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Introduction: Identifying influential spreaders in complex networks is crucial for
understanding information propagation and disease immunity. The spreading
ability of a node has been commonly assessed through its neighbor information.
However, current methods do not provide specific explanations for the role
of neighbors or distinguish their individual contributions to the spread of
information.

Methods:To address these limitations, we propose an efficient ranking algorithm
that strictly distinguishes the contribution of each neighbor in information
spreading. This method combines the count of common neighbors with the
K-shell value of each node to produce its ranking. By integrating these two
factors, our approach aims to offer amore precisemeasure of a node's influence
within a network.

Results: Extensive experiments were conducted using Kendall’s rank correlation,
monotonicity tests, and the Susceptible-Infected-Recovered (SIR) epidemic
model on real-world networks. These tests demonstrated the effectiveness of
our proposed algorithm in identifying influential spreaders accurately.

Discussion: Furthermore, computational complexity analysis indicates that our
algorithm consumes less time compared to existing methods, suggesting it can
be efficiently applied to large-scale networks.

KEYWORDS

large-scale network, rankinigmethod, vital spreaders, commonneighbors, SIR epidemic
model

1 Introduction

Over the past two decades, complex networks as abstractions of various real-
world complex systems, have garnered significant attention [1, 2]. They are particularly
instrumental in studying spreading processes across multiple domains in nature and human
society.This includes controlling epidemics outbreaks [3], accelerating innovation diffusion,
managing information dissemination [4, 5], overcoming cascading failures in power grids
[6, 7], and preventing virus infection spread in computer networks, aiming to better
understand the underlying mechanisms and consequences of such dynamic processes [8].
Identifying influential spreaders has emerged as a critical issue for effectivelymanaging these
spreading phenomena. Especially since the onset of COVID-19, timely identification of vital
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spreaders and implementation of interventions can significantly aid
in controlling infectious disease outbreaks [9].

The identification of vital spreaders ties into the influence
maximization problem, which seeks to discover a seed set of
nodes that maximize influence under a given diffusion model [10].
Methods addressing this challenge can be categorized into three
types: structural centrality methods, iterative refinement centrality
methods, and greedy algorithms [11]. Structural centrality methods
assign centrality values based on nodes’ specific structural or
functional roles within the network, encompassing neighborhood-
based methods like degree centrality (DC) and LocalRank [12],
and path-based methods such as betweenness centrality (BC) and
closeness centrality [13]. Iterative refinement methods identify
influential nodes based on the mutual enhancement effects
among nodes [14], with examples including PageRank [15],
HITs [16], and LeaderRank [17]. These methods assume that a
node’s influence is determined by its highly influential neighbors
[18, 19], performing well in directed networks but less so in
undirected ones.

Compared with neighborhood-based methods, path-based
methods and iterative refinement methods require global
topological information, leading to higher computational
complexity but often greater accuracy. For instance, BC reflects the
potential influence of a node to control information flowbut involves
calculating shortest paths repeatedly, causing high computational
costs [20]. To improve the efficiency, some methods leverage node
location information for evaluating spreading abilities. The K-shell
decomposition algorithm (also called K-shell) selects influential
nodes based on their network location through an iterative removal
process [21]. Its robustness and low computational complexitymake
it suitable for many real-world networks [22]. However, it tends to
classify too many nodes within a single shell, potentially differing in
spreading ability, andmulti-source nodes and spreading overlap can
reduce its effectiveness [23]. Various improvements over the k-shell
algorithm have been proposed [24, 25], yet there remains room for
enhancing the K-shell algorithm.

Greedy algorithms (GAs) address the influence overlap issue
from multiple sources by selecting a subset of nodes as seeds to
maximize information coverage. Unlike centrality-based methods,
Gas aim to find a seed set that incrementally maximizes influence
[11]. Kempe et al. [26] used Monte Carlo simulations to repeatedly
select nodes with the largest marginal influence increase, identifying
a small seed set that updates incremental spreading. Mugisha and
Zhou applied the belief propagation-guided decimation (BPD) to
solve network optimal attack problems [27] and Li later extended
BPD on factor graphs [28]. However, due to high computational
complexity, most GAs are impractical for large or even moderately
sized networks.

