identifies the corresponding month or season
of generated samples through scenario feature analysis. Experimental results
demonstrate that, compared to conventional probability-based metrics, the
proposed model more effectively reveals the performance characteristics of
photovoltaic scenario generation technologies. This advancement provides a
novel technical foundation for optimizing photovoltaic scenario generation in
practical power systems.

KEYWORDS

photovoltaic scenariogeneration,wide-sense stationaryprocess, autoregressivemodel,
environmental randomness analysis, performance benchmarking for PV systems

1 Introduction

Electricity produced from solar photovoltaic (PV) panels is a vital source of clean
energy, where much research has been done in recent years owing to its low pollution. As
integration of PV powers into traditional power grid increases, a challenge surfaces due
to regulation requirements of balancing existing supply-demand in energy markets [1, 2].
One solution to this problem is PV energy prediction in solar reception process using PV
scenario generation to simulate real PV energy [3–5]. Key to informative analysis of PV
scenario is accurate representation that describes the variability and uncertainty of solar
generation from both spatial and temporal aspects [6, 7]. Two attributes of PV systems
make it difficult to generate reliable PV scenario. One is that solar generation is mostly
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dominated by the accessibility of solar irradiation that changes
across a day and during a year following the movement round the
Sun and the Earth’s rotation [8–10]. Compared with traditional
energy generation techniques, PV systems involves strong uncertain
and environmental variables (e.g., cloud and season).Theother is PV
systems contain highly scalable ranging from a few kilowatts (kW)
to hundreds of megawatts (MW) [11], which indicates the diversity
of PV scenarios. Thereby, exploring the most accurate information
on the PV generation characteristics determines the reliability of
generated PV scenarios.

A lot of studies have devoted to improve the effectiveness and
precision of PV scenario generation [12], categorized as model-
based and model-free approaches. The former represents solar
reception process with a specific model of presupositions, and
the accuracy of model determines the reliability of PV scenario
generation. Most of these techniques utilize probability models to
simulate solar reception process. A modular statistical modeling
approach is presented to predict power generation of both PV and
wind power systems [13]. A pseudo-random number generation
technique is proposed to reduce prediction error of PV scenario
generation with considering uncertainty and variability indices [14].
Aggregated power curves are also analyzed and contributes to
PV generation [15]. Gaussian copulas are established to produce
multivariate PV scenarios [16]. The advantages of these techniques
are simple models and easy implementation, yet the disadvantage is
its limited ability of representing the uncertainty. Overcoming the
weakness of model-based methods, model-free techniques learn the
inherent distribution of solar reception process through analyzing
existing PV scenario data. Support vector regression is used to
forecast regional PV power generation with past PV data [17].
Artificial neural network is built to predict the solar irradiance in
PV systems [18]. A recurrent neural network (RNN) is utilized to
produce PV scenarios with month and weather information, which
requires no mathematical modelling [19]. Conditional generative
adversarial networks (CGAN) and Wasserstein GAN (WGAN)
are constructed to generate PV scenarios with sufficient diversity
and good representation of environmental uncertainty [20]. These
techniques are capable of capturing the details of PV scenarios
caused by particular operation of solar receptions. The drawbacks
of model-free techniques are severe computation complexity and
unexplained characteristics in operation processes. While either
approach claims its accuracy and effectiveness, there are no
standards evaluating them.

Although existing methods for PV scenario generation have
demonstrated certain advantages, they also face notable limitations.
Model-based approaches, such as AR and autoregressive moving
average (ARMA) models, rely on fixed assumptions about the
underlying process, making it challenging to capture non-linear
and abrupt changes in PV power caused by sudden weather shifts.
Model-free approaches, such as generative adversarial networks
(GANs) and other deep learning models, have greater flexibility but
require large datasets and significant computational resources.Their
generalization performance may also be affected when applied to
unseen weather or seasonal conditions.

Hence, it is important to evaluate the effectiveness of PV
scenario generation methods. Typically, probabilistic properties of
produced PV scenarios (e.g., mean value, variance, and probability
density function (pdf)) are common indicators of evaluating the

performance of PV scenario generation, because these indicators
are easily calculated. In particular, hourly PV generation is used to
estimate variable changes between times in the system and optimize
future expansion plans. PV energy curves have high fluctuations
due to the diversity and variety of solar reception process, i.e.,
the differences between any 2 sampling values in a PV scenario
could be large. In this regard, mean value is weak to represent the
uncertainty (e.g., cloud) in PV scenarios. Furthermore, variance is
useful to evaluate the pattern of sunrise and sunset. Only averaging
the variances of existing PV data is hard to determine which
month or season that a generated sample belongs to. Additionally,
pdf stands for purely solar energies from the Sun without
environmental randomness, which is hard to assess the influence
by cloud.

Therefore, unlike simple probability indicators such as mean
and variance, we propose a novel evaluation model that explicitly
assesses the reliability and effectiveness of photovoltaic (PV)
scenario generation. While recent research, such as those relying on
mean and variance, have been widely used, they are limited in their
ability to capture the temporal dependencies and environmental
randomness that significantly affect PV generation. These methods
primarily focus on statistical summaries, which fail to account
for abrupt changes caused by environmental factors like cloud
movement, leading to less accurate predictions. In contrast, our
autoregressive (AR)-based model provides a more comprehensive
evaluation framework by explicitly modeling the temporal structure
and stochastic fluctuations in PV scenarios.ThisARmodel simulates
the movement of clouds and its impact on solar reception, offering
a more precise characterization of the underlying randomness in
PV generation. Additionally, by incorporating month- and season-
specific AR parameters, our approach is capable of categorizing
PV scenarios into temporal categories, such as specific months
and seasons, something that traditional mean and variance-based
methods cannot achieve. This enhanced ability to classify and
evaluate PV scenarios allows for more robust and context-aware
PV energy predictions, making our approach not only more
accurate but also more scalable and practical for real-world
applications.

1. Proposed evaluationmodel has stronger ability of assessing the
reliability of generated PV scenarios than simple probability
indicators, which is conducive to improving the studies of
PV scenario generation and promoting the application of
PV systems.

2. Proposed evaluation model can estimate the corresponding
month and season that a credible PV sample is geared to. To our
knowledge, this is the first work evaluating the specific month
and season of a generated PV scenario.

