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Rapid detection and
classification of PC + ABS meter
box materials based on
laser-induced breakdown
spectroscopy

Yunfeng Xia*, Qishuai Liang, Zhongchen Xia, Jie Yang and
Jiang Ye

Transmission Operation & Maintenance Branch of Hainan Power Grid Corporation, China Southern
Power Grid Co., Ltd., Haikou, Hainan, China

Polycarbonate + Acrylonitrile-Butadiene-Styrene (PC + ABS) is a typical non-
metallic material used for electric meter enclosures, characterized by its
corrosion resistance, excellent insulation properties, and lightweight nature,
making it widely applicable in power supply systems. However, prolonged
exposure to outdoor environments often leads to performance degradation,
which can affect normal usage. Therefore, developing rapid detection
technologies to timely identify and rectify potential faults is particularly
important. This not only ensures the stable operation of the power grid but
also enhances the overall performance and efficiency of the power system.
This study employs Laser-Induced Breakdown Spectroscopy (LIBS) technology
and proposes a method for the rapid detection of PC + ABS materials by
optimizing testing system parameters. The research utilizes LIBS data to classify
different formulations of PC + ABS based on Support Vector Machine (SVM)
and Self-Organizing Map (SOM) neural networks. The results indicate that
the classification accuracy of SVM reached 98.4%, while the unsupervised
classification through the SOM neural network maintained approximately 90%
consistency among the three different samples. This method achieves rapid
detection and classification of PC + ABS electric meter enclosures, providing
new theoretical and practical foundations for enhancing the safety and stable
operation of the power grid system.

KEYWORDS

PC + ABS composites, electric meter boxes, laser-induced breakdown spectroscopy,
non-destructive testing, unsupervised classification

1 Introduction

In the era of swiftly progressing smart grid technology, non-metallic electric meter
boxes have risen as quintessential elements within power systems. These components
are instrumental in maintaining the stable operation of the power grid, a testament to
their safety, reliability, and enduring durability. The construction of these meter boxes
predominantly employs polycarbonate alloyed with acrylonitrile-butadiene-styrene (PC
+ ABS), a material celebrated for its superior insulating characteristics, robust resistance
to chemical corrosion, and notable longevity [1–3]. In outdoor electric meter boxes, PC
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FIGURE 1
A outdoor electric meter box.

+ ABS materials are primarily used for the enclosures of electric
meters, which protect the meters from external environmental
influences. Figure 1 shows a common outdoor electric meter box.
However, there is considerable variation in the quality of products
from domestic manufacturers, due to disparities in material
selection and inconsistencies in manufacturing and quality control
processes. This variation results in inconsistent product quality,
necessitating extensive testing before integration into the grid to
verify compliance with standards.

Additionally, since these meter boxes are generally installed
outdoors, they are exposed to harsh environmental conditions that
can lead to material degradation, performance issues, and faults
over time, including exposure to ultraviolet radiation, humidity,
and fluctuating temperatures. Statistical data indicate that the
average lifespan of a metering box is 5–10 years, with about 30% of
replacements due to material degradation. The degradation of PC +
ABSmaterials can lead to a decrease in the insulation performance of
meter boxes, increasing the risk of leakage and short circuits, thereby
affecting the stable operation of the power grid. Therefore, timely
detection and replacement of degraded meter boxes are crucial
for ensuring the safe operation of the power grid. Consequently,
research into rapid detection methods for non-metallic electric
meter boxes is crucial for early identification of potential issues, fault
prevention, and improved power grid operational efficiency.

Currently, the detection technologies employed for assessing
electric energy meter boxes are characterized by low efficiency

FIGURE 2
A remote LIBS system.

and inaccuracy, particularly lacking in methods suitable for
both networked inspections and outdoor surveys. Traditional
detection methods for electric meter boxes mainly include visual
inspection, mechanical property testing, and chemical analysis.
Visual inspection relies on manual observation, which is inefficient
and prone to missed detections; mechanical property testing is
destructive, time-consuming, and costly; chemical analysis requires
complex sample preprocessing and is cumbersome to operate.
In contrast, LIBS technology offers the advantages of being
rapid, non-destructive, and capable of real-time analysis. It can
quickly determine the elemental composition and performance
status of electric meter box materials without destroying the
samples, significantly improving detection efficiency and accuracy.
Consequently, LIBS conserves labor and material resources while
markedly enhancing the precision of measurements [4–6]. It is
convenient for networked inspections andmaintenance personnel to
repair, which has important engineering significance and economic
benefits for improving the reliability of the power grid supply.