Given the intrinsic limitations of existing methods, such as
balancing accuracy and the diversity of evaluation criteria, it is
challenging to find a universal approach to quantify node spreading
abilities [11]. In recent years, a group of hybrid centrality methods,
as an improved version of centrality methods, has been provided
to quantify the spreading abilities of nodes [29, 30]. Examples
include combining local and semilocal indices [31] or local and
global indices [32, 33]. Global indices evaluate a nodes’ spreading
ability from the entire network topology, whereas local indices
measure information exchange with immediate neighbors. Morone

and Makse [34] proposed an optimization strategy by summing
each node’s excess degree and its 1-order neighbors’ excess degrees
to find the minimal set of influential nodes. Luan et al. [35]
developed an improved closeness centrality (ICC) index using a
semilocal iterative algorithm to enhance the detection of influential
spreaders.

Hybrid centrality methods aim to fully leverage the advantages
of various centrality indices, achieving a multidimensional
evaluation of nodes’ spreading abilities. Particularly, a node’s
information spreading capacity is reflected by its neighbors’
influence. Research has shown that exploring local network
properties can compensate for the lack of global information
and help identify optimal spreaders. For example, Hu et al. [36]
found that global spreading size can be accurately measured
using only local network properties when global information
is unavailable. Zhong et al. [37] developed the Local Degree
Dimension (LDD) algorithm, which evaluates node influence
based on the number of neighbors at each layer. Li and
Wang [38] categorized a node’s neighbors into four groups
based on their K-shell scores and assigned different weights
accordingly. Namtirtha et al. [39] proposed the Network Global
Structure-based Centrality (NGSC) method, integrating K-
shell and degree metrics for both nodes and their neighbors.
Sheng et al. [40] used the number of common neighbors
to measure the closeness of information sharing between
nodes and their neighbors, distinguishing the importance of
each neighbor.

While these methods have effectively improved identification
accuracy and reduced computational complexity, selecting
dimension indices that balance accuracy and simplicity remains
a challenge. Existing methods still have limitations in describing
the role of neighbors or distinguishing their contributions to
information spreading. To address these issues, we propose a
new algorithm designed to classify the contribution of neighbors
from two perspectives: one aspect enhances the spreading effect
within local connected areas, while the other measures the
ability to transmit information to other regions of the network
through neighbors. The ranking is produced by this algorithm
combines each node’s number of common neighbors and its K-
shell score. Simulations of the spreading process on 12 real-world
networks using the standard SIR model show that our algorithm
outperforms other widely used algorithms in terms of efficiency
and computational complexity, which confirm the superiority of
our approach.

2 Methods

For a spreading process, no matter what it propagates,
information or virus, it always starts from several initial seed
nodes. These seed nodes spread information or viruses to their
neighbors. After the direct neighbor nodes are activated, it further
spreads to the direct neighbors’ neighbors. In this way, the
information will be transmitted in the target network. Obviously,
the neighbors of a node are an important part of constructing
its spreading ability. If we can fully understand the role of
the node’s neighbors in the spreading process, we will be
better equipped to identify super spreaders within the network.
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Based on this idea, we propose an adaptive and parameter-free
centrality algorithm, namely, the semiglobal centrality focusing on
neighbors contributions (SCNC) algorithm, which fully considers
the multilayer contributions of neighbors in the spreading process.
For the SCNC algorithm, the contribution of a node’s neighbors
can be divided into two categories: one strengthens the propagation
effect in the local area where the node is located, while the second
expands the information carried by the node to other areas of
the network.

For the sake of convenience, only unweighted and undirected
networks are considered. These networks can be represented as
a simple graph G = (V,E), where V = {v1,v2, …… vn}and E =
{e1,e2, …… em} represent a node set and an edge set in the
network, respectively. For any node i, Γi represents the set of the
immediate neighbors of node i. When node i is activated, it will
try to activate each neighbor with probability β, which inevitably
leads to the successful activation of some neighbors and the failure
of other neighbors. There are two situations in the subsequent
spreading.