3. We discover the representative properties (e.g., the effect of
cloud) of solar reception process and use the discovery to assess
the inherentmovement of cloud, which fills a gap of estimating
the environmental randomness of PV scenario generation.

The rest of this paper is organized as follows. Section 2motivates
the introduction of the details of AR model in both time and
frequency domains. Section 3 is devoted to the details of proposed
approach. In Section 4, experimental results are discussed and
analyzed. Finally, Section 5 concludes this paper.
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FIGURE 1
AR model as a LTI filter.

2 Autoregressive model

In regard to time series events, correlations exist among the
behaviors at certain intervals. Considering the correlations, an
autoregressive (AR) model is able to predict future variables of
interest according to their past values. AR model is basically a
linear regression of current values against past values in the same
time series [21]. An AR(p) model is mathematically defined as:

φ [n] = −c− a1φ [n− 1] − a2φ [n− 2] −⋯− apφ [n− p] + ϵ [n] (1)

where φ[n] is nth value of variable observation; ϵ[n] is driving noise;
p is the order of AR model; {a1,a2,…,ap} are AR parameters. c
denotes the energy of the observation, which is defined as:

c = (1−
p

∑
t=1

at)μ (2)

where μ is the process mean.
AR parameters {at|t = 1,2,…,p} dominate the performance of

AR model, which could be estimated by several techniques, e.g.,
Yule-Walker, burg method, Kalman filter, least-square, expectation-
maximization, forward-backward. Changing the value of p and the
parameter at leads to different time series patterns [22].

Taking Z-transforms of Equation 1, AR model as a LTI filter is
depicted as:

H (z) =
σ2ϵ

Ap (z)
=

σ2ϵ
c+∑p

t=1
atz
−t

(3)

AR(p) model is used to model the observation φ[n] as the
response of a LTI filter with p order to an input ϵ[n] (illustrated
as in Figure 1). The purpose is to discover the filter coefficients
(AR parameters {at|t = 1,2,…,p}) and the input ϵ[n] that make the
estimated φ̂[n] as close to φ[n] as possible. From Equation 3, AR
model is an all-polesmodel. AR system could be unstable if the poles
are outside the unit circle.

The AR parameters could be solved by Yule-Walker
equations. Equation 1 can be reformed in a vector form.

(φ [n] ,φ [n− 1] ,…,φ [n− p])(

(

1

a1
⋮

ap

)

)

= ϵ [n] − c (4)

Multiple both sides by φ[n] and take the expectation, we have:

Eφ [n]x [n] = E

{{{{{{{
{{{{{{{
{

φ [n] (φ [n] ,φ [n− 1] ,…,φ [n− p])(

(

1

a1
⋮

ap

)

)

}}}}}}}
}}}}}}}
}

= E {ϵ [n] − c}

Then,

(r0, r1,…, rp)(

(

1

a1
⋮

ap

)

)

= σ2ϵ (5)

where {r0, r1,…, rp} are autocorrelation function. Then,

[[[[[[[

[

r0 r1 … rp
r1 r0 … rp−1
⋮ ⋮ ⋮ ⋮

rp rp−1 … r0

]]]]]]]

]

[[[[[[[

[

1

a1
⋮

ap

]]]]]]]

]

=

[[[[[[[

[

σ2ϵ
0

⋮

0

]]]]]]]

]

(6)

While deleting the first equation in Equation 6, the formula,
termed Yule-Walker equations, is obtained as follows.

[[[[[[[

[

r0 r1 … rp
r1 r0 … rp−1
⋮ ⋮ ⋮ ⋮

rp−1 rp−2 … r0

]]]]]]]

]

[[[[[[[

[

a1
a2
⋮

ap

]]]]]]]

]

= −

[[[[[[[

[

r1
r2
⋮

rp

]]]]]]]

]

(7)

3 The proposed model

Figure 2 illustrates the overall methodology of our proposed
autoregressive-based PV scenario assessment framework. By
analyzing the time dependency and random fluctuations in PV
data, the AR model can capture short-term variations caused
by environmental factors, thereby providing a more robust
evaluation of PV scenario reliability. This framework introduces
an autoregressive process to model environmental disturbances in
PV generation, taking into account the temporal dependence of PV
output as well as abrupt fluctuations due to environmental changes.
Meanwhile, the framework integrates AR model parameters with
monthly and seasonal PV generation characteristics. By estimating
ARparameters for differentmonths and seasons, it assigns generated
PV samples to the appropriate time period, enabling more accurate
handling of both seasonal variations and longer-term fluctuations
in the PV data.

3.1 PV dataset analysis

Take 4 data sets from existing PV data for observation, shown in
Figure 3. To address the month-to-month and seasonal variations
in solar radiation, we conducted an in-depth analysis of the
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FIGURE 2
Diagram of the AR model–based evaluation framework for monthly and Quarterly analysis.

distribution characteristics of photovoltaic data for specific months
and seasons. Solar radiation exhibits significant differences not
only in its mean values but also in its variability and distribution
patterns across months and seasons. For instance, summer months
like July and August demonstrate higher average solar radiation
and smoother temporal patterns due to stable weather conditions,
while winter months like December and January are characterized
by lower average radiation levels and more frequent fluctuations
caused by cloud cover and shorter daylight hours. Seasonally,
summer shows the highest consistency in solar radiation, while
winter has the highest variability. In addition, the distribution
characteristics of solar radiation, such as its skewness and kurtosis,
were analyzed for eachmonth and season to capture subtle temporal
differences. Winter months generally exhibit a higher skewness due
to irregular peaks in solar radiation, whereas summer months tend
to have lower kurtosis, reflecting more consistent radiation patterns,
as shown in Figures 3A, B.

While the clouds shade PV panels from the light, a downward
peak occurs. The duration of these peaks depends on the moving
speed of clouds. Additionally, as shown in Figures 3C, d, even
though mean values of these 2 PV samples are the same, their
representation are extremely different. Consequently, it is hard to
utilize mean value and variance to evaluate the performance and
diversity of PV scenario generation. The normalization is applied
to the energy ratio λ[n] and the normalized solar power g[n]. The
energy ratio λ[n] is normalized to follow a Gaussian distribution
G(μλ,σ

2
λ), where μλ and σ

2
λ are themean and variance estimated from

historical data. Similarly, g[n] is transformed to followG(μg,σ
2
g), with

μg and σ2g reflecting the peak solar power time and its variability
within a day. These normalization steps standardize the feature
distributions, ensuring consistent input for the evaluation models
and improving the robustness of the analysis.

