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Background and objective(s): This study evaluates the accuracy of automatic
segmentation of Organs at Risk (OARs) in nasopharyngeal carcinoma (NPC)
using three approaches: atlas-based, 2D U-Net, and a self-developed
Trident network. Our aim was to develop, validate, and compare the
performance of Trident network for precise delineation of NPC using our
center’s dataset, in comparison to conventional atlas-based and 2D U-Net
techniques.

Materials and methods: We randomly selected 209 patients with NPC
for this retrospective study, with OARs manually delineated by physicians.
An atlas template library was generated using data from seventeen OARs
obtained from a subset of these patients, while the remaining 29 cases
constituted the test set. The performance of auto-delineation methods,
including Atlas, 2D U-Net, and the Trident Network, was compared to
manual delineations. Accuracy was evaluated using the Dice Similarity
Coefficient (DSC) and Hausdorff Distance (HD), alongside timing each method.
Statistical analysis included one-way ANOVA for normally distributed data,
Welch’s test for data with uneven variance, and Post Hoc Comparison
tests [Least Significant Difference (LSD) and Tamhane’s T2] for pairwise
comparisons. The Kruskal-Wallis H test was employed for non-normally
distributed data.

Results: In the evaluation of segmentation results for all 23 OARs in NPC,
the Trident Network achieved the highest DSC (0.87 ± 0.07), significantly
outperforming the Atlas (0.67 ± 0.02) and 2D U-Net (0.71 ± 0.02). Additionally,
the mean HD values for all the three methods were below 5 mm. In
particular, with the exception of the right eyeball, the Trident network
demonstrated superior DSC for each organ compared to the other two
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methods. The Trident Network showed high morphological similarity from Atlas
and 2D U-Net in most structures, performing significantly better than Atlas for
multiple structures such as the Hypophysis, Optic chiasma, Esophagus, and
others. Furthermore, it showed better performance than the 2D U-Net in several
structures, including the optic chiasma, optic nerve, and larynx. Conversely, the
2D U-Net excelled over Atlas in structures like Brainstem and Lens.

Conclusion: The Trident Network demonstrates superior morphological and
geometric accuracy compared to Atlas and 2D U-Net in the delineation of
OARs in nasopharyngeal carcinoma, significantly reducing the need for manual
corrections and improving delineation efficiency.

KEYWORDS

nasopharyngeal carcinoma, atlas, trident network, 2D U-Net, organs at risk

1 Introduction

Nasopharyngeal carcinoma (NPC), a prevalent malignant
tumor in head and neck regions of China, is characterized by
its complex anatomical location, unique peripheral lymphatic
drainage patterns, and its predominant presentation as poorly
differentiated squamous cell carcinoma. Established and effective
radical treatments forNPC include radiotherapy and comprehensive
therapeutic approaches centered around radiotherapy [1]. The
implementation of Intensity Modulated Radiation Therapy (IMRT)
has significantly improved local control rates and overall survival
in NPC patients [2]. Accurate demarcation of the clinical target
volume (CTV) and Organs at Risk (OARs) is essential for ensuring
treatment efficacy. Currently, radiotherapists manually outline CTV
andOARs based onmulti-modal imaging data [3], but the precision
of this method depends on the radiotherapist’s expertise, image
quality, and is both time-consuming and labor-intensive. Research
indicates significant variations in planning target volume (PTV)
and OARs delineation among clinicians from different medical
centers [4]. Incorporating, automation alongsidemanual delineation
can help reduce these discrepancies. As a result, rapid and
accurate automated outlining tools have become vital components
of adaptive radiotherapy workflows. Current methodologies for
medical image segmentation include thresholding [5], regional
growing, deformation techniques [6], fuzzy clustering segmentation
[7], and deep learning neural network segmentation [8]. Standard
automatic segmentation software commonly utilizes atlas-based
approaches or convolutional neural networks [9, 10].