In the first situation, we suppose that node i as the initial
seed has two neighboring nodes j and k when node j is
successfully activated, while node k is not. According to the mutual
enhancement effect [14], if node i and node j share a common
neighbor k, then node j will also try to activate node k with
probability β. This means that through node j, the probability of
node i successfully activating its neighbor k is actually greater
than β. For node i, neighbor j actually plays a role similar to an
amplifier, which strengthens the spreading effect of node i in the
local area.

In the second situation, node i as the initial seed has a
neighboring node j, and node k can not connect directly to node
i bypassing node j. When neighbor j is successfully activated by
node i, node j will attempt to activate its neighbor node k, and then
the information will be transmitted to a broader area through node
k. In this case, node j plays the role of broker in the information
spreading process. Moreover, the information can be transmitted
externally only through the connection between node j and node
k; otherwise, it will be limited to the local area where nodes i and j
are located.

The key to distinguishing the contribution of node j is whether
there is a common neighbor k between node i and node j. In this
paper, we choose the number of common neighbors to measure the
above two types of contributions of node j. The number of common
neighbors has a simple and intuitive local attribute and can well
measure the similarity between two nodes, so it is widely used as
an index of link prediction in complex networks [41, 42]. Here, the
number of common neighbors cnij of node i and node j is given as
follows:

cnij = |Γi ∩ Γj| (1)

where Γi and Γj represent the set of the immediate neighbors
of node i and the set of the immediate neighbors of node i,
respectively.

The SCNC algorithm measures the first contribution of
neighboring nodes based on the K-shell decomposition algorithm,
that is, to strengthen the spreading effect in the closely connected

local area where the node is located. Originally, the K-shell
decomposition algorithm was used to measure the central position
of nodes in the network by peeling off the outer nodes layer by layer,
and the nodes located in the innermost layer are considered themost
important nodes [21]. During the first stage, all nodes whose degree
is 1 will be removed. The removal will cause the degree of some
nodes to be reduced to 1. All the nodes with residual degree k ≤ 1 are
continually removed until the remaining nodes’ degree k > 1. Then,
all removed nodes are assigned to the layer labelled as Ks = 1. At the
next stage, the nodes with degree k = 2 are removed, and the removal
process continues until the remaining nodes’ degrees k > 2. At the
end of this stage, a K-shell score of Ks = 2 is assigned to the removed
nodes. The iterative removal process will continue until each node
has a K-shell score.

In fact, this K-shell algorithm has an interesting attribute, that is,
if the K-shell score of a node is equal to x, it must be at least in a fully
connected subgraph with x+1 nodes. This attribute makes it easy
to estimate the size of the most tightly connected area. Therefore,
the first contribution of neighboring nodes of node i can be
defined as:

locali =
1
e
+ ln(1+∑

j∈Γi

cnij
kj

ksj) (2)

where Γi is the set of the immediate neighbors of node i, cnij
represents the number of common neighbors of node i and node
j, kj is the degree of node j, and ksj is the K-shell score of node j.
cnij
kj

represents the proportion of the contribution of neighboring
node j to node i to strengthen its spreading effect in the local
area. We consider that there are upper limits on both the size
of the local connected area and the intensity of the connections,
especially that the contribution of neighbor node j to i will
gradually decline with the increase in the number of common
neighbors. Therefore, the first contribution of neighbor nodes takes
the logarithm.

In the second situation, the neighboring nodes of node i play the
role of broker in the information spreading process.The information
is carried by these “brokers” and can be transmitted to other areas of
the network. The greater the proportion of the second contribution,
the more important the role of the corresponding neighbor node
in information spreading. Compared with the first contribution, the
second contribution is to promote the dissemination of information
in the whole network, and its role should be more important, so it
is taken as an exponential form, whose score is determined by the
degree and common neighbors, to participate in the operation. In
this paper, the second contribution of neighbors of node i globali
can be defined as:

globali = e
∑
j∈Γi

1−
cnij+1

kj (3)

The total contribution is the combination of the above
two aspects, the first contribution and the second contribution.
Therefore, the SCNC of node i can be defined as:

SCNCi = (
1
e
+ ln(1+∑

j∈Γi

cnij
kj

ksj))e
∑
j∈Γi

1−
cnij+1

kj (4)

The algorithmic description of the SCNC is stated as follows.
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Algorithm 1. Pseudocode for the SCNC.