We first normalized the raw photovoltaic output power data in
the data preprocessing phase. Specifically, each historical sample
xo[n] is transformed into x[n] using the following equation:

x [n] = λ [n] ⋅ (g [n] + ε [n]) (8)

Where λ[n] represents the energy ratio, g[n] is the normalized
solar power, and ε[n] accounts for the environmental interference,
such as cloud cover and weather variations. All photovoltaic
data are normalized to ensure consistency across the dataset
following a Gaussian distribution. The energy ratio λ[n] is
normalized as follows:

λ [n] ∼ G(μλ,σ
2
λ) (9)

Where μλ and σ2λ are the mean and variance of the energy ratio,
respectively. Similarly, the normalized solar power g[n] follows a
Gaussian distribution, given by:

g [n] ∼ G(μg,σ
2
g) (10)

Where μg indicates the time of maximum solar power during
the day, and σ2g represents the time interval between sunrise and
sunset. To model the environmental disturbances impacting the
photovoltaic power, the interference term ε[n] is modeled as an
autoregressive process:

ε [n] = −
p

∑
t=1

at ⋅ ε [n− t] + u [n] (11)

Where at are the AR model paremeters, p is the order of the model,
and u[n] is the noise term, which follows a Gaussian distribution.
These preprocessing steps ensure the data are appropriately
normalized and standardized, providing consistent and reliable
input for subsequent model training.

We establish the evaluation model according to month
and season. In other words, we could assess a generated
PV sample whether belongs to a specific month or season.
For each x in historical data, a set of parameter values
Θx:(λ

x,μg,σ
2
g ,a1,a2,…,ap,σ

2
u) could be gained by Equation 1.

Denote each generated sample as y, with a group of parameter
values Θy:(λy,μ

y
g, (σ

y
g)
2,ay1,a

y
2,…,a

y
p, (σ

y
u)

2) are also evaluated. While
the proposed evaluation framework assumes WSS for month-
specific and season-specific PV data, this assumption may not hold
under significant non-stationary conditions, such as those caused
by extreme weather events or rapid environmental changes. To
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FIGURE 3
PV scenario samples, where data are sampled every 5 min (a) A daily PV output profile under relatively clear weather conditions. (b) A PV output profile
exhibiting moderate fluctuations due to intermittent cloud cover. (c) A high-fluctuation scenario sharing the same average output as (d), but showing
distinctly different variability patterns. (d) A contrasting scenario with the same mean power as (c), yet reflecting different environmental randomness in
its generation curve.

mitigate this limitation, the evaluation process could incorporate
adaptive mechanisms, such as recalibrating AR parameters for
shorter time intervals to better capture transient dynamics.
Furthermore, reflection coefficients and residual errors from
the AR process could provide additional indicators of non-
stationarity, allowing for more flexible evaluation criteria under
such conditions.

The proposed model relies on several key assumptions for
effective modeling and evaluation. The solar reception process is
assumed to exhibit WSS within each month and season, allowing
the AR model to capture temporal dependencies. Additionally, the
energy ratio λ[n] and normalized solar power g[n] are assumed
to follow Gaussian distributions, facilitating parameter estimation.
Environmental fluctuations cause by weather changes, such as
cloud movement, are modeled using a linear AR process, which
enables the model to capture short-term dependencies. While these
assumptions are reasonable for most PV scenarios, deviations, such
as seasonal transitions or extreme weather conditions, may impact
the model’s generalization ability. The model is tested on PV data
from multiple months and seasons to ensure robustness, reflecting
a wide range of environmental conditions. This approach improves
the model’s generalization capacity and practical applicability.

3.2 Month-evaluation

For jth month in a year, evaluation model is determined by
Θj

x:{λ̂
j, μ̂jg, σ̂

j
g, â

j
t, (σ̂

j
u)

2
}, j = {1,2,…,12}. We arrange Θj

x into three
parts in accordance with three indicators { ̂ryλ[j], ̂r

y
g[j], ̂r

y
u[j]} to

evaluate a given generated PV sample y being “reliable”. If the sample
is reliable, the indicators would obtain the month that this sample
belongs to.

1) In the first part, ̂ryλ[j] manifests the probability that energy
ratio of generated sample y follows the distribution of energy
ratio of the jth month.

In term of the jth month, from Equation 2, the distribution of
energy ratio is dominated by μ̂jλ and (σ̂

j
λ)

2
which are gained by the

following formulas:

μ̂jλ =
1
d

d

∑
i=1

λx [i] (12)

(σ̂jλ)
2
= 1
d

d

∑
i=1
(λx [i] − μ̂jλ)

2
(13)

where d is the total days in the jth month. λx[i] is the value of energy
ratio in the ith day of jth month.
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For each generated PV sample y, {ryλ[j]|j = 1,2,…,12} are
calculated separately as follows.

̂ryλ [j] =
1

√2π(σ̂jλ)
2
e
− 1

2
(

λy−μ̂
j
λ

σ̂
j
λ

)
2

(14)

2) In the second part, ̂ryg[j] describes the difference of sunshine
duration between generated samples and the jth month,
which is evaluated by μ̂jg and (σ̂

j
g)
2
.

̂ryg [j] = √(μg − μ̂
j
g)

2
+ (σ2g − (σ̂

j
g)

2
), (15)

μ̂jg =
1
d

d

∑
i=1

μg [i] (16)

(σ̂jg)
2
= 1
d

d

∑
i=1

σ2g [i] (17)

3) In the third part, ̂ryu[j] represents the learning ability
of generated samples for environmental randomness of
jth month. An AR(p) model is designed to imitate the
uncertainties. An importance of AR model is that all poles
must be within unit circle to ensure system stability [23]. If
p > 2, all {at|t = 1,2,…,p} are not necessary to be less than 1.
Thereby, averaging at’s may result in poles falling outside the
unit circle. Instead of averaging the values of at, we implement
reflection coefficients {kt|t = 1,2,…,p} to obtain the “averaged”
AR parameters. kt has a good property that it is bounded by
1. To find kt by step-down (SD) procedure, we need to obtain
{at[m]|m = 1,2,…, t− 1; t = p,p− 1,…,2}, where at[m] is the
mth AR parameter for model order p = t.