LIBS is a cutting-edge technique for detecting material
composition. A laser emitter directs high-energy pulses at
the sample surface, ablating and exciting it to create plasma.
Subsequently, a spectrometer captures the atomic emission
spectrum of the plasma to identify the elemental composition
of the sample, enabling material identification, classification,
and qualitative and quantitative analysis [7, 8]. Over the past
40 years, the emergence of portable, low-cost lasers and higher-
resolution spectrometers have propelled LIBS into prominence
across diverse sectors, including extraterrestrial exploration [9, 10],
cultural artifact identification [11, 12], life sciences [13, 14], and
environmental monitoring [15, 16]. Figure 2 illustrates a portable
remote LIBS system with an overall weight of 16 kg, utilizing a
non-coaxial optical path, capable of performing remote detection of
samples at a distance of 5 m.

A standard LIBS detection system consists of the following
parts: a laser emission module, an optical pathway assembly, a delay
controller, a spectral data acquisition module, a spectrometer, and a
computer [17]. Researchers use an optical lens to focus the pulsed
laser emitted by the laser generator onto the surface of the sample.
This interaction results in a localized area of the sample being rapidly
heated, ablated, and ionized, giving rise to a plasma. After the pulsed
laser stops, the plasma gradually cools and expands. The atoms and
ions within it transition from a high energy level to lower energy
levels, emitting photons that produce a characteristic spectrum.
This spectrum’s wavelengths reveal the elemental constituents of the
material, while the spectral lines’ intensities reflect the material’s
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elemental concentrations. Under the control of the delay controller,
the spectrometer captures and relays the spectral data through an
interface probe to the computer for detailed analysis. These data
enable both qualitative and quantitative assessments of the sample’s
composition [18–20].

The elemental composition and spectral line intensities
identified through LIBS are subject to variation, dependent on the
sample’s unique makeup.This variability is harnessed by researchers
across disciplines such as soil science, agriculture, food analysis,
and archaeology. By integrating LIBS with machine learning
algorithms, they process spectral data to distinguish between
samples that are typically challenging to categorize. Furthermore,
this approach augments material quality assessments and aids in age
determination studies [21].

Lukas et al. [22] utilized LIBS to analyze two typical structured
synthetic polymer samples (two-dimensional structures and multi-
layer systems). They performed imaging on five types of two-
dimensional structured samples (Acrylonitrile-Butadiene-Styrene
(ABS), Polylactic Acid (PLA), Polyethylene (PE), Polyacrylate
(PAK), and Polyvinyl Chloride (PVC)) using Principal Component
Analysis (PCA) and successfully classified the distribution of
polymers through k-means clustering. The spatially resolved
classification results were validated by comparing the distribution
of the obtained two-dimensional structured samples with the
elemental distribution of contaminants present within the
synthetic polymers.

Michel et al. [23] compared the accuracy of four spectroscopic
techniques: Attenuated Total Reflectance - Fourier Transform
Infrared Spectroscopy (ATR-FTIR), Near-Infrared (NIR)
reflectance spectroscopy, Laser-Induced Breakdown Spectroscopy
(LIBS), and X-ray Fluorescence (XRF) spectroscopy in identifying
the types of consumer plastics and marine plastic debris
(MPD). Using machine learning classifiers, the success rates for
identifying consumer plastic types with ATR-FTIR, NIR reflectance
spectroscopy, LIBS, and XRF were 99%, 91%, 97%, and 70%,
respectively. The classification success rates for MPD were similar
or lower, at 99%, 81%, 76%, and 66%, respectively.

Costa et al. [24] achieved rapid identification of high-density
polyethylene (HDPE) and low-density polyethylene (LDPE) used
in toy manufacturing using LIBS. Multivariate data analysis was
performed using Principal ComponentAnalysis (PCA) to classify 10
LDPE samples, 10 HDPE samples, and 10 recycled HDPE samples.
The data analysis clearly indicated that the elemental and molecular
information obtained from LIBS is effective for identifying the three
types of polyethylene.

