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Quantum heat engines have attracted significant attention in recent years
due to their potential to surpass classical thermodynamic limits by leveraging
quantum effects such as entanglement and coherence. In this study, we analyze
a quantum Stirling heat engine characterized by a working substance composed
of a two-particle Heisenbergmodel with Dzyaloshinskii–Moriya (DM) interaction
under an external magnetic field. We investigate the impact of the antisymmetric
interaction on the engine’s efficiency across varying coupling parameters. Our
findings demonstrate that the utilization of a two-qubit Heisenberg model in
an entangled quantum Stirling heat engine can significantly enhance efficiency
and performance. By optimizing the antisymmetric exchange parameters,
we achieve substantial enhancements in engine efficiency, with results
demonstrating that the efficiency attains remarkably high values compared to
other cycles utilizing the same working substance. These enhancements are
primarily influenced by the DM interaction and the entangled states of the
working substance, leading to superior performance.

KEYWORDS

quantum heat engine, entanglement, Dzyaloshinskii-Moriya interaction, stirling cycle,
quantum thermodynamic

1 Introduction

Research in quantum thermodynamics has shown that incorporating innovative design
elements and optimizing thermodynamic cycles can significantly enhance the performance
of Quantum Heat Engines (QHEs) [1–5]. Over the past decade, researchers have made
significant advancements in optimizing QHE performance by exploring and refining a wide
range of thermodynamic cycles such as the Otto, Carnot, and Stirling cycles [6–11]. Various
working substances have been suggested, including single spins, quantum oscillators, and
the XYZ spin chain model with Dzyaloshinskii-Moriya (DM) interaction [12–23].

The examination of interacting qubits as operational entities within QHEs presents
a compelling issue in quantum physics. In recent years, there has been significant
investigation into the interplay of two qubits using the Heisenberg spin chain model,
encompassing interactions between spins as well as spin-orbit coupling such as DM
interaction [24]. Huang et al. [25] conducted an extensive examination of a quantum
Otto heat engine using a three-qubit XXZ model, considering the influences of DM
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interaction and magnetic field. Their study explored the effects of
interaction and anisotropic parameters on both the work output
and efficiency of QHEs. Similarly, Purkait et al. [26] scrutinized
the efficiency of quantum Stirling engines employing a working
system of two Heisenberg-coupled spins near a Quantum Critical
Point, attributing enhancements to the non-analytic nature of spin-
spin correlation and entanglement. Additionally, Zhao et al. [27]
investigated an entangled quantum Otto heat engine utilizing two-
spin systems with DM interaction, revealing the significant role of
DM interaction in the engine’s thermodynamics.

Moreover, scientists have explored how quantum coherence
and entanglement affect QHE efficiency, providing new insights
into improving their performance [28–33]. Various quantum
thermodynamic cycles, including the Otto and Stirling cycles within
two-spin working systems, have been studied to elucidate the impact
of entanglement on QHE performance [5, 34–38].

In this context, our work focuses on elucidating the properties
of an operational material and the theoretical framework for
quantum heat engines (QHEs). We have studied a two-particle
Heisenberg model with DM interaction under an external magnetic
field as the working substance of a quantum Stirling heat engine.
Unlike previous studies focusing on the Otto cycle [21, 27, 39],
this work investigates the role of the Dzyaloshinskii–Moriya
interaction within a Stirling cycle framework, which provides
unique insights into the interplay between entanglement and
antisymmetric exchange parameters.The study examines the impact
of antisymmetric interaction on engine efficiency by altering
coupling parameters and entanglement levels in the initial and third
stages of the cycle. Our findings indicate that the DM interaction
significantly enhances efficiency, revealing critical thresholds that
optimize performance under different operational parameters.
Optimizing these parameters can significantly improve efficiency,
surpassing the Curzon-Ahlborn efficiency and reaching the Carnot
limit. Additionally, fine-tuning entanglement levels has the potential
to enhance efficiency. These results suggests that quantum heat
engines have the potential to achieve higher performance levels
through the exploration of antisymmetric aspects of spin systems.

2 Working substance: two-qubit
isotropic Heisenberg XYZ model

Let us start by examining a two-qubit XYZ spin chain employed
as an operational material in a QHE system operating under the
Stirling cycle. The Hamiltonian for the system is given by:

H = B
2
(σz1 + σ

z
2) + J(σ

x
1σ

x
2 + σ

y
1σ

y
2 + σ

z
1σ

z
2)

+D(σx1σ
y
2 − σ

y
1σ

x
2) . (1)

where J is the exchange constant, D is the antisymmetric exchange
parameter, and B is the energy contribution associated with the
external magnetic field. In this context, σi denotes the standard Pauli
operators. The first term signifies the interaction among adjacent
spins, while the subsequent term represents the interaction with
the external magnetic field. The exchange constant (J) is crucial in
describing different types of magnetic interactions; it can be positive
or negative, indicating either antiparallel (entangled ground state)
or parallel (separable ground state) scenarios [40, 41], respectively.