In SD procedure,

at−1 [i] =
at [i] − at [t]a

∗
t [t− i]

1− |at [t] |2
(18)

where∗means transposition. Prediction error powers of each model
order in the procedure is defined as:

υt−1 =
υt

1− |at [t] |2
(19)

SD procedure is completed while υt < (σ̂
j
g)
2
. Furthermore, the

procedure is initialized with at[m] = at in Θx for t = 1,2,…,p and
υp = σ2u. After displaying SD procedure, reflection coefficients are
obtained as kt = at[t], t = 1,2,…,p. Averaged kt is calculated as:

k̂t =
1
d

d

∑
i=1

kt [i] (20)

With k̂t, {ât|t = 1,2,…p} is calculated using Levinson recursion.

ât [m] =
{
{
{

ât−1 [m] + k̂tât−1 [t−m] k̂ = 1,2,…, t− 1

k̂t m = t
(21)

(σ̂ju)
2
= ̂r [0]

p

∏
t=1
(1− k̂2t ) (22)

̂r [0] = 1
n

n

∑
i=1

ε2 [n]

̂ryu[j] is measured by Euclidean distance between AR parameters
{ayt |t = 1,2,…,p} in a generated sample y and coefficients
{âjt|t = 1,2,…,p} in the jth month.

̂ryu [j] = √
p

∑
t=1
(âjt − a

y
t)

2
+ ((σ̂ju)

2
− (σyu)

2) (23)

For each generated sample y, a set of { ̂ryλ[j], ̂r
y
g[j], ̂r

y
u[j]} is

obtained. Based on maximum likelihood theory, we search the
largest values of these 3 coefficients with highest probability for
finding the month that y belongs to.

{{{{{{{
{{{{{{{
{

j1 = arg max
j
̂ryλ [j] , j = 1,2,…,12

j2 = arg min
j
̂ryg [j] , j = 1,2,…,12

j3 = arg min
j
̂ryu [j] , j = 1,2,…,12

(24)

To place the assessment, state null hypothesis and alternate
hypothesis, respectively:

  H0: y is a reliable sample for PV scenario.
  H1: y is not a reliable sample for PV scenario.

Because two neighboring months have some similar solar
receptions, we set a bias δ to adjust the evaluation. Considering the
comparability between any two neighboringmonths, while |j1 − j2| ≤
δ, |j1 − j3| ≤ δ, and |j2 − j3| ≤ δ are all satisfied, accept H0. Otherwise,
accept H1. To further quantify the confidence in the evaluation
results, we calculated the 95% confidence intervals (CIs) for the
likelihood ratios ̂ryλ[j], ̂r

y
g[j], ̂r

y
u[j] using the following formula:

CI = ̂r± z ⋅ σ
√n

(25)

where ̂r is the maximum likelihood estimate, σ is the standard
deviation of the likelihood ratios across the samples, n is the number
of observations, and z is the critical value for a 95% confidence
level. We use corresponding to a 95% confidence interval. This
5% significance level is a widely accepted convention in statistical
inference, as it offers a practical balance between Type I and Type II
errors in hypothesis testing [24–26]. Many studies in related fields
(e.g., power systems, reliability analysis) similarly adopt the 95% CI
when evaluating model performance or uncertainty quantification
[27–29], ensuring that our approach remains consistent with
standard practice. Additionally, statistical significance tests were
conducted to validate the reliability of the classification results. We
employed a one-sample t-test to assess whether the mean likelihood
ratio for each month or season significantly differed from a pre-
defined threshold μ0, representing unreliable PV scenarios. The test
statistic is given by:

t =
̄r− μ0
σ
√n

(26)

where ̄r is the mean likelihood ratio, and σ is its standard
deviation.The p-value corresponding to the test statistic determines
whether to reject H0. A significance level of 0.05 was used as
the cutoff for statistical significance, which is a widely adopted
threshold in statistical hypothesis testing across various fields,
including the social sciences, engineering, and environmental
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studies. The choice of a 0.05 significance level, corresponding to a
95% confidence interval. This threshold means that there is a 5%
chance of incorrectly rejecting the null hypothesis when it is actually
true, which provides a practical balance between precision and
practical decision-making. In our study, using this significance level
allowed us to confidently assess whether the observed differences in
likelihood ratios were statistically significant, thus providing reliable
classification of PV scenarios. This choice of significance level
aligns with commonly accepted practices in similar research studies
[30–32]. By adopting this 0.05 significance level, we ensured that our
results met established statistical standards, offering a reliable and
robust evaluation of the PV scenario classification process.

Normally, δ = 1. The parameter δ is used as a threshold to
account for the natural similarity between neighboring months,
ensuring thatminor deviations do not lead tomisclassification of PV
scenarios. Based on empirical analysis, δ is set to 1, which balances
classification accuracy and robustness. A larger δ increases the
tolerance for classification, potentially leading to misclassifications,
while a smaller δ may cause overly strict categorization, especially
in transitional months with similar solar patterns (e.g., March and
April or September and October). Algorithm 1 describes the details
of Month-Evaluation model.

3.3 Season-Evaluation

This model is similar to Month-Evaluation model, in which s
replaces d and represents the total days in each season. Season-
Evaluation model is assessed by { ̃ryλ[j], ̃r

y
g[j], ̃r

y
u[j]}. h = {1,2,3,4}

represents spring, summer, autumn, and winter, respectively.
Season-Evaluation model is used to identify whether a generated
sample y as a reliable PV scenario belongs to a specific season, in
which the three-step procedure is also designed with a season of
Θh

x :{λ̃
h, μ̃hg , σ̃

h
g , ã

h
t , (σ̃

h
u)

2}.

1) Firstly, ̃ryλ[j] is obtained through evaluation of distribution
of energy ration according to Gaussian distribution which is
determined by its mean value and variance.