Atlas-based segmentation, which employs one or more
representative patients to create a reference atlas database, is
considered resource-efficient. However, it has several limitations.
These include variability in atlas selection strategies [11],
performance stagnation, suboptimal accuracy in delineating
small and low-contrast soft tissues, and increased computational
time with the addition of each new atlas [12–14]. Multi-atlas
databases can be combined using fusion algorithms to minimize
structural inconsistencies [15], and hybrid models integrating
multi-atlas approaches with machine-learning features have been
developed [16–20]. Although multi-atlas strategies generally
require longer computational times, they consistently outperform
single-atlas methods.

Deep learning-based segmentation methods employ
convolutional neural networks (CNNs) trained on labeled medical
datasets. These models, once trained, provide rapid segmentation
but may underperform when segmenting smaller organs or those
with low image contrast. To enhance segmentation accuracy,
various network architectures have been developed, including nn-
UNet, AnatomyNet, and Ua-net, each offering specific features
and functionalities [21–24]. For small objects, approaches such
as the feature pyramid composite neural network structure and
LSTFE-NET have been introduced [25, 26]. Notably, WBNet
[21] has demonstrated superior performance compared to
both the multi-atlas model and other deep learning methods
for the segmentation of most organs. Other studies have also
demonstrated the significant potential of convolutional neural
networks (CNNs) in both classification and segmentation tasks.
For example, Iqbal et al. proposed an advanced multi-class
classification model for skin lesions using dermoscopic images,
achieving high accuracy and surpassing state-of-the-art methods
[27]. This study highlights the effectiveness of CNNs in feature
extraction and classification. Similarly, another study by Iqbal et al.
utilized transfer learning for the automated detection of human
knee synovial fluid from magnetic resonance images, achieving
robust performance even with limited training data [28]. These
studies underscore the versatility of deep learning techniques
in medical imaging and serve as inspiration for developing
advanced segmentation and classification methods to address
complex challenges.

This study comprehensively evaluates the efficacy, precision,
robustness, and applicability of the proprietary Trident Network
in comparison to Atlas and 2D U-Net for segmenting OARs
in NPC. The results highlight its distinct advantages in
processing small-sample datasets and accurately delineating small-
volume structures.

2 Materials and methods

2.1 Patient data

We randomly selected a retrospective cohort of 209 patients
diagnosed with nasopharyngeal carcinoma at the Radiation
Oncology Center of Renmin Hospital ofWuhan University between
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2019 and 2021. This group included 150 males and 59 females,
with a median age of 55 years. During the scanning procedure,
patients were positioned supine and immobilized from the skull
to the clavicle, with their arms resting naturally at their sides.
Scanning wasperformed under relaxed breathing conditions using
a GE large-aperture CT scanner. The slice thickness was set to
2.5 mm, and the scanning range extended from the cranial apex
to the tracheal bifurcation, including localized contrast-enhanced
scans for comprehensive coverage.

The acquired CT images were imported into the MIM Atlas
software and fused with magnetic resonance imaging (MRI)
to enhance tumor boundariy visualization [29]. Subsequently,
the images were manually delineated by physicians following
international standard consensus guidelines [30]. The manually
outlined data included 23 organs at risk, which comprising the left
and right lenses, left and right eyeballs, left and right optic nerves,
optic chiasma, pituitary, brain stem, spinal cord, temporal lobes, left
and right parotid glands, left and right inner ears, left and right
temporomandibular joints, mandible, oral cavity, throat, trachea,
thyroid, and esophagus.

Following the delineation process, the image slice data and organ
labels of the 209 patients can be utilized as a dataset for training
deep learning models. Since Dicom-format image data cannot be
directly used for model training, Python scripts are used to convert
and preprocess the data into nii. gz format. Each organ label is
stored as a separate file, and the slice data for each patient, along
with all organ label data, is organized in a single folder, forming
a complete training dataset. The dataset can be patitioned into
training and testing sets based on a certain ratio. The training
set is fed into the network model for training. Once the model
reaches a satisfactory training level, the testing set is used to evaluate
its performance. If the testing results are satisfactory, the entire
model is saved.

