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The warehouse model, based on differential equations, has been widely
employed in the field of network information propagation for an extended
period. Numerous studies have revolved around the construction, fitting and
simulation of these models. However, there has not been a universal and
efficient fitting method applicable to all warehouse models in the realm of
information propagation, mainly due to the often challenging nature of solving
differential equations in practical scenarios. In this article, we introduce a deep
learning-based framework for simulating information propagation dynamics.
This framework is grounded in a model that embeds a physical neural network
and can be employed for fitting data from sentiment analysis platforms.We apply
our framework to classic information propagation dynamic models, achieving
favorable fitting results and consistent experimental outcomes, underscoring
the advancement of our approach.
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1 Introduction

Over the past decade, the swift evolution of mobile Internet technology has exerted a
profound influence on both production and daily life for all individuals. Simultaneously,
the internet has progressively assumed a central role in how people engage with
current events and news. While the Internet offers convenience for disseminating public
opinion [1], it also poses substantial challenges to the management of public sentiment.
The systematic investigation of network communication patterns and a comprehensive
understanding of propagation mechanisms represent pivotal topics in contemporary
research. Furthermore, these aspects constitute the focal points of government and
regulatory agencies tasked with safeguarding network security and governing public
sentiment [2]. Hence, a plethora of information propagation models have been proposed
for simulating and forecasting public sentiment, conducting interventions and control, or
studying policy patterns [3–5]. These models can be broadly categorized into differential
equation-based compartment models and topology-based complex network models. In
comparison, compartment models have garnered richer research attention due to their
clarity in addressing macroscopic factors. This paper primarily focuses on the simulations
of compartment models, encompassing the evolution of various groups during the
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information propagation process and the inverse problem-solving
for pertinent propagation parameters.

Deep learning, owing to its formidable feature extraction
capabilities, has found extensive applications across diverse domains
[6]. It autonomously acquires high-dimensional information from
extensive datasets, thereby reducing the need for conventional
feature engineering. Nevertheless, the adoption of pure data-
driven deep learning methods within the realm of information
dissemination remains limited due to the reliance on large-scale and
high-quality data [7]. In the domain of information dissemination,
the acquisition of high-quality labeled data is challenging, and
privacy concerns often hinder access to a significant portion
of information. These factors present substantial obstacles to
the integration of deep learning techniques. Furthermore, deep
learning, functioning as a black-box model, lacks interpretability in
its underlying mechanisms, thus impeding its broad applicability
to various scientific problems. Physics-informed neural networks
(PINNs) [8, 9] have, to a certain extent, alleviated these issues.
They merge data-driven deep learning with differential equations,
enhancing the interpretability of deep learning and streamlining
the solving of differential equations. With the advancement of
technology, PINNs have made significant research contributions in
various fields, including fluid dynamics [10], materials science [11],
aerospace engineering [12], and biochemistry [13]. Furthermore,
numerous derivative models rooted in PINNs have emerged to cater
to diverse tasks, such as those involving restricted initial or boundary
conditions [8].

Since the onset of the COVID-19 pandemic, a variety
of compartmental models have been introduced, serving as
enhanced versions of the Susceptible-Infected-Recovered (SIR)
compartmental model to investigate various aspects of disease
spread [14]. Yin et al. applied the traditional SIRmodel to the field of
information propagation andproposed the Susceptible-Forwarding-
Immune (SFI) model based on the cumulative retweet volume of
the Sina-microblog platform to predict the dissemination trend of
a single piece of information [15]. Xiao et al. fully considered the
anti-rumor information and user’s psychology, and constructed
the SKIR rumor propagation model [16], which can effectively
grasp the dynamic change laws of anti-rumor information on
the information propagation process. Yin et al. constructed the
Multiple-Information Susceptible-Discussion-Immune (M-SDI)
dynamic model to understand the propagation pattern of public
opinion on social networks by creatively considering public repeated
participation in new topics [17]. Moreover, many scholars have
extended the traditional SIR model to information dissemination
from various perspectives, such as forgetting mechanisms,
individual characteristics, and behaviors [18–20]. Recently, the
application of deep learning in infectious diseasemodels has become
a research hotspot. For instance, Malinzi et al. applied a Physics-
Informed Neural Network (PINN) to a Susceptible-Infected-
Recovered-Deceased (SIRD) model, indicating that their PINN
model outperformed all other data analysis models, even when
trained with minimal data [21]. Heldmann et al. explored different
models involving integer-order, fractional-order, and time-delay
systems expressed as systems of Ordinary Differential Equations
(ODEs). Research on complex systems based on systems of ODEs
is very common and widely used in the field of mathematical
physics, such as in laser physics, among others [22, 23]. PINNs were