In recent years, the combination of LIBS technology and
machine learning algorithms has made significant progress in
material classification. For example, Erik et al. [25] trained a simple
convolutional neural network for classifying the dataset collected
by the ChemCam LIBS instrument of the Curiosity Mars rover,
and interpreted the relationship between the eigenvalues in the
classification model and the original spectral emission lines.

This study utilized LIBS technology to analyze a variety of
PC + ABS composite samples, investigated the influence of test
parameters on the spectral signals of the samples, and established
an optimal set of parameters for LIBS analysis. Principal component
analysis (PCA) was used to process the spectral data of different
samples. Subsequently, SVMs and self-organizing map (SOM)

FIGURE 3
Physical diagram of LIBS device.

neural networks were employed for the classification of materials
with different formulations. This comprehensive approach enabled
both material testing and the rapid classification of non-metallic
electric energy meter boxes using LIBS.

2 Materials and methods

As depicted in Figure 3, the LIBS apparatus comprises a laser, an
optical path system, optical fibers, a spectrometer, a delay controller,
and a computer. The laser emitter of the LIBS apparatus generates
intense high-energy pulses, which traverse a precision reflector and
an array of calibrated lenses designed to concentrate the laser’s
energy onto the sample surface. This precise focusing results in the
ablation of a minuscule sample portion, leading to excitation and
the subsequent formation of a plasma. The plasma’s characteristic
emission spectrum, which contains valuable elemental information,
is captured and directed towards the spectrometer’s detection
probe by a supplementary series of optical lenses. Thereafter,
the captured spectral data is conveyed to a computer system for
detailed subsequent analysis. A digital delay controller meticulously
manages the temporal coordination between the laser emitter and
the spectrometer, ensuring the synchronized functioning of these
two critical components.

This experiment employs a nanosecondNd: YAG laser (Nimma-
900 model) from Lei Bao Optoelectronics. By switching, it can
produce four differentwavelengths: 1,064, 532, 355, and 266 nm.The
1,064 nm wavelength is selected for its superior energy stability and
low atmospheric absorption, ensuring efficient transmission. This
wavelength also aligns with the spectrometer’s measurement range,
facilitating an unobstructed spectral acquisition. The spectrometer,
an Avantes AVS-RACKMOUNT-USB2, spans a wavelength range
of 200–640 nm with a resolution between 0.09 and 0.13 nm. The
direction of the fiber optic probe used by the spectrometer to
receive spectral signals is set at a 45° angle to where the sample is
struck by the laser, to ensure that the spectral signals have a higher
intensity. The laser passes through one reflector and a convex lens
with a diameter of 2 cm and a focal length of 5 cm to focus on the
sample surface. The spectrum generated by the sample excitation is
focused onto the fiber optic probe by a convex lens with a diameter
of 6 cm and a focal length of 15 cm, which is then captured by
the spectrometer as raw spectral data. The collected data is then
processed and stored using Avasoft 8.8 software. The signal delay
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TABLE 1 Experimental conditions and sample information.

Laser specification parameters
or sample information

Value

Maximum single pulse energy 0–900 mJ

Pulse duration ≤9 ns

Wavelength 1,064 nm

Pulse width 7 ns

Repetitive frequency 1 Hz

Work mode external trigger mode

Laser spot diameter 50 µm

Number of samples 30

Data amount per sample 5 measuring points each sample

Measurement area per sample 100 cm2

generator, an eight-channel DG645, offers a delay resolution of 5 ps
across all channels, with channel jitter under 25 ps and delay control
accuracy at 1 ns. It sets the laser and spectrometer’s delay, triggers
the laser’s Q-switch, and controls the spectrometer’s external trigger
and timing.