The hybrid algorithm proposed in this paper is capable of
evaluating ability of nodes from both local and global perspectives.
By combining these two approaches, it not only ensures that
computational complexity does not increase but also compensates
for the shortcomings of using a single metric. To better illustrate
the computational procedure of our algorithm, we introduce a
graph with 11 nodes and 17 edges to show the calculation
process. In Figure 1, node v5 is considered the initial node.

The neighbors of node v5 include nodes v4, v2, v6 and
v10. According to Equation 1, the number of common neighbors
between node v5 and its neighbors is cn54 = 2, cn52 = 2, cn56 = 1,
cn5(10) = 1. Therefore, according to Equation 2, the spreading effect
of node v5 derived from the first contribution provided by its
neighboring nodes v4, v2, v6 and v10 is

local5 =
1
e
+ ln(1+ 2

5
∗ 2+ 2

4
∗ 2+ 1

4
∗ 2+ 1

2
∗ 2) = 1.8265

According to Equation 3, the spreading effect of node v5 derived
from the second contribution provided by its neighbor nodes v4, v2,
and v6 is:

global5 = e
2
5
+ 1

4
+ 2

4 = 3.158

It is worth noting that the second contribution provided by v10
is equal to 0.

Finally, according to Equation 4, the SCNC score of node v5 can
be calculated as:

SCNC5 = local5 ∗ global5 = 5.7684

FIGURE 1
An illustrative example of a simple graph with 11 nodes and 17 edges.

The SCNC values of other nodes in the example graph can be
calculated according to a similar process. In our study, six widely-
used algorithms includingDC, BC,K-shell [21], PageRank, ICC [35]
and NGSC [39] are introduced as benchmark algorithms. Table 1
shows the DC, BC, K-shell, PageRank (PR), ICC, NGSC1, NGSC2
and SCNC values of each node in the example network. In the
NGSC1 and NGSC2, the parameter tune one is uniformly set to 0.9,
and the parameter tune 2 is set to 0.2 and 0.6, respectively. According
to the nodal influence values, in a descending order the ranking
results of the above ranking methods are: according to SCNC, the
ranking result is v2, v6, v5, v4, v3, v7, v10, v8, v11, v9, v1; according to
BC, the ranking result is v6, v4, v2, v7, v3, v5, v9, v8, v1 = v10 = v11;
according to PageRank, the ranking result is v4, v7, v5, v6, v2, v8, v3,
v11, v10, v9, v1; according to ICC, according to v2, v6, v4, v5, v7, v3, v9,
v10, v8, v11, v1; according to NGSC1 and NGSC2, v4, v2, v5, v6, v7, v3,
v8, v9, v10, v11, v1. Because many nodes have the same degree value
and K-shell value, such as according to DC v2 = v5 = v6 = v7, v9 = v10
= v11, according to K-shell, v2 = v3 = v4 = v5 = v6 = v7 = v8 = v9 = v10
= v11, it is difficult to distinguish the spreading effect of these nodes
depending on DC and K-shell.

According to SCNC ranking list, node v2 is the vital spreader,
which is highly counterintuitive. As an information broker, node
v2 is not as important as node v6, and the number of its direct
connections nodes is not more than node v4, but if taking into
accountmutual enhancement effects from its neighbors, node v2 can
obtain more spreading support from its surrounding neighbors.

3 Experimental evaluation

3.1 Experimental data

To verify the effectiveness of our algorithm, we empirically
examine 12 real collaboration networks, ranging in size from
thousands of nodes to tens of thousands of nodes. The sample
network datasets include: (1) CA-GrQc, which is a scientific
collaboration network covering General Relativity and Quantum
Cosmology; (2) CA-HepTh, which is a scientific collaboration
network covering High Energy Physics-Theory category; (3)
Deezer- Europe, which is a social network of Deezer users from
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TABLE 1 Values of various algorithms in the example graph.