μ̃hλ =
1
s

s

∑
q=1

λx [q] (27)

(σ̃hλ)
2 = 1

s

s

∑
q=1
(λx [q] − μ̃hλ)

2 (28)

where λx[q] is qth day in hth season that contains s days.
Given a generated PV sample y, { ̃ryλ[h]|h = 1,2,3,4} are evaluated

separately using the following formula.

̃ryλ [h] =
1

√2π(σ̃hλ)
2
e
− 1

2
(

λy−μ̃hλ
σ̃hλ
)
2

(29)

2) Secondly, owing to the particularity of sunshine duration in
each season, the pattern of sunrise and sunset of seasons is
depicted with μ̃hg and (σ̃

h
g )

2.

Input: Θx, Θy, generated PV sample y, d, δ and p

Output: H0 and H1.

 Initialization: r̂
y

λ
[j] = 0, r̂

y
g[j] = 0, r̂

y
u[j] = 0.

 for j = 1 to 12 do

  for i = 1 to d do

   1: Sum λx[i] using all λx in a month;

  end for

  2: Calculate the mean value μ̂
j

λ
and (σ̂j

λ
)
2
in

Equations 4, 5;

  3: Compute r
y

λ
[j] in Equation 6.

 end for

 for j = 1 to 12 do

  for i = 1 to d do

   4: Sum μ
j
g using all μg in a month;

   5: Sum (σjg)
2
using all (σg)2 in a month;

  end for

  6: Calculate the mean value μ̂
j
g and (σ̂jg)

2
in

Equations 7, 8;

  7: Compute r
y
g[j] in Equation 7.

 end for

 for j = 1 to 12 do

  for i = 1 to d do

   for m = 1 to p do

    8: Evaluate at[m] for each AR order;

   end for

   9: Obtain kt using SD procedure with at[m];

  end for

  10: Average all kt in a month to get k̂t;

  11: Gain averaged ât using Levinson recursion

with k̂t;

  12: Calculate (σ̂ju)
2
with k̂t in Equation 14;

  13: Compute r
y
u[j] in Equation 15.

 end for

 14: Sort r
y

λ
[j], r

y
g[j], and r

y
u[j] to find j1, j2, and

j3.

 if |j1 −j2| ≤ δ && |j1 −j3| ≤ δ && |j2 −j3| ≤ δ. then

  15: Accept H0.

 else

  16: Accept H1.

 end if

Algorithm 1. Month-Evaluation Procedure.

μ̃hg =
1
s

s

∑
q=1

μg [q] (30)

(σ̃hg)
2 = 1

s

s

∑
q=1

σ2g [q] (31)

̃ryg[h] is to evaluate the given sample y based on the discovery of
the Gaussian distribution of solar reception process.

̃ryg [h] = √(μg − μ̃
h
g)

2 + (σ2g − (σ̃hg)
2), (32)
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3) Thirdly, reflection coefficients k̃t are also used to gain
averaged AR parameters ãht and (σ̃

h
u)

2 to guarantee system
stability.

k̃t =
1
s

s

∑
q=1

kt [q] (33)

kt[q] is obtained with at using SD procedure in Equation 10.
Then, {ãht |t = 1,2,…,p;h = 1,2,3,4} and (σ̃

h
u)

2 are evaluated with
{k̃t|t = 1,2,…,p} using Levinson recursion. ̃rma [h] is designed as:

̃rma [h] = √
p

∑
t=1
(ãht − a

y
t )

2 + ((σ̃hu)
2 − (σyu)

2) (34)

With a series of { ̃ryλ[h], ̃r
y
g[h], ̃r

y
u[h]}, the appropriate season that

y belongs to is discovered with the highest probabilities using
maximum likelihood theory.

{{{{{{
{{{{{{
{

h1 = arg max
h
̃ryλ [h] , h = 1,2,3,4

h2 = arg min
h
̃ryg [h] , h = 1,2,3,4

h3 = arg min
h
̃ryu [h] , h = 1,2,3,4

(35)

To place the assessment, state null hypothesis and alternate
hypothesis, respectively:

  H0: y is a reliable PV sample in h
∗
season

  H1: y is not a reliable sample for PV scenario.

Only while h1 = h2 = h3, accept H0, where h∗ = h1. Otherwise,
accept H1. Algorithm 2 describes the details of Season-Evaluation.

3.4 Correlation between month and
seasonal evaluation

The monthly and seasonal evaluation methods differ in
their temporal granularity and parameter estimation processes.
The monthly evaluation classifies PV scenarios into 12 specific
months, using month-specific parameters to capture fine-grained
temporal differences in PV power generation. In contrast,
the seasonal evaluation classifies scenarios into four broader
seasonal categories, where seasonal parameters are aggregated
from monthly data. This approach increases robustness to short-
term fluctuations but reduces temporal resolution. Together,
these methods provide a complementary framework, with the
monthly evaluation offering higher precision and the seasonal
evaluation providing more excellent stability in the presence of
temporal variability.

4 Experimental results

4.1 Software settings

The experiments presented in this study were implemented
using Matlab 2015, a powerful tool for numerical computations,
statistical analysis, and time series modeling. Matlab’s robust

environment allowed us to efficiently handle the large datasets
required for evaluating photovoltaic (PV) scenarios and
implementing the autoregressive (AR) model. For the AR and
ARMA modeling, we utilized Matlab’s built-in toolboxes, which
provide comprehensive functions for time series analysis and
statistical testing. Additionally, other techniques such as Generative
Adversarial Networks (GAN) and Conditional GAN (CGAN) were
implemented using TensorFlow to handle the deep learning-based
generation of PV scenarios.

4.2 Experiment settings

With Solar Integration datasets [33], we choose solar data
from both 32 solar power plants in the State of Washington to
train all PV scenario generation techniques in the simulation.
The Solar Integration dataset is selected for its wide acceptance
and representativeness in PV scenario generation research. This
dataset provides real-world operational data from 32 PV power
plants, capturing the natural variability of solar power influenced by
weather conditions, geographical differences, and seasonal changes.
Unlike synthetic datasets, the Solar Integration dataset reflects the
stochastic nature of PV power generation, allowing for a more
comprehensive evaluation of the model’s generalization ability.
Its diverse feature distribution and realistic noise levels ensure
that the model is tested under practical conditions, enhancing
the credibility of the experimental results. Potential biases in the
dataset are primarily introduced by weather-related randomness
and seasonal shifts in solar irradiance. These factors may result in
an imbalanced sample distribution, especially during months with
more frequent weather disturbances. To mitigate this, the proposed
model incorporates month-specific and season-specific parameter
estimation, allowing it to account for these natural variations.
The model aims to achieve more robust evaluation performance
by explicitly modeling temporal and seasonal effects. Including
these statistical characteristics ensures that the evaluation method’s
assumptions are transparent and justified.