The experimental parameters and sample test information set in
this experiment are shown in Table 1. Three PC + ABS materials
from different manufacturers (labeled 1, 2, and 3) were chosen for
sampling and subjected to LIBS testing with each type consisting of
10 samples. It is presumed thatmaterials fromeachmanufacturer are
formulated identically, while there are variations between different
manufacturers. During the testing process, the laser beamwas finely
tuned to a diameter of 50 µm and operated at a repetition rate
of 1 Hz to ensure consistent ablation. Each sample was analyzed
at five distinct testing points, with 20 spectral readings recorded
at each point, covering a total sampling area of 100 cm2 per
sample. The testing points were strategically positioned to ensure
even spatial representation across the entirety of each sample’s
surface.

In the course of LIBS measurements, the raw spectra frequently
exhibit elevated baseline and noise levels, attributable to sample
attributes—such as surface roughness and hardness—as well as
environmental factors like temperature, pressure, and lighting
conditions. Additionally, the performance of the hardware,
notably the consistency of the laser’s energy output and the
spectrometer’s light collection resolution, plays a significant role.
These elements can diminish the spectral signals’ integrity and
obstruct the retrieval of valid spectral data, underscoring the
necessity for spectral data pre-processing prior to analysis. Given
the distinct response profiles of the spectrometer’s channels, there
are definitive transitions between the spectral data they capture,
making spectral baseline correction an indispensable step. The
presence of noise, encompassing both persistent background
noise across the spectrum and intermittent high-frequency noise,
further complicates the analysis and identification process. Selecting

suitable acquisition delay times can effectively mitigate persistent
background noise; however, intermittent high-frequency noise
requires additional measures, including spectral smoothing and
denoising, to bolster data quality.

The spectra’s valuable information is encoded within its
spectral peaks, with each peak representing a distinct elemental
spectral line. In contrast, interference is characterized by baseline
fluctuations and sporadic high-frequency noise. When viewed
through the lens of the frequency domain, the baseline is
categorized within the low-frequency range, while both spectral
peaks and high-frequency noise reside in the high-frequency
range. Consequently, basic filtering, while effective for baseline
noise, fails to distinguish between the spectral peaks and high-
frequency noise. The application of Discrete Wavelet Transform
(DWT) for spectral data processing adeptly addresses both baseline
correction and noise reduction, enhancing the spectral data’s
integrity.

In spectral data, baseline interference primarily occurs in
the low-frequency range. Baseline correction can be achieved
by zeroing out the low-frequency wavelet coefficients. For the
high-frequency range, spectral peaks are concentrated in a few
periods, corresponding to largewavelet coefficient amplitudes, while
high-frequency random noise is distributed across all periods,
corresponding to small amplitudes. Thus, threshold segmentation
can be used to filter wavelet coefficients and eliminate high-
frequency noise. Reconstruction of spectra using modified wavelet
coefficients results in processed spectral data, facilitating elemental
spectral line identification. The ridge line method, based on
the Continuous Wavelet Transform, is chosen for spectral peak
selection, considering the range of the spectrometer’s detected light
intensity. With knowledge of the approximate elemental species
in the sample, spectral peaks with relatively large intensity are
selected, referencing data from the National Institute of Standards
and Technology (NIST) atomic spectral database. This database
includes information on elemental species, wavelengths, spectral
line transition probabilities, and differences in upper and lower
energy levels. This selection takes into account the spectrometer’s
resolution and potential wavelength drift in spectral line centers,
to ultimately determine the spectral peaks and their corresponding
intensities for different elements.

3 Results

3.1 Experimental parameter optimization

The laser-induced plasma, energized by the pulsed source,
exhibits a radiation mechanism that imparts distinctive features
to the spectrum. The spectrum comprises both a continuous
component and a line component. Compared to the continuous
spectrum, the discrete spectrum is composed of emission spectra
from atoms or ions of different elements, appearing as spectral lines
of varying intensities.This is the type of spectral data required for the
data analysis in this study, hence it is necessary to find a method to
extract the discrete spectrum from the spectral information. As the
plasma evolves, the continuous spectrumdecays rapidly.Meanwhile,
the line spectrum, emitted by the excited atoms, also decays over
time, but at a slower rate andwith a longer-lasting spectral line.Thus,
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FIGURE 4
The variation of spectral characteristic quantities at different delay times: (A) Spectral line intensities at different delay times; (B) Signal-to-back ratios at
different delay times.