Node DC BC K-shell PageRank ICC NGSC1 NGSC2 SCNC

v1 1 0 1 0.039 0.399 3.9 6.3 0.819

v2 4 0.249 2 0.111 0.6397 20.8 33.6 10.763

v3 3 0.147 2 0.087 0.5405 14.8 22.8 5.558

v4 5 0.281 2 0.147 0.596 24.7 39.9 5.657

v5 4 0.139 2 0.113 0.5763 20.6 33 5.768

v6 4 0.289 2 0.112 0.6347 20.4 32.4 10.067

v7 4 0.231 2 0.114 0.5541 20 31.2 5.183

v8 3 0.027 2 0.0894 0.4382 14.4 21.6 2.988

v9 2 0.035 2 0.0624 0.5028 9.8 15 1.733

v10 2 0 2 0.0626 0.4432 9.8 15 3.033

v11 2 0 2 0.0632 0.4053 9.4 13.8 2.626

TABLE 2 The topological characteristics of the sample networks, where
N andM are the number of nodes and edges, <k > represents the average
degree, L is the average path length, C is clustering coefficient, and
epidemic threshold is βth ≈ ⟨k⟩/⟨k

2⟩.

Network N M <k> L C βth

CA-GrQc 4,158 13,422 6.456 6.049 0.557 0.056

CA-HepTh 8,638 24,806 5.743 5.945 0.482 0.077

Deezer-
Europe

28,281 92,752 6.559 6.450 0.141 0.062

Email-Enron 33,696 180,811 10.732 4.025 0.509 0.007

Musae-
Facebook

22,470 170,823 15.205 4.974 0.360 0.016

Musae-ES 4,648 59,382 25.552 2.883 0.222 0.008

Musae-RU 4,385 37,304 17.014 3.021 0.166 0.008

Power 4,941 6,594 2.669 18.989 0.0801 0.258

P2P-
Gnutella24

26,498 65,359 4.933 5.418 0.00551 0.083

P2P-
Gnutella30

36,646 88,303 4.819 5.750 0.00630 0.087

Politician 5,908 41,706 14.118 4.664 0.385 0.023

Public-
Figuref

11,565 67,038 11.593 4.623 0.179 0.020

European countries; (4) Email-Enron, which is a Email network
from Enron company; (5) Musae-Facebook, which is a page-
page graph of verified Facebook sites; (6) Musae-ES, which is
a Twitch Spanish gamers networks; (7) Musae-RU, which is a

Twitch Russian gamers networks; (8) Power, which is a power
network of the United States; (9) p2p-Gnutella24 describes a
Gnutella P2P network on 24 August 2002; (10) p2p-Gnutella30
describes a Gnutella P2P network on 30 August 2002; (11) Politician
describes a politician page network by verified Facebook; Public-
Figure describes a public figures network by verified Facebook.
All datasets are publicly available and can be collected from
the Stanford network datasets (http://snap.stanford.edu/data/index.
html).The basic statistics information about twelve sample networks
are shown in Table 2.

3.2 Experimental analysis

In this section, Kendall’s tau coefficient, ranking monotonicity,
the standard Susceptible-Infected-Recovered (SIR) epidemic
model, and computational complexity are introduced to calculate
and compare the performance of our algorithm (SCNC) and
other algorithms. The nodal ranking list is calculated in the
abovementioned twelve sample networks according to the DC, BC,
K-shell, PageRank, ICC, NGSC and SCNC algorithms. All nodes in
a sample network are ordered according to their corresponding
influence values obtained by various ranking algorithms in a
descending manner. If the influence values of nodes are equal, these
nodes have the same ranking order.

First, Kendall’s tau coefficient is introduced as the comparison
tool to measure the ranking consistency of our algorithm and other
benchmark algorithms. A higher Kendall correlation coefficient
indicates greater similarity between the two ranking algorithms.
Kendall’s tau coefficient τ is defined as τ = 2×(N1−N2)

N(N−1)
[43], where

N1 and N2 are the number of concordant sequence pairs and
discordant sequence pairs, respectively, andN indicates the network
size. Generally, the range of τ is [-1,1]. The closer the τ value is
to 1, the stronger the consistency of the two ranking sequences;
conversely, the closer it is to −1, the stronger the inconsistency of the
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TABLE 3 Kendall’s tau correlation values between our algorithm (SCNC) and the benchmark algorithms for twelve real networks.