All experiments of evaluation are operated in Matlab R2014b
software with 8 GB memory. In order to generate PV scenario data
with different techniques, we implement AR and autoregressive
and moving average (ARMA) toolbox in Matlab and display
Gaussian copula Matlab codes. Additionally, GAN, CGAN, and
CGAN-filtering models are established in tensorflow with a single
Nvidia TITAN Xp GPU to obtain new PV scenario samples.
Furthermore, three popular date generation techniques are also
used to produce PV scenarios: random oversample (ROS), synthetic
minority over-sampling technique (SMOTE), and adaptive synthetic
sampling (ADASYN). The parameter settings of these 9 techniques
are as follows:

1. AR: p = 6, which is the order of AR model.
2. ARMA: p = 6, and q = 5. q is the order of MA model.
3. Gaussian copula: solar energy has a wide range between

different seasons.Thus, we normalize the existing PV scenarios
as pretreatment.

4. GAN: the generator is initialized as a 4-layer neural network
in which the sizes of hidden layers are {128,1024,256,288}.
As the discriminator, 4 hidden layers whose sizes are
{288,256,1024,128} and a softmax layer are involved.
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Input: Θx, Θy, generated PV sample y, s, and p

Output: H0 and H1

 Initialization: r̃
y

λ
[h] = 0, r̃

y
g[h] = 0, r̃

y
u[h] = 0.

 if y is not a reliable sample in Month-Evaluation

model. then

  1: Accept H1.

 else

  for h = 1 to 4 do

   for q = 1 to s do

    2: Sum λx[q] using all λx in a month;

   end for

   3: Calculate the mean value μ̃h
λ
and (σ̃h

λ
)2in

Equations 17, 18;

   4: Compute r̃
y

λ
[h] in Equation 19.

  end for

  for h = 1 to 4 do

   for q = 1 to s do

    5: Sum μhg using all μg in a month;

    6: Sum (σhg)
2
using all (σg)2 in a month;

   end for

   7: Calculate the mean value μ̃hg and (σ̃hg)
2
in

Equations 20 and 21;

   8: Compute r̃
y
g[h] in Equation 22.

  end for

  for j = 1 to 4 do

   for i = 1 to s do

    for m = 1 to p do

     9: Evaluate at[m] for each AR order;

    end for

    10: Obtain kt using SD procedure with at[m];

   end for

   11: Average all kt in a month to get k̃t;

   12: Gain averaged ãt using Levinson recursion

with k̃t;

   13: Calculate (σ̃hu)
2
with k̃t;

   14: Compute r̃
y
u[h] in Equation 24.

  end for

  15: Sort r̃
y

λ
[h], r̃

y
g[h], and r̃

y
u[h] to find h1, h2, and

h3.

  if h1 = h2 = h3. then

   16: h
∗
= h1.

   17: Accept H0.

  else

   18: Accept H1.

  end if

end if

Algorithm 2. Season-Evaluation Procedure.

5. CGAN: in addition toGANparameters,mean values of powers
are calculated for each sample, and the results are classified
into 5 categories: μ(Xi) < 0.2 (class 1), 0.2 < μ(Xi) < 0.5 (class
2), 0.5 < μ(Xi) < 1 (class 3), 1 < μ(Xi) < 2 (class 4), and μ(Xi) >
2 (class 5).

6. CGAN-filtering: in addition to CGAN settings, there are 2
parameters in the filtering. The orders of zeros and poles are
initialized as 10 and 5, respectively.

7. ROS: random state = 42, which represents the random number
generator.

8. SMOTE and ADASYN: k = 3, and m = 5. k is the number of
nearest neighbours that construct synthetic samples, and m is
the number of nearest neighbours that determine if a minority
sample is in danger.

Normally, solar energy has a wide range between different
seasons. Thus, we normalize the existing PV scenarios
as pretreatment. 6 generated PV scenarios from these 8
generation techniques chosen by random are shown in Figure 4.
Obviously, AR and ARMA methods generate PV scenarios with
diversity, while Gaussian copula and GAN family specialize in
learning the environment randomness (i.e., the shape of PV
scenario), and SMOTE and ADASYN focus on the energy of
PV scenarios.

4.3 Comparisons with evaluation metrics

4.3.1 Comparisons on generated PV samples
We compare the proposed model (termed as 𝔸) with 2 popular

evaluation metrics, i.e., mean value (denoted as 𝕄) and variance
(denoted as 𝕍). 6 samples produced by 8 techniques (illustrated in
Figure 3) are used to obtain evaluation results both for month and
season estimation. We compare the proposed model (termed as 𝔸)
with 2 popular evaluation metrics, i.e., mean value (denoted as𝕄)
and variance (denoted as 𝕍). 6 samples produced by 8 techniques
(illustrated in Figure 3) are used to obtain evaluation results both for
month and season estimation. Moreover, the inability of mean value
and variance-based metrics to capture these temporal and statistical
characteristics often leads to higher evaluation errors, particularly
in months or seasons with extreme variations in solar radiation.
For instance, the AR-generated PV scenarios for January showed
unrealistic consistency in solar energy levels during midday, which
is against natural solar radiation patterns.While the mean value and
variancemetrics failed to identify such anomalies, the proposed AR-
based evaluation model effectively detected these inconsistencies
by analyzing the temporal correlations and stochastic fluctuations
in the data.