chosen for their capability to simultaneously perform parameter
inference and simulate both observed and unobserved dynamics
[24]. Cai et al. employed the novel fractional Physics-Informed
Neural Networks (fPINNs) deep learning framework to calibrate the
unknown parameters of a Susceptible-Exposed-Infected-Removed
(SEIR) model [25]. Hao et al. also used the PINN method to
model the compartment model and used first-order local sensitivity
analysis to investigate the most influential parameters in the basic
SIR model, and the results showed that reproduction/mortality had
the greatest impact on all compartments of the SIR model [26].

Therefore, our objective is to develop a PINN framework for
simulating the dynamics of network information propagation.
Although there are certain similarities between infectious disease
dynamics and network information dissemination, and the
effectiveness of the PINNsmethodhas been demonstrated in various
domains, it is important to note that limited availability of real-
world data and the complexity of mechanisms and influencing
factors in information dissemination pose challenges in this field.
Hence, constructing such a simulation system and validating
its efficacy are crucial for advancing research on information
propagation dynamics, providing valuablemethodological guidance
for subsequent related studies.

The organization of this article is as follows: Section 2 provides
a foundation in single-information propagation dynamics and
the fundamentals of PINNs. Section 3 outlines our proposed
simulation framework for information propagation dynamics.
Section 4 presents numerical experiments conducted using
our proposed framework on classic information propagation
dynamic models. Finally, Section 5 offers a summary and analysis
of our work.

2 Preliminaries

Describing the information propagation process often
necessitates the introduction of partial differential equations (PDEs)
or ordinary differential equations (ODEs) to depict the dynamic
state of information dissemination [27]. Analogous to dynamic
equations used in infectious disease modeling, a multitude of
ordinary differential equations, grounded in various propagation
models or laws, have been employed to simulate the information
propagation process, which makes it possible for real-world data
fitting and validations of the propagation dynamic model. However,
traditional methods for solving differential equations tend to be
intricate and susceptible to the influence of initial conditions or
boundary conditions [28]. Furthermore, the data employed for
fitting often contains noise, significantly impacting the solutions
derived from these differential equations. It is worth noting that
problem-solving within the domain of information propagation
can be categorized into two distinct types: forward problem-solving
and inverse problem-solving. Forward problem-solving involves
scenarios where the equation’s parameters are known, and the focus
is on changes in each dependent variable within the differential
equation. In contrast, inverse problem-solving pertains to situations
in which the unknown parameters of the differential equation are
reverse-engineered, leveraging partial data on dependent variables
obtained from real-world observations, where the parameters
serve to characterize the system’s propagation characteristics. In
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addressing inverse problems, the least squares method is frequently
introduced for parameter fitting, which is often contingent on
well-designed initial values or boundaries [8].

2.1 Dynamics for single-information
network propagation

Single information dissemination is the basic structure of
network public opinion information dissemination, and the process
of an individual participating in single information dissemination
is also the basis of single information dissemination analysis [15].
The dynamic model of single information spreading based on
forwarding is called Susceptible-Forwarding-Immune (SFI) model.
Here, the sum of the total number of people in susceptible state
(S), forwarding state (F), and immune state (I) remains the same.
Therefore, the SFI dynamicmodel of single information propagation
in the form of a differential equation is established as Equations 1-3:

d
dt
S(t) = −βS(t)F(t) (1)

d
dt
F(t) = pβS(t)F(t) − αF(t) (2)

d
dt
I(t) = (1− p)βS(t)F(t) + αF(t) (3)

where the average contact rate β represents the average rate at which
an individual in the susceptible state can access the information,
the average forwarding rate p represents the average rate that an
individual in the susceptible state forwards the information after
being exposed to the information, and the average immune rate
α represents the average rate at which an individual changes from
the forwarding state to the immune state. In the SFI dynamic
model of single information transmission, another variable defined
by the researchers is the cumulative number of forwarding users,
which is a quantity that can be directly obtained from the network
transmission platform and is also a crucial quantity for the analysis
of the model. It is defined as Equation 4:

C(t) = ∫
t

0
pβS(t)F(t)dt (4)

For the SFI dynamic model with single information
dissemination, when fitting the actual case data, the above three
key variables in the model will be formed as an unknown parameter
vector and estimated to make the cumulative number consistent
with the real data.Therefore, to find the best fit for the data is to find
the best combination of parameters to minimize the error between
the estimated and real values. In general, the least squares method
is the most widely used in the fitting of information propagation
dynamics research, where other machine learning methods such
as the Monte Carlo method are also used. Since the model does
not have an analytical formula and its form is very complex,
minimizing the sum of squared deviations becomes a nonlinear
least squares problem.

2.2 Physics informed neural networks

According to the universal approximation theorem, the
neural network can be regarded as a general nonlinear function

approximator, and the modeling process of a differential equation
is to find nonlinear functions that meet relevant constraints [8].
Using neural networks to approximate model differential equations
has become a research hotspot. The automatic differentiation
technology in deep neural networks can be naturally applied to the
calculation in differential equations and the constraint conditions
of differential form are integrated into the loss function design of
neural networks, so as to obtain neural networks with physical
model constraints, which is the most basic idea to design embedded
physical neural networks [29]. The PINNs model aims to establish
a correlation between deep neural networks and various physical
phenomena represented as systems of differential equations, thereby
enhancing the interpretability of neural networks and expediting the
resolution of differential equations. In the common application
model of PINNs, the incorporation of physical information is
primarily manifested in the loss function. The implementation of
PINNs involves the integration of physics principles and neural
networks through a well-designed approach, which does not pose
significant challenges. First, the neural network is constructed,
where the parameters are randomly initialized. The initialized
neural network takes in the independent variables of the system
of differential equations and produces the solutions that are needed
to be optimized for the dependent variable of the system. Secondly,
the output value of the dependent variable generated by the neural
network fails to provide evidence for the validity of the equation,
and this discrepancy constitutes the loss of equations. At the same
time, the loss of the data level and the loss of the boundary condition
are introduced to combine with the given weights, which become
the loss of the whole model. Finally, the gradient descent method
and other optimization methods are used to train the model and fit
the differential equation.

Before data-drivenmachine learningmade great progress, many
physics and engineering fields were physically model-driven. Over
the years, these fields had accumulated a wealth of physical models,
most of which were described in the form of partial differential
equations, such as Navier-Stokes equations in fluid dynamics
[30], Maxwell equations in electromagnetic field theory [31] and
Schrodinger equation in quantum mechanics [32]. Directly solving
the physical model can make accurate predictions, but it faces the
problems of too large errors caused by simple physical models,
too high solution complexity caused by complex physical models
and too large solution errors caused by missing or inaccurate
measurement of physical model parameters and initial boundary
values. The traditional numerical methods of partial differential
equations face great challenges in solving inverse problems, complex
geometric regions and high-dimensional space. In contrast, the
classical machine learning algorithms are purely data-driven. The
task of training a supervised machine learning model is to establish
a functional mapping from the input data to the output data, that
is, to learn a specific model from the pre-obtained training data
and the pre-defined algorithm structure. However, in many physical
and engineering fields, these training data often imply part of the
prior knowledge, such as the law of conservation of momentum,
the law of conservation of mass and so on [29]. PINNs combine
the advantages of data-drivenmachine learningmodels and physical
models. Under the condition of a small amount of training data,
physics-based neural networks can train models satisfying physical
constraints automatically, have better generalization performance
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FIGURE 1
The abstract process of the dynamics mechanism of information
propagation.

while ensuring accuracy, and predict important physical parameters
of the model [33].

3 Methods

3.1 Dynamic equations of information
propagation

The information propagation process in the compartmentmodel
can be abstracted into a dynamic pattern, as illustrated in Figure 1.
Here, uT represents the system state at time t, which is influenced
by both the initial value condition a and the boundary condition
∂X over time, and undergoes transformation according to the
propagation law f

∗
. Typically described by differential equations,

this propagation law f
∗
is approximated using embedded physical

information neural networks to facilitate the solving of the entire
dynamics process or other tasks.