FIGURE 5
The variation of spectral characteristic quantities under different laser energies: (A) Spectral line intensities under different laser energies; (B)
Signal-to-back ratios under different laser energies.

by selecting an appropriate delay time, the signal of the characteristic
spectrum can be maximized relative to the continuous spectrum
signal, minimizing the negative impact of the continuous spectrum
on sample detection as much as possible.

In the experiment, we optimized the delay time and laser energy
parameters of the spectrometer to find the optimal combination of
parameters. The selection of delay time depends on the radiation
mechanism of the plasma, with the aim of maximizing the
acquisition of characteristic spectral signals and reducing the
negative impact of continuous spectra on sample detection. The
choice of laser energy is based on the process of plasma generation,
with the goal of producing clear spectral lines without damaging
the sample.

The spectrometer’s delay time can be finely tuned via the signal
generator across a range of 12 specific levels: 0.5, 1, 1.5, 2, 2.5, 3,
3.5, 4, 4.5, 5, 7, and 10 µs. The laser’s energy is maintained at 45 mJ,

which is sufficient for ablating the sample and producing clear LIBS
spectral lines. As depicted in Figure 2, five elemental characteristic
spectral lines are identified (B II 317.9331 nm, Al I 396.1520 nm, Ca
I 445.4781 nm, and Na I 588.9950 nm), allowing for the observation
of each element’s spectral line relative intensity and the variations
in the corresponding spectral signal-to-noise ratio at various delay
times. To ensure the reliability of our measurements, the standard
deviation, derived from multiple spectral data sets, is graphically
represented as error bars alongside the figure.

According to pertinent theories, the spectral signal intensity
diminishes exponentially as the delay time increases. Figure 4A
illustrates that the behavior of the elemental spectral lines generally
aligns with expectations, albeit with varying decay rates among
the spectral lines. Considering the collective decay rates of all
elements is essential. Upon evaluating the signal-to-background
ratio (SBR) across various elements, it is observed that while the
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FIGURE 6
Identification results of PC + ABS spectrum and some elemental
spectral lines.

B II 317.9331 nm peaks at a 2 µs delay, the other three elemental
lines show better SBR values when the delay is between 3 and 4.5 µs.
Consequently, the optimal delay time range is established to be
between 3 and 4.5 µs, with the optical collection delay set at 3.5 µs in
this experiment.

The single-pulse laser energy significantly influences the LIBS
plasma generation process. Insufficient energy may fall short of
the sample’s breakdown threshold, hindering plasma formation.
Conversely, excessively high laser energy leads to a shielding effect
within the plasma, causing the spectral line intensity to plateau
despite further energy increases. Moreover, too much laser energy
can severely damage the sample surface. Thus, it is imperative to
meticulously optimize the laser energy to align with the sample’s
properties and the goals of the experiment.

The laser’s single-pulse energy levels were set at 15, 25, 35,
45, 55, 65, 75, 85, and 95 mJ, with a collection delay time of
3.5 µs. Figure 5 illustrates the observed changes in the relative
intensities of the selected five elemental characteristic spectral lines
and the corresponding spectral signal-to-noise ratios at varying
single-pulse laser energies.

As depicted in Figures 5A, B, the intensities of the spectral
lines for each element increase with the escalation in laser energy.
However, the signal-to-background ratios (SBRs) for these elemental
lines, when subjected to varying laser energies, lack a clear and
consistent pattern. Consequently, the primary consideration in
selecting the single-pulse laser energy for this experiment is the
spectral intensity. A single-pulse laser energy of 55 mJ has been
chosen for its optimal balance between producing intense spectral
lines and minimizing sample damage. In Figure 5B, a significant
measurement error in the signal-to-noise ratio of each elemental line
is evident when the laser energy is 15 mJ. This is attributed to the
laser energy being too low, resulting in minimal material ablation
with each laser shot, thereby causing substantial fluctuations in
the spectrum.

In summary, the determined test parameters are a collection
delay time of 3.5 µs and a single-pulse laser energy of 55 mJ. Figure 6
displays the spectrumof PC+ABS under the chosen parameters and
the identification results for certain elements.