This study focuses exclusively on the antiparallel scenario,
considering the influence of the external magnetic field denoted
by B.

The four eigenvalues of this Hamiltonian can be
obtained as follows:

E1 =
J
2
+B,

E2 = −
J
2
−√J2 +D2,

E3 = −
J
2
+√J2 +D2,

E4 =
J
2
−B.

Wedetermine the occupation probabilities, denoted as Pn, of the
system through a series of calculations.Theprobability for each state,
with the normalization condition, is given by:

Pn =
e−βEn
Z
,

where Z = ∑4i=1e
−βEi is the partition function and β = 1

kBT
. The

entropy for the system at thermal equilibrium is:

S = −
4

∑
i=1

Pi lnPi. (2)

3 Quantum stirling heat engine and
the Heisenberg model

The universal behavior of quantum heat engines was extensively
discussed in the academic literature, operating within the confines
of all four thermodynamic regimes sanctioned by the Clausius
formulation of the second law [40, 42–47]. This accomplishment is
realized through the precise manipulation of reservoir temperatures
and working parameters. In particular, quantum Stirling cycles
applied in magnetic systems present themselves as promising
alternatives for developing universal quantum heat engines. A
quantum Stirling cycle is composed of two quantum isothermal
processes and two quantum isochoric processes [48, 49]. It can
be elucidated by analyzing the energy exchange in each step
of the cycle:

Stage 1: An isothermal expansion occurs when the system is
connected to a hot reservoir at a constant temperature Th:
[A(JA,Th) → B(JB,Th)]. To ensure thermal equilibrium, the
magnetic coupling transitions gradually from JA to JB. In
this step, the heat absorbed from the bath at temperature
Th, represented by ΔQAB, can be expressed through the
entropy change:

ΔQAB = ∫
B

A
ThdS = Th [S(JB,Th) − S(JA,Th)] . (3)

Stage 2: A quantum isochoric process occurs in: [B(JB,Th) →
C(JB,Tc)]. Throughout this stage, there is a transition
in temperature within the system, moving from a hot
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FIGURE 1
(Color online) Variation of the efficiency η of the quantum Stirling Cycle, in terms of D1 and D2 in isoline map with J2 = 1.5J1, (A) Th = 2Tc, c1 = 2c2, (B)
Th = 4Tc, c1 = 2c2, (C) Th = 2Tc, c1 = 4c2, (D) Th = 4Tc, c1 = 4c2. As can be seen, the efficiency of the quantum Stirling Cycle shows significant variations
due to changes in antisymmetric exchange parameters (D1 and D2). Raising the hot reservoir temperature while keeping these parameters constant
significantly impacts efficiency. The efficiency increases notably when the entanglement parameter c1 is doubled. However, decreasing the hot
reservoir temperature from Th = 4Tc to Th = 2Tc also enhances efficiency.

FIGURE 2
(Color online) Efficiency of the quantum Stirling heat engine as a function of D1/D2 with the parameters J2 = 2J1, (A) c1 = 4c2 and different relation
between hot bath and cold bath, (B) Th = 4Tc and different relation between c1 and c2. The efficiency varies based on the relationship between the
parameters c1 and c2. It is evident that efficiency increases as the ratio between the concurrence c1/c2 increases.
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FIGURE 3
(Color online) Efficiency of the quantum Stirling heat engine as a function of D1/D2 is compared with the efficiencies of the Carnot (ηC) and
Curzon-Ahlborn (ηCA) [54] systems with (A) Th = 4Tc, c1 = 4c2 and J2 = 1.8J1, (B) Th = 2Tc, c1 = 4c2 and J2 = 2.5J1.

bath at temperature (Th) to a cold one with temperature
(Tc). It is crucial to emphasize that the magnetic
coupling constant, JB, remains constant during this
particular process. The system does not perform any
work; instead, it releases heat, denoted as ΔQBC, which
can be expressed in terms of the variation of the internal
energy:

ΔQBC = U(JB,Tc) −U(JB,Th) . (4)

Stage 3: A quantum isothermal compression process is described:
[C(JB,Tc) → D(JA,Tc)], where the working substance is
in contact with a cold reservoir at a fixed temperature
T = Tc. The magnetic coupling transitions from JB
to JA. The amount of heat released in this process,
denoted as ΔQCD, is given by the change in the entropy,
Equation 2.