Throughout this paper, we make the assumption that the
underlying model of single-information network propagation
follows the structure depicted in the SFI model, which can be
mathematically represented by a system of ordinary differential
equations. All propagation dynamics based on compartmentmodels
can be described using either systems of partial differential equations
or ordinary differential equations. Therefore, our focus lies on the
SFI model as it serves as a fundamental framework for studying
information dissemination. This foundation allows us to derive
various single information dissemination models under different
scenarios or influence factors, which share similar and universal
sets of differential equations. Taking the SFI model as an illustrative
example, it is important to note that the total number of users in
different states within the compartment model remains constant
throughout its dynamic process, where changes are reflected
through mutual transformations between different groups.

In order to fit the real data combined with the platform data,
relevant scholars introduce the cumulative forwarding number
C(t)[5], which is the same as other similar models. In the system of
ordinary differential equations with single information propagation
such as SFI, the initial values are designed as follows: F0 =
F(t)|t=0 = C0 = C(t)|t=0 = 1, I0 = I(t)|t=0 = 0. In different information
propagation models, whether ordinary differential equations or
partial differential equations, the initial value or boundary value
is related to the numbers of each state, which can be obtained
from the real data. Based on the ordinary differential equations of
single information propagation, some scholars introduce the latency

period and other factors affecting the propagation, such as opinion,
emotion, etc [34–36].This kind of propagation dynamic equations is
similar to the equations of single information propagation, and their
solution methods are also universal.

3.2 PINN framework for dynamics of
information propagation

Based on the method of physics-informed neural networks,
we introduce a deep learning framework informed by the
information propagation dynamic equations that describe the
single information propagation processes and their derivatives.
Most studies express the information propagation dynamics as
ordinary differential equations, and some introduce other factors
besides time as independent variables of the equations to construct
partial differential equations. Our PINNmodeling framework takes
into account the two types of equations simultaneously, the only
difference between the two ways is that the input of the neural
network is one or more.

In our framework shown in Figure 2, the Application Program
Interface (API) is used to obtain real propagation data from the
social media platform, including the changes of the cumulative
forwarding number of a certain news over time. Therefore, the
time t and other independent variables are the input of the
neural network, and the cumulative forwarding number C(t) is
supervised and studied as real data, which is applied to design the
loss functions of our model. In different information propagation
dynamic problems, the supervision information we use may also
be different. For example, considering the information propagation
dynamics driven by the emotion factors, the real data we focus
on for fitting can be the cumulative forwarding numbers under
different categories of emotion. Moreover, when using the ordinary
differential equations to represent the information propagation, the
independent variable of the input model is only time t, namely, the
input layer of our proposed neural network model has only one
variable;When applying the partial differential equations to describe
the information propagation, the independent variables of the input
model can be time t and social distance x, namely, the input layer
of our proposed neural network model has two inputs: time t and
social distance x.

A neural network with parameters θ takes time t and other
independent variables affecting information propagation as the
input and outputs a vector of the state variables as a surrogate of
the PDE solution, such as S(t), C(t) and Θ(t) which represent the
other possible variables. We use multiple fully connected layers as
the hidden layers of a deep neural network because fully connected
neural networks can in some sense be used to approximate arbitrary
functions. It should be noted that in the dynamic equations of
information propagation, there are often dynamic parameters that
need to be fitted, such as β, p and so on, which are directly involved
in the calculation of the equations. Therefore, we use independent
neurons to represent these dynamic parameters that need to be
optimized and use the automatic differentiation mechanism of
neural networks to design and optimize the loss function. Finally,
this kind of inverse problem is solved.

The next key step is to constrain the neural network to satisfy
the scattered observations of C(t) and its variants as well as the
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FIGURE 2
The embedded physical neural network framework for information propagation dynamics, which consists of three parts: a data acquisition system, a
fully connected neural network, and a loss function.

PDE system (includingODEs), which is realized by constructing the
loss function considering terms corresponding to the observations
and the PDE system. Specifically, we assume that we have the
measurements of y1,y2, · · ·,yM at the time t1, t2, · · ·, tN respectively
and we enforce the neural network to satisfy the PDE system at the
time point τ1,τ2, · · ·,τN.The times t1, t2, · · ·, tN and τ1,τ2, · · ·,τN could
be chosen at random. Then, the total loss is defined as a function of
both θ and ε, θ refers to all the parameters that need to be trained in
the neural network, including the weights and biases of the neurons,
and ε represents all the parameters that need to be predicted in PDEs:

L(θ,ε) = Ldata(θ) +Leq(θ,p) +Lic(θ) (5)