3.2 Laser ablation morphology and
ablation depth

During pulsed laser ablation, the energy imparted by each laser
pulse defines the energy density across the focal spot, which in
turn directly affects the degree of ablation, the penetration depth,
and the dimensions of the ablation zone per pulse. The diameter
of the laser’s focal spot is also a determining factor in the energy
density at each point throughout a single ablation event. When
the same spot is exposed to multiple pulses, an increase in the
number of pulses leads to changes in the morphology and depth
of the ablation zone. In this study, the diameter of the laser’s focal
spot is kept constant, while variations in the energy of individual
laser pulses and the frequency of continuous bombardments are
explored to assess the impact of LIBS experimental parameters on
the ablation process.

The ablation craters on the surface of PC + ABS material
created by the high-energy pulsed laser are examined using
scanning electron microscopy. Researchers observed the ablation
morphology of the three samples under different experimental
conditions and found that different samples have similar ablation
characteristics. Figure 7 selects the ablation morphology of sample
1 under some experimental conditions as a representative for
display. The morphology of the crater is usually not a regular circle,
which is mainly due to the unevenness of the sample surface and
the dynamic changes of the plasma during laser bombardment.
During the laser bombardment process, different areas of the sample
surface have different absorption and reflection characteristics,
leading to irregular edges of the crater. Moreover, the protrusions
within the crater may be formed due to the redistribution of
impurities or structural inhomogeneities inside the sample during
laser bombardment. Table 2 presents the maximum widths of the
ablation craters for the samples shown in Figure 7. Considering that
the ablation craters are not perfectly circular, the maximumwidth is
used as an indicator to assess the extent of laser-induced damage to
the material.

According to Table 2, for the PC + ABS sample under the same
number of bombardments, the maximum width of the ablation pit
increases with the increase of laser energy density. Furthermore, at a
constant energy density, the maximumwidth of the ablation pit also
correlates positively with the number of bombardments, reaching
widths of several hundred micrometers.

The three-dimensional structure of the ablation pits of the
sample is observed using a confocal microscope, and the ablation
depths are also be measured, as depicted in Figure 8. The specific
instrument utilized is a CHOTEST VT600 confocal microscope,
which boasts a z-axis resolution of 0.1 nm. Figure 9 demonstrates the
change in ablation depth relative to the number of continuous laser
bombardments, given a single-pulse laser energy of 75 mJ. When
the single-pulse laser energy is fixed, within the range of 10–150
bombardments, the ablation depth of PC + ABS shows a linear
relationship with the number of bombardments. The following
equation represents the relationship between the ablation depth d
(µm) and the number of bombardments n (times): d = 5.42749 × n
+119.61786.The coefficient of determination (R2) for this regression
model is 0.9635.

Frontiers in Physics 06 frontiersin.org

https://doi.org/10.3389/fphy.2025.1526356
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Xia et al. 10.3389/fphy.2025.1526356

FIGURE 7
The ablation morphology of PC + ABS under different experimental parameters: (A) Laser continuous bombardment times: 100. Single-pulse laser
energy: 35 mJ; (B) Laser continuous bombardment times: 100. Single-pulse laser energy: 95 mJ; (C) Laser continuous bombardment times: 10.
Single-pulse laser energy: 75 mJ; (D) Laser continuous bombardment times: 150. Single-pulse laser energy: 75 mJ.

TABLE 2 Maximum width of sample ablation pits under different
parameters.

Single-pulse
laser energy

(mJ)

Laser
continuous

bombardment
times

Maximum
width (µm)

35 100 350

95 100 460

75 10 270

75 150 340

3.3 Qualitative classification of PC + ABS

LIBS enables rapid analysis of the elemental makeup of samples,
with its spectral responses being highly sensitive to even minor
fluctuations in both elemental composition and the physicochemical
attributes of the samples. This sensitivity allows LIBS technology
to effectively distinguish between materials based on their unique
spectral signatures. Consequently, it provides a viablemethod for the
qualitative classification and identification of non-metallic electric
energy meter box materials with varying compositions.