ΔQCD = ∫
D

C
TcdS = Tc [S(JA,Tc) − S(JB,Tc)] . (5)

Stage 4: The final step is a quantum isochoric process: [D(JA,Tc) →
A(JA,Th)]. During this fourth stage, the system transitions
from the cold reservoir at Tc to the hot reservoir
at Th. The mediation of this transition is carried
out by the fixed magnetic coupling constant JA. The
attainment of thermal equilibrium marks the end of
the isochoric thermalization process, resulting in a
final temperature of Th. This particular process involves
no work, and the heat absorbed by the working
substance (referred to as ΔQDA) can be expressed
as follows:

ΔQDA = U(JA,Th) −U(JA,Tc) . (6)

To assess the impact of quantum entanglement on the
energy exchange of the quantum Stirling cycle, we measure the
entanglement present in the thermal equilibrium state using the
widely recognized Wootters concurrence [50–52]. This allows us
to evaluate the entanglement of the bipartite system, which is
characterized as c(ρ) = max{0,√λ1 −√λ2 −√λ3 −√λ4}, where λi
are the eigenvalues of the matrix ρ(σy1 ⊗ σ

y
2)ρ
∗(σy1 ⊗ σ

y
2) arranged in

descending sequence. Here ρ∗ denotes the complex conjugate of
ρ [41, 50–53]. In the case of separable states, the parameter c
equals 0, whereas for Bell states, the parameter c equals 1 [52].
From the Hamiltonian model given by Equation 1, the concurrence
associated with the thermal equilibrium state is determined by the
following equation:

c =max{
[sinh β (J+D)] − 1

2 [cosh β (J+D+B)] [cosh β (J+D−B)]
,0},

(7)

Therefore, the entanglement at the end of the first stage and the
third stage of the quantum Stirling cycle can be represented as c1 and
c2 respectively, and they can be written as:

c1 =
sinh( J+D

Tc
) − 1

2 cosh( J+D+B1
Tc
)cosh( J+D−B1

Tc
)
,

c2 =
sinh( J+D

Th
) − 1

2 cosh( J+D+B2
Th
)cosh( J+D−B2

Th
)
.

(8)

To understand how these interconnections affect important
thermodynamic properties, we can analyze Equations 7, 8. By
using these equations, we can express the magnetic field based on
entanglement with an analytical solution given by:
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B1 = Tc cosh−1
[sinh( J+D

Tc
) − 1− c1 cosh(

J+D
Tc
)]

c1
,

(9)

B2 = Th cosh−1
[sinh( J+D

Th
) − 1− c2 cosh(

J+D
Th
)]

c2
.

(10)

By substituting Equations 9, 10 to the heat exchanged in each
step of the Stirling cycle, Equations 3–6, we can evaluate the
heat absorbed Qin = ΔQAB +ΔQDA, the heat released Qout = ΔQBC +
ΔQCD, the total work W = Qin +Qout in terms of the entanglement
c1 and c2, temperatures Tc, Th, and the antisymmetric exchange
parameters D1 and D2.

4 Results and discussion

In this section, we will study in detail the impact of the
quantum entanglement, temperatures, and antisymmetric exchange
parameters on the thermal efficiency of the two-qubit isotropic
Heisenberg XYZmodel used as a working substance in the quantum
Stirling heat engine. The thermodynamic efficiency (η) in the heat
engine operation is characterized by the ratio between the extracted
work (W) and the absorbed heat (Qin) of the working substance:

η = W
Qin

Thus, one can examine the influences of DM interaction parameters
on the efficiency and plot it as a function of the above-mentioned
parameters.

The variation of the efficiency as a function of antisymmetric
exchange parameters D1 and D2 has been presented in Figure 1.

The graphical representation demonstrates that variations in
the antisymmetric exchange result in discernible fluctuations in
the efficiency value. A comparative analysis between Figures 1A, B
reveal that elevating the temperature of the hot reservoir while
maintaining the antisymmetric parameter constant produces a
significant impact on the efficiency. The upper limit of η is
contingent upon the specific values of D1, D2, Th, and Tc. From the
comparison of Figures 1B, C, it is noticeable that the increase of c1 =
2c2 to c1 = 4c2 has caused the efficiency to increase significantly.This
shows that in the presence of the D parameter, the increase in the
entanglement leads to an enhancement in efficiency.

In Figure 1D, we plot a similar figure to Figure 1C except for
Th = 4Tc. It is evident that the efficiency experiences a noticeable
decrease. Upon comparing Figures 1C, D, it is observed that the
efficiency rises as Th = 4Tc transitions to Th = 2Tc, and the alteration
in the ratio of the hot bath to the cold bath can result in an efficiency
enhancement.