Network DC BC K-shell PageRank ICC NGSC1 NCSC2

CA-GrQc 0.834 0.556 0.742 0.674 0.495 0.785 0.778

CA-HepTh 0.886 0.640 0.814 0.698 0.526 0.852 0.839

Deezer-Europe 0.945 0.656 0.890 0.729 0.375 0.869 0.844

Email-Enron 0.924 0.602 0.916 0.666 0.474 0.534 0.469

Musae-Facebook 0.9 0.477 0.858 0.6 0.390 0.828 0.816

Musae-ES 0.975 0.713 0.935 0.901 0.268 0.845 0.796

Musae-RU 0.971 0.709 0.925 0.884 0.277 0.772 0.712

Power 0.851 0.558 0.742 0.648 0.356 0.825 0.813

P2P-Gnutella24 0.973 0.92 0.938 0.841 0.651 0.877 0.871

P2P-Gnutella30 0.971 0.925 0.946 0.819 0.658 0.864 0.860

Politician 0.911 0.485 0.856 0.624 0.357 0.831 0.813

Public-Figure 0.940 0.582 0.895 0.703 0.374 0.818 0.797

Note: All comparisons in this table are statistically significant (p < 0.05).

TABLE 4 MonotonicityM(R) of various ranking algorithms on twelve real networks.

Network DC BC K-shell PageRank SCNC ICC NGSC1 NCSC2

CA-GrQc 0.792 0.485 0.692 0.999 0.937 0.999 0.996 0.994

CA-HepTh 0.790 0.583 0.691 1.000 0.934 1.000 0.997 0.995

Deezer-Europe 0.812 0.870 0.727 1.000 0.875 0.857 0.998 0.997

Email-Enron 0.761 0.375 0.739 0.997 0.845 0.997 0.996 0.996

Musae-Facebook 0.900 0.923 0.867 1.000 0.960 0.924 0.999 0.999

Musae-ES 0.943 0.985 0.919 1.000 0.987 0.963 1.000 1.000

Musae-RU 0.912 0.972 0.890 1.000 0.965 0.937 1.000 1.000

Power 0.593 0.832 0.246 1.000 0.628 0.715 0.967 0.967

P2P-Gnutella24 0.625 0.685 0.510 1.000 0.631 0.239 0.972 0.972

P2P-Gnutella30 0.584 0.636 0.510 1.000 0.591 0.211 0.974 0.973

Politician 0.905 0.944 0.869 1.000 0.969 0.939 0.999 0.999

Public-Figure 0.855 0.919 0.810 1.000 0.909 1.000 1.000 0.998

Note: All comparisons in this table are statistically significant (p < 0.05).

two ranking sequences. As shown in Table 3, our algorithm (SCNC)
is positively correlated with theDC, BC, K-shell, PageRank, ICC and
NGSC algorithms. In particular, the SCNC algorithm has a strong
correlation with the DC, K-shell, PageRank and NGSC algorithms,
whose values range from 0.469 to 0.973, and has a relatively

weak correlation with the BC and ICC algorithms except for the
P2P-Gnutella24 and P2P-Gnutella30 datasets. SCNC integrates key
characteristics of both DC and K-shell algorithms, enhancing local
spreading effects and measuring global information transmission.
This design allows SCNC to better reflect node influence, leading
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FIGURE 2
The cumulative appearance frequency of the ranking order based on DC, BC, K-shell, PageRank, ICC, NGSC1, NGSC2 and SCNC. In the NGSC1, the
parameter tune 1 is 0.9 and the parameter tune 2 is set to 0.2; In the NGSC2, the parameter tune 1 is 0.9 and the parameter tune 2 is 0.6.

to strong correlations with DC, K-shell, PageRank, and NGSC,
while showing weaker correlations with BC and ICC due to their
focus on different network properties. The results indicate that the
ranking sequences generated by the SCNC, DC, K-shell, PageRank
and NGSC algorithms have slightly enhanced consistency, but they

diverge from the ranking sequence generated by the BC and ICC
algorithms.