Ldata(θ) = ∑M
m=1
 wdata

m Ldata
m

=∑M
m=1
 wdata

m [
1

Ndata
∑Ndata

n=1
 (ym(tn) − ̂xsm(tn;θ))

2] (6)

Leq(θ,ε) = ∑S
s=1
 weq

s L
eq
s

=∑S
s=1
 weq

s [
1
Neq∑

Neq

n=1
 (

d ̂xs
dt
|
τn
− fs( ̂xs(τn;θ),τn;ε))

2
]

(7)

Lic(θ) = ∑S
s=1
 wic

s Lic
s

=∑S
s=1
 wic

s
(xs(T0) − ̂xs(T0;θ))

2 + (xs(T1) − ̂xs(T1;θ))
2

2
(8)

The loss function is designed as shown in Equation 5, where
the variable Ldata represents the association between the data
acquisition system’s M sets of observations y and the variable
“data” as Equation 6, while Leq enforces the dynamic equations for
information propagation as Equation 7. In particular, wdata

m , weq
s and

wic
s represent theweights of the data, the equations and the boundary

conditions respectively, m is the number of real data that can be
obtained, and s represents the number of PDE equations, in addition,
fS represents a single equation in a PDE system, a total of s.Weutilize

automatic differentiation to analytically compute the derivative of
the dependent variable in a PDE system. The third auxiliary loss
term, Lic, is introduced as an additional source of information for
system identification, which essentially contributes to the data loss
component. T0 represents the boundary conditions of the system at
the initial moment, whereas T1 denotes the boundary conditions at
a subsequent arbitrary time point. It should be noted that bothLdata

and Lic represent discrepancies between neural network outputs
and measurements, making them supervised losses as Equation 8,
whereas Leq, based on PDE systems for information propagation,
is unsupervised. The weights are hyperparameters that can be
manually adjusted, by default, the weights   are set to 1. In our final
step, we simultaneously infer both neural network parameters θ
and unknown parameters ε of the PDEs by minimizing the loss
function using gradient-based optimizers such as Adam optimizer.
It is important to note that our proposed method optimizes θ and ε
concurrently, distinguishing it from meta-modeling.

The third auxiliary loss term Lic is introduced as an additional
source of information for system identification, serving as a crucial
component in the data loss. It should be noted that both Ldata

and Lic represent the disparities between neural network outputs
and measurements, thus functioning as supervised losses. On the
other hand, Leq, which relies on the PDE system for information
propagation, operates as an unsupervised loss. In the final step, we
simultaneously optimize both the neural network parameters θ and
unknown parameters ε of the PDEs by minimizing the loss function
using gradient-based optimizers like Adam optimizer. Importantly,
our proposed method distinguishes itself from meta-modeling by
optimizing θ and ε concurrently as Equation 9 shows.

θ∗,ε∗ = arg minθ,p  L(θ,ε) (9)

Remark 1: In the actual training process, due to the extensive
data requirements for neural network training and the limited data
collected from social media platforms, our framework necessitates
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the sampling of points within the defined domain to acquire a more
substantial dataset, which is essential to facilitate the training of our
PINN model.

Remark 2: The algorithm is implemented in Python using
paddlepaddle. The width and depth of the neural networks depend
on the size of the equations and the complexity of the information
propagation dynamics. We use the sigmoid activation function
except for the last neural network layer which uses sigmoid function
to scale the data at different dimensions. For the training, we use a
combination of two optimizers, Adam and L-BFGS, to optimize the
θ and ε in order to reduce the training time while ensuring accuracy
and the learning rate of 0.001, where the training is performed using
the full batch of data. Since the total loss consists of two supervised
losses and one unsupervised loss, we perform the training using the
following two-stage strategy, which is found in our experiments to
speed up the network convergence:

Stage 1. The network is initially trained using the two supervised
losses Ldata and Lic for a few iterations, taking into
account the fact that supervised training is typically
more straightforward than unsupervised training. This
enables the network to rapidly align with the observed
data points.

Stage 2. We further train the network using the three losses.