During training, the data is sequentially read, normalized
to constrain its range within specific limits, and subsequently
segmented and sliced. Multiple slices of a patient’s image data
are grouped into a segment, with each slice further divided into
smaller sub-slices. This approach enhances the network model’s
ability to learn comprehensively while simultaneously reducing the
data volume for each network iteration, thereby preventing memory
overflow issues.

2.2 Atlas and deep learning methods

2.2.1 Atlas method
In this study, we utilized MIM Maestro 7.0.5 software, released

by MIM Software Inc., USA. The software features an automatic
delineation function that uses a CT image database to construct
an atlas database and identifies the most suitable match for the
target case image. The process involves density-based registration
of the template and target case images, followed by deformation
registration to map the OARs onto the target case images. MIM
Maestro 7.0.5 independently searches for the best registration cases
and performs deformation fusion. For this study, we configured the
atlas library’s running parameters to select five optimal matches,
with the superposition mode set to STAPLE. The workflow is
illustrated in Figure 1.

2.2.2 Deep learning methods - Trident network
This study introduces a Trident network model for the

automatic delineation of target areas and organs at risk in
nasopharyngeal cancer. The model requires only a small amount
of patient data and corresponding standards to train the neural
network, which subsequently performs automatic delineation
of the target areas and OARs for individual patient. This
approach offers several advantages, including high accuracy,
strong robustness, broad applicability, and minimal reliance on
labeled samples.

The automatic delineation algorithm utilizes the Unet-3D
convolutional neural network, employing aUnet composite network
structure to achieve global coarse localization and local precise
segmentation of target areas and OARs. The network consists
of three main branches: input branch A, responsible for feature
encoding by extracting features from the input images; and output
branches B and C, which handle coarse localization and fine
segmentation of target areas and OARs, respectively. To optimize
image feature extraction, the study integrates two-dimensional
convolution with three-dimensional convolution encoding to
capture intra-layer features of tomographic images and facilitate
inter-layer feature fusion, thereby enhancing feature extraction
and fusion capabilities. Additionally, meta-learning techniques are
employed to train optimal model weights for whole-body OARs,
incorporating them into the target area andOARdelineation process
to effectively utilize a limited number of labeled samples for training.
A Transformer module is introduced for global feature decoding
and fusion, enabing global coarse localization of the target area.
Finally, a domain transfer Generative Adversarial Network (GAN)
is utilized to enhance the model’s generalization across different
data styles and qualities, improving its cross-domain feature learning
capabilities.

Figure 2 illustrates the architecture of the Trident network.
Initially, the 3D image data is processed by encoding branch A,
where 2D and 3D convolutions are employed to extract intra-
layer features and fuse inter-layer features. The Trident network
uniquely integrates long-range global features with short-range
local features, effectively merging the former into the latter within
the short-range branches [31]. Skip connections facilitate this
integration by linking features across layers, enabling efficient
and rapid processing and extraction, thereby simplifying the
encoding and learning processes. This approach significantly
enhances the efficiency of data feature utilization. The network
then processes the extracted, fused, and encoded image features
as input. Finally, the position information of the target area
acquired from branch B is forwarded to decoding branch C
for fine segmentation. By leveraging the position information
of the target area, branch C captures and meticulously analyzes
the key features input from branch A, thereby achieving precise
segmentation.

To improve the segmentation accuracy of target organs,
particularly those with smaller sizes or complex boundaries, amulti-
loss combination method is employed. This approach integrates
the cross-entropy loss function, 3D Dice loss function, Lovasz loss
function, and boundary loss function [32]. These complementary
loss functions collectively guide the segmentation process by
accounting for factors such as organ boundaries, shape, size,
density, and other pertinent features, aiming to achieve optimal
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FIGURE 1
Automated delineation process based on MIM’s atlas database.