In the next step, another commonly used performance of
ranking algorithms will be discussed. Monotonicity is introduced
to quantify the resolution of various ranking algorithms. The
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FIGURE 3
Plot of the spreading scope of initial infection sources obtained by different ranking algorithms in 12 real networks. The infection probability β is 0.06 in
CA-GrQc, 0.08 in CA-HepTh, 0.07 in Deezer-Europe, 0.01 in Email-Enron, 0.02 in Musae-Facebook, 0.01 in Musae-ES, 0.01 in Musae-RU, 0.4 in Power,
0.09 in P2P-Gnutella 24, 0.09 in P2P-Gnutella30, 0.03 in Politician, and 0.03 in Public-Figure. The recovery rate γ is 1. The results are averaged over
1,000 independent runs.

monotonicity of a ranking algorithm increases when it assigns
different ranks to all nodes and decreases when a large number of
nodes are concentrated in the same ranking. The monotonicity can
be calculated as follows:M(R) = [1− ∑r∈RNr(Nr−1)

N(N−1)
]
2
[44], where N is

the network size, R denotes the ranking sequence, and N r is the
number of nodes with the same rank value r. M(R) ∈ [0,1], when
M(R) is close to 1, the ranking sequence R has better monotonicity
and canwell distinguish the difference between nodes. Conversely, if
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M(R) is equal to 0, all nodes in R have the same ranking. In Table 4,
we depict themonotonicity values of the various ranking algorithms
on 12 sample networks. The results clearly show that PageRank and
NCSC offer the best performance with monotonicity values close to
1, SCNC ismuch superior to theDC andK-shell algorithms in terms
of monotonicity, and in most sample networks, the monotonicity
values of SCNC are higher than or almost similar to those of
BC and ICC.

The appearance frequency of a ranking order refers to the
number of nodes that appear in the same ranking. It is well
known that if the appearance frequency of the ranking order
calculated according to a given ranking algorithm is very high, it
will mean that it is difficult for the ranking algorithm to strictly
distinguish influence differences among nodes. Figure 2 further
shows the discriminating degree of various ranking algorithms
in identifying the nodal influence by calculating the cumulative
appearance frequency of ranking orders.We observe that the K-shell
and the DC have a very limited ranking orders (see the x-axis value),
which means that the number of nodes placed in each rank is quite
high. Comparatively, BC, PageRank, ICC,NGSC and SCNCare fine-
grained ranking algorithms and generate a higher number of nodes
with unique ranks. However, we also clearly see that SCNC, similar
to BC and ICC, can well distinguish nodes located in the top of the
ranking sequences but does not perform well for nodes located in
the tail of the ranking sequences, which causes a large number of tail
nodes to be concentrated (see the y-axis, where there is a breakpoint
at the tail of the cumulative appearance frequency).

In general, themore important nodes activate more nodes during
the spreadingprocess. Inotherwords, theymayhavegreater spreading
abilities. In thisexperiment,weuse thestandardSIRepidemicmodel to
measure the spreadingefficiencyof targetnodes in real socialnetworks
and to illustrate the competitive advantages of our algorithm over six
widely-used algorithms.The standard SIRmodel considers the nodes
of the network as one of three possible states: susceptible state S(t),
infected state I(t) and recovered state R(t). Only a few nodes are in
infected state initially, named seed nodes, while other nodes are set
to be susceptible. As the originators of diseases, the initial seed nodes
can be selected by various ranking algorithms. In the whole spreading
process, eachsusceptiblenodewhocomes intocontactwith its infected
neighbors will become an infected node with an infection probability
of β. Meanwhile, the infected nodes can be recovered with a recovery
probability of γ. Once a node converts to the recovered state, it will
neither be re-infected nor infect others.

The iterative spreading process continues until there are no
infected nodes in the network and each nodemaintains a stable state.
The normalized infection rate F(t) is used to measure the spreading
abilities of the infected nodes. F(t) represents the proportion of the
sum of infected nodes I and recovered nodes R at time t, which can
be presented as follows: F(t) = (It+Rt)

N
. When all infected nodes are

converted to the recovered state, the spreading process ends, and
the final spreading scope is equal to the maximum values of the
recovered nodes. By selecting different nodes as initial seed nodes
and comparing the final infection rate, we can obtain the spreading
abilities of different seed nodes.