4 Numerical experiments

In this section, we demonstrate the application of the
proposed framework in the context of dynamics in public opinion
propagation. To showcase the advanced and generalized nature
of the framework, based on data accessibility, we primarily utilize
some classic works previously published by our team in numerical
experiments. These studies mainly encompass the classical SFI
model, the SFI model considering the emotional factors, the
SFI model considering the different stages, and a propagation
dynamicmodel based on differential equation systems. Due to slight
variations among different variables of the SFI models, there need to
be some differences in the fully connected neural network used in
our framework - primarily regarding input neurons, output neurons,
and neurons employed for training parameters in inverse problems.
However, aspects such as activation functions and learning rates
in our models remain consistent. To accommodate the efficiency
requirements of our training model, adjustments can be made
to vary the number of layers in our neural network according to
practical considerations. More importantly, according to the given
varying events of different propagation dynamics models during
the actual data fitting process, scaling may be required at differing
degrees, which will be described in subsequent parts. The data
and codes in this section are publicly available at: https://github.
com/zhangzhiqiangccm/PINN_attempt.

4.1 Simulation of the single information
propagation model (SFI)

As mentioned in the second section of this paper, the SFI
model [15], a classic compartmental model in the field of

FIGURE 3
The fitting results of the SFI model based on our proposed framework.
Note: The horizontal axis in the picture is time, and the vertical axis is
the value of C(t). In the legend, “C_true_norm” represents the true
value of the cumulative forwarding volume, “S_pred_norm”,
“F_pred_norm” and “C_pred_norm” represent the predicted S(t), F(t)
and C(t) respectively.

network information dissemination, serves as the foundational
framework for numerous works. Consequently, we employed
the proposed framework for simulating the dynamic process of
single information propagation to compare with the traditional
solution method in the SFI model, encompassing the fitting of
population quantities for various states and the prediction of the
propagation dynamic parameters. Similarly, we employed the same
forwarding data collected from a hot topic on the Chinese Sina-
microblog as the foundational dataset for our framework. To
expedite the convergence of the neural network, we also applied
data scaling and subsequently calculated the Mean Squared Error
for the fitted results. The ultimate fitting performance is illustrated
in Figure 3:

The total number N of individuals in the SFI model remains
constant, because the system operates on a compartmental
framework. During simulation, we utilize the variables S(t) and F(t)
to minimize computational complexity, with I(t) being calculated
based on these variables. Therefore, our proposed framework
outputs results for S(t), F(t), and C(t). To facilitate comparison, we
have employed data from the SFImodel. In our framework, the input
layer of neural network consists of a single neuron representing time
t, while the output layer comprises three neurons corresponding
to S(t), F(t) and C(t), The neural network employs six hidden
layers with 32 neurons in each layer. However, due to insufficient
data points (only 50), it is not feasible to train a deep-learning
model. Therefore, we obtain additional training data by sampling
at intervals along independent variables until we have collected
2000 points. The resulting fitting outcomes are depicted in Figure 3,
demonstrating that our proposed framework exhibits superior
capability in accurately capturing cumulative forwarding data with
a final MSE value of 15.41. Additionally, for enhanced visualization
purposes, we have scaled down the neural network’s output by a
factor of 2× 105 for S(t), 3× 102 for F(t), and 104 for C(t).
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FIGURE 4
The comparison results between the original fitting outcomes of the E-SFI model (left) and those obtained from our proposed framework (right). Note:
Cpos, Cneu and Cneg represent the cumulative forwarding number corresponding to the positive emotion group, neutral emotion group and negative
emotion group respectively. The points in the figure represent the real data values, and the curves are the predicted variable values.

4.2 Simulation of the emotion-based
information propagation model (E-SFI)

The emotion-based susceptible-forwarding-immune (E-SFI)
[37] propagation dynamic model incorporates the categorization of
emotions into positive, neutral, and negative, aiming to describe
the process of emotional choices made by users in various states
and investigate the information propagation that influences public
sentiment. To accommodate this model in our framework, we have
to increase the dimensions of the output layer in the neural network
and expand the data for supervising model training. Consequently,
we conducted simulations and training using original data from
event one in the E-SFImodel.The training process still utilized an 8-
layer fully connected neural network with initial values determined
by real data. The sampling and scaling approaches adopted in this
part are similar to those in section 4.1, but with a greater number
of neurons in the output layer to generate cumulative forwarding
numbers under the three emotional states and produce propagation
dynamics parameters. The fitting results in Figure 4 demonstrate
that our framework outperforms the E-SFI model in accurately
fitting real data including all the emotion types.