In Figure 2, we plot the efficiency of the Quantum Stirling heat
engine in terms of the ratio between the antisymmetric exchange
parameters D1/D2, fixing the parameters {c1 = 4c2, J2 = 2J1} for
different values of temperature (2 a) and {Th = 4Tc, J2 = 2J1} (2
b), for different values of entanglement. As seen in the plot, the
efficiency varies based on the relationship between the parameters
c1 and c2. The figure clearly indicates that efficiency increases as the
ratio between the concurrence c1/c2 increases. Thus, increasing the

FIGURE 4
(Color online) Comparison of the efficiency of the quantum Stirling
heat engine ηD (solid red line) and the quantum Otto heat engine η
(black points), and their respective upper bounds etaub (brown points),
as a function of the Dzyaloshinskii-Moriya interaction parameter. As it
can be seen, the implementation of the Stirling engine shows an
increase in efficiency and reaches significantly higher values
compared to the Otto engine, approaching the Carnot efficiency (0.5
- dashed black line) for high values of D, asymptotically.

degree of entanglement in the first stage of the circle leads to an
enhancement of the performance of the heat engine.

To validate this improvement and highlight the potential
of entangled heat engines to surpass traditional thermodynamic
cycles under certain conditions, Figure 3 shows the efficiency η
of a quantum Stirling heat engine as a function of the ratio
D1/D2 under different conditions, compared to the Carnot and
Curzon–Ahlborn efficiencies [54]. Comparing these efficiencies
benchmarks the quantum Stirling heat engine’s performance against
established theoretical limits and provides insight into the practical
and theoretical benefits of utilizing quantum effects in heat engines.
We plot the efficiency η of this quantum Stirling heat engine as a
function of D1/D2 for c1 = 4c2 and J2 = 1.8J1, with (a) Th = 4Tc and
(b) Th = 2Tc. As can be seen, by increasing the ratio of D1/D2, the
efficiency can surpass the Curzon–Ahlborn efficiency and achieve
the Carnot limit asymptotically.

Furthermore, in order to compare our results with previous
implementations of other quantum cycles [27], we provide a
detailed comparison based on the efficiency as a function of the
Dzyaloshinskii-Moriya (DM) interaction parameter D. In Figure 4,
the solid red line represents the efficiency of our quantum Stirling
engine model ηD, using the parameters reported in reference [27],
while the data points correspond to the efficiency results η and
their respective upper bounds etaub from the quantum Otto cycle
analyzed by Zhao et al. [27].

Our results demonstrate that, given the parameter settings of
the reference [27], the efficiency of the Stirling cycle surpasses
the maximum efficiency of the Otto cycle for the observed range
of the antisymmetric interaction. As can be seen, while the
Otto cycle efficiency gradually increases at larger antisymmetric
interaction, as observed from the brown and black data points,
the Stirling efficiency exhibits a steeper increase, approaching
asymptotically the Carnot efficiency (η = 0.5) for high values of
antisymmetric interaction parameter. Therefore, the comparison

Frontiers in Physics 05 frontiersin.org

https://doi.org/10.3389/fphy.2025.1512998
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Rastegar-Sedehi and Cruz 10.3389/fphy.2025.1512998

highlights the distinct advantage of the Stirling cycle in leveraging
the antisymmetric exchange interaction to enhance thermodynamic
performance. Unlike the Otto cycle, where the efficiency
improvement is constrained by the specific interaction dynamics
and the heat exchange mechanisms, the Stirling cycle allows more
effective utilization of the quantum resources introduced by the DM
interaction.

5 Conclusion

In this letter, we study a four-level entangled quantum Stirling
heat engine using a working substance composed of a two-
particle Heisenberg model with Dzyaloshinskii-Moriya interaction
under an external magnetic field. The effect of the antisymmetric
interaction on the engine’s efficiency is studied by changing
the coupling parameters and the degree of entanglement in the
first and third steps of the cycle. Our findings indicate that
optimizing the parameters associated with this interaction can lead
to substantial improvements in efficiency, surpassing the value
of Curzon–Ahlborn efficiency and reaching asymptotically the
Carnot limit. These results highlight the potential for achieving
higher performance levels in quantum heat engines exploring
antisymmetric aspects of spin systems. Furthermore, our research
suggests that fine-tuning the entanglement level in conjunction with
the coupling parameters can result in even greater enhancements
in efficiency. This demonstrates the intricate relationship between
quantum effects and thermodynamic performance in spin-
based systems.
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