LIBS tests were performed on samples 1, 2, and 3, each
providing unique spectral data. Figure 10 shows the spectral

diagrams of three different categories of PC + ABS materials.
The elemental composition of the 3 samples is similar, and their
spectral graphs also exhibit similar characteristics,making it difficult
to distinguish them by visual inspection. This paper employs
Principal Component Analysis (PCA), Support Vector Machine
(SVM), and Self-Organizing Map (SOM) neural networks for the
classification of PC + ABS samples. SVM algorithm has a strong
classification capability in handling high-dimensional spectral data.
It can find the optimal hyperplane to maximize the interval between
different categories, thereby improving classification accuracy. SOM
algorithm is an unsupervised learning algorithm that can map
high-dimensional data to a low-dimensional topological structure,
preserving the topological relationships in the input data, and is
suitable for the classification and visualization of unlabeled data.
The combination of these two algorithms provides us with a
comprehensive classification solution.

The spectral data from a single laser bombardment comprises
a total of 10,542 data points. Utilizing the entire spectrum directly
for classification would lead to a high-dimensional dataset and
an extensive computational load. Thus, it is crucial to reduce the
dimensionality of spectral data while preserving as much of the
original information as possible.

Due to the variability in the spectral data obtained from LIBS
testing, when obtaining spectral data for classification, researchers
averaged two adjacent spectra of the same sample to reduce
the deviation between spectral data. Therefore, the dataset is
composed of 1,500 spectral data. A principal components analysis
was conducted on the 1,500 spectral data obtained from the LIBS
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FIGURE 8
The ablation morphology and depth of PC + ABS under different experimental parameters: (A) Laser continuous bombardment times: 10. Single-pulse
laser energy: 75 mJ; (B) Laser continuous bombardment times: 150. Single-pulse laser energy: 75 mJ.

FIGURE 9
The relationship between ablation depth and the number of
consecutive laser bombardments.

test, resulting in the identification of principal components along
with their individual and cumulative contribution rates to the
variance, as depicted in Figure 11A. Figure 11A clearly shows that
the first six principal components encompass 99.04% of the total
variance, whereas the remaining components account for only about
0.96%. This suggests that the information content from the seventh
principal component onwards is minimal, thereby justifying the
selection of the first six principal components for further analysis
and the exclusion of the subsequent components. Researchers then
proceed to analyze the PC loadings to determine the contribution
of the original variables to the principal components. Figure 11B
illustrates the contribution of each original variable to the first
two principal components. The analysis reveals that the variables
with significant contributions to the principal components are the
spectral peaks of the sample’s main elements. Some elemental

FIGURE 10
The spectral diagrams of 3 types of PC + ABS samples.

spectral lines are labeled in Figure 11B. This demonstrates that
principal component analysis retains the effective information in the
original spectral data.

This paper utilizes the SVM as the classification algorithm to
categorize spectral data.The SVM is a supervised learning algorithm
predominantly employed for classification and regression tasks.
The core principle of the SVM involves the identification of an
optimal hyperplane that serves as the decision boundary, adeptly
separating data points fromvarious categories in amultidimensional
space. This hyperplane is calculated to maximize the margin
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FIGURE 11
Principal component analysis results: (A) Principal component contribution rates; (B) Original variables’ contribution to the first two principal
components.

between different classes, ensuring the highest possible accuracy
in classification, which is particularly pertinent for distinguishing
complex spectral data patterns [26].

The input variables for analysis are the principal components,
with a linear Support Vector Machine (SVM) utilized for
classification purposes. The dataset is composed of 500 sample data
fromeach of the 3 types of samples, with each sample data containing
6 features.This study employs five-fold cross-validation.The dataset
is randomly divided into five equal parts. In each iteration, the
model is trained on four parts of the data, while the remaining part
is used to test the model’s performance. This process is repeated five
times, each time selecting a different part as the test set and the other
four parts as the training set. By training and testing with different
datasets multiple times, it can more accurately assess the model’s
generalization ability, reduce the bias brought by choosing a specific
test set, andmakemore effective use of the data. Figure 12 illustrates
the classification outcomes, revealing that the overall classification
accuracy of PC+ABSmaterials across various formulations achieves
98.4%. The average error of the classification results is 0.016.

The classification algorithm mentioned previously is a
supervised classification algorithm, requiring pre-existing
knowledge of the categories within the training dataset. This
algorithm trains the classification model, enabling it to classify
unknown samples. However, practical scenarios often present cases
where prior information is unavailable. In such instances, the use of
unsupervised algorithms becomes indispensable, as they are capable
of discerning patterns and categorizing data without the need for
prior category knowledge.