In contrast, GAN-generated samples displayed distinct
characteristics that influenced their evaluation. First, GANs excel in
capturing the overall shape and variability of PV scenarios, as they
learn the underlying data distribution from historical datasets. This
allows GAN-generated samples to exhibit temporal dependencies
that closely mimic real-world PV scenarios, particularly in months
with stable solar radiation, such as July and August. However, the
stochastic nature of GANs introduces noise into the generated
samples, which can manifest as small, high-frequency fluctuations
that deviate from natural solar radiation patterns. These noise-
induced deviations are subtle and often escape detection by mean
value and variance-based metrics but are effectively captured by
the proposed AR-based evaluation model due to its sensitivity to
temporal correlations. Additionally, the evaluation results revealed
that the performance of GAN-generated samples varied with the
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FIGURE 4
Generated PV scenarios by different approaches.

complexity of the temporal patterns in the target data. For example,
in winter months like January, where solar radiation patterns
are highly irregular due to frequent cloud cover, GAN-generated
samples tended to exhibit over-smoothed temporal trends, failing
to replicate the abrupt changes observed in real data. The proposed
model successfully identified these limitations by analyzing the AR
parameters and residuals, which highlighted the discrepancies in
the stochastic dynamics between the generated samples and the
actual data.

To observe the performance of evaluationmethods, we specially
choose some non-PV samples. Experimental results are shown in
Tables 1, 2. ‘i/j′ means that this PV scenario actually belongs to jth
month or season which is evaluated as a sample in ith month or
season. ‘× ′ indicates that this sample cannot be deemed as a reliable
PV scenario in line with existing solar reception pattern. According

to the similarity between the generated samples and existing PV
scenarios, we denote the month or season that generated samples
belong to (i.e., the value of j).

In regard to month attribution of a PV sample set, the proposed
model outperforms mean value and variance estimations. Table 1.
shows mean value and variance have higher evaluation errors of
the months that produced PV samples belongs to. In particular,
while a generated PV sample does not follow solar reception
principles, mean and variance have difficulties in observing it.
Take the 5th sample from AR model for instance, it is impossible
that solar energies remain the highest value between around
12 p.m. and 16 p.m., which is against nature law leading to
an unreliable PV sample. This is because AR parameters in
an AR model are sensitive and could result in unstable state.
The proposed model is capable of estimating the unreliability
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TABLE 1 Evaluation performance of generated PV scenario in specific months.

AR ARMA Gaussian copula GAN CGAN CGAN-filter SMOTE ADASYN

𝕄

1/1 12/× 1/1 10/3 7/× 7/8 7/8 7/8

12/× 2/× 2/× 7/8 2/× 1/1 7/8 7/8

1/1 12/1 10/3 2/3 5/3 1/× 7/8 7/8

1/1 1/1 3/3 3/3 1/× 2/3 7/8 7/8

7/× 7/× 3/× 1/× 3/× 1/× 7/8 7/8

1/1 1/1 3/4 11/× 12/4 5/4 7/8 7/8

𝕍

1/1 12/× 1/1 6/3 8/× 8/8 8/8 8/8

1/× 11/× 3/× 8/8 4/× 1/1 8/8 8/8

1/1 1/1 4/3 3/3 8/× 1/× 8/8 8/8

1/1 1/1 3/3 4/3 1/× 12/3 8/8 8/8

8/× 8/× 5/× 1/× 9/× 1/× 8/8 8/8

1/1 1/1 3/4 1/× 12/× 6/4 8/8 8/8

𝔸

1/1 × /× 1/1 3/3 × /× 8/8 8/8 8/8

× /× × /× × /× 8/8 × /× 1/1 8/8 8/8

1/1 1/1 3/3 3/3 × /× × /× 8/8 8/8

1/1 1/1 3/3 3/3 × /× 3/3 8/8 8/8

× /× × /× × /× × /× × /× × /× 8/8 8/8

1/1 1/1 4/4 × /× × /× 4/4 8/8 8/8

of PV samples. On the opposite, mean and variance evaluation
cannot identify the unreliability. Typically, PV scenarios among
neighbouring months have analogous attributes, e.g., daylight
hours that affects the width of PV scenarios. For example, the
generated PV samples from SMOTE belong to August, yet they
are deemed as scenarios in July by mean evaluation. Furthermore,
the months in spring and autumn have similar solar conditions,
e.g., solar reception amount in a day. Therefore, mean and
variance are unable to tell the difference, e.g., October and
March. At last, when learned representations of environmental
changes are not precise, the fluctuations in PV samples are
abnormal (e.g., PV samples generated by CGAN). In that case,
these samples are unreliable, but mean value and variance cannot
detect them.

For season attribution of a PV sample, the proposed model
outperforms traditional mean value and variance estimations,
as shown in Table 2). The improved performance for season
classification is attributed to the autoregressive (AR) model used
in the proposed approach, which captures temporal dependencies
and seasonal variations more effectively than simple statistical
summaries. The AR model was implemented using Matlab 2015
due to its robust capabilities for time-series modeling and statistical

analysis. In particular, we utilized Matlab’s Econometrics Toolbox,
which includes functions for autoregressive and moving average
modeling, to analyze the PV data and assess the seasonal attributes
of the generated scenarios. These basic statistical techniques were
applied to evaluate the solar data and assess the seasonality of
PV output based on average values and variances, which do not
account for the underlying temporal correlations. In contrast to
month evaluation, evaluation techniques display well on season
attribute. This is because that the differences in solar movement
and environment changes among seasons are more significant
than months. To assess the seasonal performance, the confidence
intervals for likelihood ratios were calculated for each season, using
the one-sample t-test approach implemented in Matlab. The p-
values corresponding to these tests were computed to determine
the statistical significance of the seasonal differences in the
PV samples.

4.3.2 Comparisons of evaluation performance
In order to verify the effectiveness of the proposed model,

we implement mean value, variance, and the proposed model
displaying on 100 samples generated by these 8 techniques,
separately. Evaluation errors of these 3 measurements are shown
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TABLE 2 Evaluation performance of generated PV scenario in specific seasons.