4.3 Simulation of the two-stage
information propagation model (TS-SFI)

The two-stage rumor propagation dynamic model aims
to design effective strategies for controlling rumors, where
the first stage of rumor propagation is characterized by the
susceptible/educated-infected-recovered (SO-S/EIR) dynamics and
the second stage is characterized by the susceptible/educated-
infected-denied-recovered (C-S/EIDR) dynamics [38]. The
conventional least-squares fitting method is inadequate for
modeling the two-stage rumor propagation dynamics discussed
in this study, making it become necessary to separately fit each
stage individually. The advantage of our framework lies in the
robust fitting capability of neural networks, which enables us to

accurately fit the data without the need for data splitting. Based
on data and theory from the original paper, we applied the PINN
framework for data fitting, of which notable results for both stages
are depicted in Figure 5. Compared with the results in the original
model, the fitting effect of our model is not satisfactory for the
mutation in the two stages, but it performs well at other locations.
Furthermore, our proposed framework demonstrates its capability
to fit the curves from two distinct stages, thereby enhancing the
efficiency of data fitting.

4.4 Simulation of the PDE-based
information propagation model (PSFI)

In addition to the time variable t, other independent variables
such as distance can also be incorporated into the equation system
governing network information propagation dynamics. Traditional
methods often encounter challenges in solving partial differential
equations compared to ordinary differential equations, and they
may struggle to accurately fit real data. However, our framework
offers a solution by avoiding complex partial differential equation
solving altogether. Instead, we simply adjust the number of input
layers in our neural network model to include both time t and
other independent variables for finding the equations’ solution.
Notably, there is no need to modify the equations in loss function.
Consequently, our framework significantly simplifies the resolution
of high-dimensional systems involving partial differential equations.
To validate its effectiveness in tasks involving multiple independent
inputs, we collect data on the trending event “The arrest of the driver
involved in the freight lesbian” fromSina-microblog platform,with a
sampling time interval of 1 h. The social distance variable is defined
based on the group that retweeted the initial message. For example,
if user A posts a message and user B forwards it, the social distance
between user A and user B is 1. If user C forwards the message
forwarded by user B, the social distance between user C and user
A is 2, and so on. As social distance increases, there is a decrease in
the cumulative number of retweeters for the correspondingmessage
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FIGURE 5
The comparison results between the original fitting outcomes of the TS-SFI model (left) and those obtained from our proposed framework (right).
Note: CIS, CIN and CD represent the cumulative number corresponding to the super infected users, normal infected users and denied users respectively.
The points in the figure represent the real data values, and the curves are the predicted variable values.

FIGURE 6
The fitting results of the SFI model for PDE based on our proposed
framework. Note: Distance_1, distance_2, and distance_3 represent
the three different social distances used in the experiment. The points
in the figure represent the real data values, and the curves are the
predicted variable values.

over time. Figure 6 presents the fitting results based on the PSFI
model: The fitting results demonstrate that our model effectively
captures the variations in curves across various social distances.

4.5 Model robustness testing

The aforementioned experiments have demonstrated the
effectiveness of the proposed framework in the context of
information dissemination dynamics. Additionally, we seek to
validate the robustness of model by adjusting the weights in three
key aspects in the SFI model: data, equations and initial conditions
and corresponding results are depicted in Figure 7. The values after
“Data”, “Eq”, and “Ic” represent the respective proportions of data
loss, equation loss, and initial condition loss shown in Figure 7.
There is significant fluctuation in results when altering theweights of

equations, indicating their crucial role throughout the entire fitting
process. Conversely, alterations of the curves are not prominently
evident under the changes of initial value conditions. In traditional
methods, simulation results are often heavily influenced by initial
values, leading that only an appropriate initial value can obtain a
reasonable fit. Our proposed framework reduces the susceptibility
to variations in initial values while ensuring both fitting effectiveness
and model robustness. Furthermore, the overall propagation trends
of propagation populations remain unchanged, highlighting the
intrinsic mechanisms inherent within the SFI model.