In the present study, we choose the top-10 nodes of each ranking
algorithm as the initial spreaders, namely, the seed nodes, and all
of the other nodes in the network are marked as susceptible nodes.
The numerical simulation is conducted according to the standard

SIR model, and the final F (t) is the average value obtained by 1,000
repeated calculations. The abscissa in Figure 3 represents the time
step of the iteration in the standard SIR model, and the ordinate is
the function F (t). By comparing the changes of F (t) under different
infection sources, we can find that in most of the sample networks,
the initial infection sources determined by the SCNC algorithm
spread faster, and the final spreading scopes always reached the
highest value.

For example, in the CA-GrQc and Email-Enron datasets, when
the iteration stops, the infection curve determined by SCNC is above
all the curves, and the subsequent curves are accordingly determined
by DC, PageRank, BC, ICC, NGSC and K-shell. Similarly, in
the CA-GrQc, CA-HepTh, Power, p2p-Gnutella30, Politician, and
Public-Figure datasets, the infection scope determined by SCNC
is always the largest. Even in Musae-Facebook, Musae-ES, Musae-
RU and p2p-Gnutella24, the infection curves determined by various
ranking algorithms except the K-shell algorithm are very similar
to the changes, but the infection curves determined by the SCNC
algorithm are often in the optimal position. In addition, we find that
the performance of NGSC largely depends on the suitable variable
parameters, which can be selected and modified in the numerical
tests. Experimental results further demonstrate the effectiveness of
the SCNC algorithm, which has higher stability and accuracy and
can be applied to different types of networks.

Finally, we briefly analyze the computational complexity of our
algorithm. The total running times of SCNC include three parts:
(1) the time computing the number of common neighbors between
nodes; (2) the time computing the K-shell values of each node;
and (3) the time computing the degree of each node. For the first
part, the algorithm needs to traverse the neighbors of each node,
so its average complexity is approximately O(N < k > 2), where N
represents the network’s size, and <k > represents the average degree
of all nodes. For the second part, the computational complexity
for the K-shell algorithm is O(N) (Kitsak et al.,2010), and for the
third part, this part has the complexity of O(N). Therefore, the
overall computational cost of our algorithm is O(N < k > 2 + 2N).
In contrast, the computational complexity of SCNC is the same
order of magnitude as that of DC, K-shell and NGSC, but is
much lower than that of BC, PageRank and ICC, which has the
complexity of (N2logN+NM) , O(N2) and O(NM) , respectively.
Analysis of the computational cost shows that our algorithm exhibits
lower computational burden and can be applicable to identify vital
spreaders in large-scale networks.

4 Conclusion

Previous studies have indicated that the spreading ability of a
node depend on the quantity and quality of the other nodes pointing
to it. However, they still do not give a specific description of the
role of neighbors in propagation or distinguish the contributions
of neighbors in different dimensions. Inspired by the PageRank
algorithm, a new identification algorithm, named the semiglobal
centrality focusing on neighbors contributions (SCNC) algorithm,
is proposed to identify and quantify the spreading abilities of nodes
in a complex network. Compared with previous algorithms, the
SCNC algorithm strictly distinguishes the contribution of neighbors
in information spreading from two aspects: one strengthens the
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spreading effect of nodes located in locally connected areas, and
the other measures the ability to transmit information to other
regions of the network through their neighbors. This design
enables SCNC to more comprehensively assess nodes' spreading
capabilities, surpassing the limitations of traditional methods
that rely on single metrics. Additionally, we found that SCNC
exhibits strong correlations with DC, K-shell, PageRank, and
NGSC algorithms, while showing weaker correlations with BC
and ICC algorithms. This phenomenon may reveal the different
emphases these algorithms place on network structure and provides
a theoretical basis for selecting appropriate spreader identification
methods. Furthermore, extensive experiments on real networks
datasets explicitly demonstrates that the SCNC algorithm achieves
high performance equal to or better than existing well-known
ranking algorithms. Its main advantages lie in high accuracy and
low computational complexity, and has good ranking differentiation.
The shortcoming of the SCNC algorithm is that it only considers the
contribution from the first-order neighborhood nodes but does not
consider the higher-order neighbor information. Although it makes
SCNC less runtime, it also loses some accuracy. Future work will
consider measuring the contribution from the second-or higher-
order neighbors based on the local structure of the network under
the premise of ensuring relatively low computational complexity.
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