AR ARMA Gaussian copula GAN CGAN CGAN-filter SMOTE ADASYN

𝕄

4/4 4/× 4/4 1/1 2/× 2/2 2/2 2/2

4/× 1/× 1/× 2/2 1/× 4/4 2/2 2/2

4/4 4/4 1/1 1/1 3/× 4/× 2/2 2/2

4/4 4/4 1/1 1/1 4/× 1/1 2/2 2/2

2/× 2/× 1/× 4/× 1/× 4/× 2/2 2/2

4/4 4/4 1/1 4/× 4/× 2/1 2/2 2/2

𝕍

4/4 4/× 4/4 3/1 2/× 2/2 2/2 2/2

4/× 4/× 1/× 2/2 1/× 4/4 2/2 2/2

4/4 4/4 1/1 1/1 2/× 4/× 2/2 2/2

4/4 4/4 1/1 3/1 4/× 4/1 2/2 2/2

2/× 2/× 3/× 4/× 2/× 4/× 2/2 2/2

4/4 4/4 1/1 4/× 4/× 3/1 2/2 2/2

𝔸

4/4 × /× 4/4 1/1 × /× 2/2 2/2 2/2

× /× × /× × /× 2/2 × /× 4/4 2/2 2/2

4/4 4/4 1/1 1/1 × /× × /× 2/2 2/2

4/4 4/4 1/1 1/1 × /× 1/1 2/2 2/2

× /× × /× × /× × /× × /× × /× 2/2 2/2

4/4 4/4 1/1 × /× × /× 1/1 2/2 2/2

in Figure 5, 6, in which the proposed model outperforms other
2 measurements. This validates that mean value and variance are
unable to identify unreliable generated samples, leading to high
evaluation errors with AR and ARMA approaches. By contrast,
the proposed model exhibits strong ability of estimating the
reliability of generated samples, resulting in low evaluation errors.
Moreover, with increased diversity of generation byGaussian copula,
GAN, and CGAN-filter, mean value and variance measurements
are easily trapped into misidentification between neighboring
months or seasons. Furthermore, because the generated samples
by SMOTE and ADASYN distributes in a narrow region, these
3 evaluation approaches also gain good performances. Compared
with month evaluation, evaluation results for seasons achieve better
performance.

4.3.3 Analysis of computational efficiency
To evaluate the computational efficiency of the proposed

model, we analyze its time complexity, resource requirements,
and runtime performance for datasets of varying sizes. The
computational complexity of the key components is assessed to
ensure the model’s feasibility for large-scale and high-frequency
PV data. Our experiments showed that the confidence intervals

for likelihood ratios across months and seasons were within a
range of ±2% of the maximum likelihood estimates, indicating
high reliability of the evaluation results. Furthermore, p-values from
the t-tests confirmed the statistical significance of the classification
results, with all p-values below the 0.05 threshold for reliable
PV scenarios. These quantitative measures not only validate the
evaluation results but also demonstrate the robustness of the
proposed model under varying conditions. The AR model fitting
process, with an order of p, has a computational complexity
of O(N ⋅ p2), where N denotes the number of samples. The
month-based and season-based evaluation models, which involve
parameter estimation and hypothesis testing, have a complexity of
O(N ⋅ p). To provide practical insight into runtime performance, we
conduct experiments on datasets with sizes ranging from 10,000 to
100,000 samples. The results show that the total runtime increases
approximately linearly with the dataset size. This demonstrates that
the proposed model maintains computational efficiency even when
applied to large datasets, making it suitable for high-frequency PV
data applications.

The superior performance of the proposed method, mainly
when applied to GAN-generated PV scenarios, can be attributed
to its ability to capture the temporal dependencies and stochastic
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FIGURE 5
Comparisons of evaluation errors by 3 approaches for month.

FIGURE 6
Comparisons of evaluation errors by 3 approaches for season.

nature of PV power fluctuations. GAN-generated samples often
exhibit diversity in overall shape and randomness. However, they
may need to accurately reflect the fine-grained temporal structure
and dynamic changes caused by weather and cloud movements.
Unlike traditional mean and variance-based evaluation methods,
which only consider statistical summaries, the proposed AR–based
model analyzes the temporal correlations within PV scenarios.
By incorporating AR parameters and assessing the consistency
of month- and season-specific temporal patterns, the proposed
method can identify subtle deviations in the dynamic characteristics
of GAN-generated scenarios.This capability allows for more precise
detection of abnormal or unreliable samples that traditional metrics
might overlook. The enhanced capacity to track and evaluate
temporal patterns is a key reason for the superior performance of the
proposed method when evaluating scenarios generated by GANs.

5 Conclusion

Solar photovoltaic had caught plenty of attentions due to its
little pollution, and PV scenario generation was going to be an
effective way to facilitate integrating solar energy into traditional
energy systems. In order to effectively evaluate the performance of
PV scenario generation, we proposed an evaluation model based
on AR theory. After analyzing existing PV samples, we found
out the shape of PV scenarios was an important representation
of environmental randomness. In the simulation, we produced
PV samples with 8 popular generation approaches. Compared
with mean value and variance measurements, experiments showed
the proposed model achieved better performance, especially in
a unreliable PV scenario. Moreover, mean value and variance
estimation confused with months that have similar solar movement
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and environmental changes. With 100 generated PV scenarios,
we simulated the evaluation among the proposed model and
compared measurements. Simulations showed that the proposed
model obtained better evaluation results than mean value and
variance estimations.

In addition to its theoretical evaluation performance, the
proposed model offered practical value for real-world applications,
particularly power dispatching. Accurate classification of PV
scenarios intomonth- and season-specific categories enabled system
operators to predict solar power availability more effectively.
By capturing the temporal patterns of solar power generation,
the model supported power dispatching decisions, allowing grid
operators to adjust dispatch schedules in response to seasonal
and weather-induced fluctuations. The month-specific evaluation
provided higher temporal resolution, enabling short-term dispatch
adjustments, while the seasonal evaluation offered long-term
insights for seasonal dispatch planning. This dual-level evaluation
approach enhanced the robustness and flexibility of power-
dispatching strategies.
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Nomenclature

Indices

j Index of month

t Index of time (hours)

h Index of season

PPV Photovoltaic power output (W)

Variables

Esolar Solar energy received (J)

λ Energy ratio

g[n] Normalized solar power

ϵ[n] Environmental interference (e.g., cloud cover)

Models

AR Autoregressive model

ARMA Autoregressive moving average model

GAN Generative adversarial network

CGAN Conditional generative adversarial network

WGAN Wasserstein generative adversarial network

Parameters

μ Mean value of a variable

σ2 Variance of a variable

at Autoregressive model parameters

ρ Friction index

kt Reflection coefficients in AR model

p Order of AR model

σ2u Noise variance in AR model

N Set of participants in scenario generation

Statistical distributions

GaussiandistributionNormal distribution, often used to model randomness
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