4.6 Comparison of simulation results based
on four types of models

The loss results of each model are computed after 100,000
iterations in Table 1. From the results, it is evident that the PSFI
model outperforms both the SFI and E-SFI models in terms of
training outcomes. Despite its more intricate structure and resulting
complex system of differential equations, the PSFI model benefits
from a larger amount of supervised signal data, enabling superior
training. In contrast, the two-stage rumor propagation dynamic
model based on the SFI model exhibits more complexity due
to its lack of sufficient supervised signal data, leading to poorer
fitting performance. Ultimately, simulation results based on partial
differential equations slightly surpass those based on ordinary
differential equations, with only minor differences observed in
terms of independent variables in the input model. Thus, to some
extent, incorporating social distance variable into the input model
significantly impacts propagation dynamics fitting. Moreover, in
our proposed framework, data loss often constitutes a substantial
portion of the overall loss function, since losses at data level tend
to be numerically greater than those incurred by the other two
components.

Our framework integrates the forward and inverse problems
in the context of information dissemination dynamics. In contrast
to conventional approaches, which solve the model parameters
and then conduct forward numerical simulations based on these
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FIGURE 7
Fitting results of the SFI model under different loss weight configurations within the proposed framework. Note: The annotation “Data:1; Eq:1;
Ic:1”indicates the weighting ratio assigned to data constraint, equations, and initial condition terms in the composite loss function. To better display the
image, the values on the vertical axis have been reduced by a factor of 1,000; the actual quantities should be 1,000 times greater than those indicated
in the figure.

TABLE 1 Different loss results of each model from our framework.

Loss_all Loss_data Loss_ic Loss_eq

SFI 15.41 11.40 1.55 2.46

E-SFI 2.38 2.21 0.01 0.16

TS-SFI 55.63 37.14 0.0 18.49

PSFI 13.56 10.22 1.11 2.23

parameters, our approach offers greater efficiency. However, it
should be noted that the values of parameters obtained from
our framework cannot be directly compared to those obtained
through inverse problem-solving methods. This is because the
parameters within the neural network in our framework are also an
integral part of the overall system, despite its inherent complexity.
Our framework primarily focuses on data fitting and predicting
the numbers of user in each propagation state. While various
modules within the framework interact and depend on each other,
minor adjustments are still necessary to align with real-world
scenarios. Among these adjustments, scaling pertaining to data
handling is crucial way in our framework. Firstly, in propagation
dynamic models, there can be substantial numerical disparities

in representing different states or groups, ranging from a few to
thousands or more, resulting in normalizing these numerical values
becoming essential. In our framework, except for the final layer
which lacks an activation function, the activation functions in the
hidden layers of the neural network are chosen as Tanh() functions
to aid in numerical normalization. Additionally, certain parameters
involved in equations expressing information propagation may also
exhibit significant differences. For instance, parameters like the
average contact rate β and the average forwarding probability p both
fall in the range of (0,1), but only β should be operated on an order
of 10−4, which is scaled down β by a factor of 104 to facilitate neural
network training. Furthermore, for the sake of visualization, we also
apply scaling during the plotting process.

5 Conclusion

In this study, we introduce the method of embedded physical
neural networks to construct a framework suitable for modeling
the dynamics of public opinion propagation based on partial
differential equations. This innovative approach combines the
automatic differentiationmechanismof neural networkswith partial
differential equations through the design of a loss function, enabling
more efficient fitting for real data. Unlike other methods, our
approach does not require grid drawing and is insensitive to
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initial or boundary values [31]. Furthermore, it unifies ordinary
and partial differential equations solving by converting time t
in dynamic problems into an input variable. The only difference
between solving partial and ordinary differential equations
problems lies in the input dimension of the neural network,
reducing complexity when dealing with high-dimensional problems
and significantly improving problem-solving efficiency [39].
Importantly, our framework can simultaneously solve both forward
and inverse problems. In studying public opinion propagation
dynamics, different events correspond to different parameters.Thus,
solving the inverse problem becomes crucial but challenging. Our
framework effectively fits parameter values while considering real-
world data and accurately simulates the propagation dynamics of
public opinion.

We apply this proposed framework to solve various classic
scenarios such as the SFI and E-SFI models in public opinion
propagation dynamics research. Comparative results demonstrate
that our method outperforms existing models in terms of fitting
accuracywithout compromising computational efficiency. Although
our proposed framework can obtain good results, there are also
some shortcomings. Firstly, in the design of the loss function of
the neural network, the weights of the data-related loss and the
equation-related loss need to be determined by ourselves, because
the two have large differences in absolute values, which need to be
adjusted according to the specific problem and real data to avoid
vanishing or exploding gradients. In addition, some noise can not
be avoided to exist in the data we collected from public opinion
platforms, which may lead to the phenomenon of overfitting.
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