The Self-Organizing Map (SOM) is an unsupervised learning
algorithm that maps high-dimensional input data onto a typically
two-dimensional topological structure. It employs competitive
learning to preserve the topological relationships inherent in the
input data. In SOM, the neurons of the neural network are arranged

FIGURE 12
Linear SVM classification result of PC + ABS samples.

according to a specific geometric pattern, typically a grid. During
the training phase, there is a competitive process among neurons,
where the neuron with the highest similarity to the input data
(the winning neuron) adjusts its weights. This adjustment is in
response to the input data, and nearby neurons also undergo weight
adjustments, albeit to a lesser extent. This mechanism allows the
network to gradually develop a structured representation, ensuring
that similar input data are clustered closely within the output space
of the map [27].

The Self-Organizing Map (SOM) offers distinct advantages,
particularly in visualizing complex high-dimensional data and
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FIGURE 13
SOM neural network clustering results of PC + ABS with different formulations: (A) Neighbor Distance; (B) Hit Count.

TABLE 3 Distribution of PC + ABS samples in neural networks.

Neuron number

1 2 3 4 5 6 7 8 9

Sample number

1 13 27 8 2 6 127 2 169 146

2 0 221 6 0 238 22 0 0 13

3 165 6 104 94 0 19 89 11 12

effectively uncovering intrinsic clustering structures. Its robustness
to initial conditions and parameter selection variability further
enhances its utility. This has resulted in extensive applications of the
SOM across various domains, including data visualization, cluster
analysis, and feature extraction. The principal components serve as
the input for the SOM neural network in cluster analysis tasks. After
multiple tests, researchers found that setting the competitive layer
neurons to a 3 × 3 network yields the best classification results. The
number of training epochs for the neural network is set to 200, and
the initial learning rate is set to 0.05. The clustering outcomes are
illustrated in Figure 13.

Figure 13A illustrates the distance information between adjacent
neurons, with darker colors indicating greater distances and lighter
colors indicating closer distances. Figure 13B displays the hit count
for each neuron. The neurons are systematically numbered from 1
to 9, arranged left to right and bottom to top. Upon reviewing the
model’s output results, the distribution of each PC + ABS sample
within each neuron is presented in Table 3. From this analysis, it
is determined that neurons 6, 8, and 9 correspond to sample 1,
neurons 2 and 5 correspond to sample 2, and neurons 1, 3, 4, and 7
correspond to sample 3. Consequently, the calculated classification
accuracy rates are as follows: 88.4% for sample 1, 91.8% for sample

2, and 90.4% for sample 3. The average error of the classification
results is 0.088.

Using the Self-Organizing Map (SOM) algorithm, researchers
successfully performed unsupervised classification of different
formulations of PC + ABS materials, achieving a classification
accuracy of 90%. This result demonstrates the great potential of
unsupervised learning algorithms in LIBS data classification tasks
and further proves the effectiveness and practicality of combining
supervised and unsupervised learning algorithms in non-metallic
material classification.

4 Conclusion

This research delves into an empirical methodology that
harnesses Laser-Induced Breakdown Spectroscopy (LIBS)
technology to detect PC + ABS composites within electric energy
meter boxes. It also introduces a LIBS parameter optimization
strategy for PC + ABS materials, scrutinizes the laser ablation
effects on these composites, and qualitatively categorizes electric
energy meter box materials of varying compositions. Initially, the
spectral data are condensed through principal components analysis,
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followed by classification using a support vector machine and SOM
neural network.The linear SVM achieves a supervised classification
accuracy of 98.4%. Meanwhile, the unsupervised classification via
the SOM neural network maintains consistent accuracy levels
around 90% for the three distinct samples.

This research employs LIBS technology for the swift detection
and categorization of PC + ABS composite materials, delving into
the application of LIBS technology within electrical engineering
and polymer analysis domains. The findings provide actionable
technical guidance for both the initial network inspection and
the ongoing maintenance of non-metallic electric meter boxes.
Such recommendations are pivotal for bolstering the safety and
operational management of power grid infrastructure, thereby
enhancing the overall reliability and efficiency of power grid systems.
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