FIGURE 2
Trident network architecture diagram.
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segmentation outcomes. The formulas for these Equations 1, 2 are
shown as follows:

Loss = 0.5∗ Lbce + Ldice + Llovas + 0.5∗ Lsurface (1)

Lsurface = 1.0−
Ps ∩Ts

Ps ∪Ts
(2)

The dual-path network structure comprises a temporal path
and a spatial path, each taking three adjacent temporal and spatial
slices, respectively, as inputs. The bottom layer of the encoding
path integrates a feature fusion module to combine temporal and
spatial features.

Compared to traditional medical imaging segmentation models,
the Trident model offers several distinct advantages. First, input
branchA serves as the feature encoding branch, extracting prominent
features from the input images. Output branch B focuses on the
coarse localization of target areas and organ at risks, while output
branchCperformsdetailedsegmentation.This two-stepsegmentation
strategy is better suited for achieving precise model segmentation
results, compared to traditional single-step medical segmentation
models. Second, the algorithm integrates both two-dimensional and
3D convolutional enables intra-layer feature extraction and inter-
layer feature fusion, significantly improving the model’s information
extraction and learning capabilities. Third, optimal model weights
for whole-body OARs are developed using meta-learning methods
and applied to target areas and organs. This approach effectively
operates with a limited number of labeled samples, offering a
significant advantages over traditional segmentation models that
require large datasets for training. Fourth, the algorithm employs a
Transformer module for global feature decoding and fusion, enabling
global coarse localization of target areas. Lastly, it incorporates a
domain transfer adversarial Generative Adversarial Network (GAN),
which improves the model’s generalization capability across different
data styles and qualities, further strengthening its cross-domain
feature learning capabilities.

Figure 3 illustrates the Multi-Input Mask Attention 3D U-Net
architecture. This network, derived from the 2D U-Net framework,
incorporates substantial improvements for coarse positioning and
fine segmentation, thus earning its designation as the Multi-
Input Mask Attention 3D U-Net. The model consists of three
primary components: the encoder module, the Mask Attention
module, and the decoder module, each of which is detailed in the
following sections.

The encoder module, located in the left section of the
model, plays a critical role in extracting features from images. It
comprises four sequential encoder modules that process images of
varying dimensions sequentially, enabling comprehensive feature
extraction while minimizing feature loss. Images are resized to
multiple scales before being fed into individual encoder layers.
Each layer employs 3D convolutions, downsampling, dropout
operations, and concatenation of two inputs. This architecture
facilitates the integration of multi-scale feature information in a
hierarchical manner.

In the middle section, the Mask Attention module, equipped
with a single input and output channel, processes outputs from
various encoders and forwards them to the corresponding decoder
blocks. This module enhances the model’s ability to focus on
critical feature information by applying operations such as shifting,

convolution, multiplication, and addition. The shift operation, in
particular, enables the network to prioritize present and past
information, minimizing the influence of future data on the current
state. The precise mask positioning provided by this module
significantly improves the accuracy of the decoder’s output.

The right section of the model contains the decoder module,
which is responsible for feature fusion and generating the final
output. Each block in this module incorporates 3D convolutions,
upsampling, dropout operations, and the concatenation of inputs
from two distinct sources. This design ensures effective integration
of multi-scale hierarchical feature information. Upsampling
converts low-resolution images with high-level abstract features into
high-resolution outputs while preserving the quality of the abstract
features. Furthermore, each decoder layer isolates outputs for loss
computation and backpropagation, enhancing fitting accuracy,
accelerates network training, and improving model performance
through multi-scale feature mapping.

The model presents several significant advantages. First, the
introduction of the Mask Attention module enables precise routing
of encoder outputs to their corresponding decoder modules,
marking a departure from conventional U-Net methodologies.
Second, the model accommodates images of varying dimensions,
facilitating multi-scale inputs that distinctly enhance feature
representation compared to traditional approaches. Third, it
provides outputs at each layer, thereby creating a layered
hierarchical representation of features. Additionally, the integration
of concatenation connections across different hierarchical levels
enhances feature fusion, further distinguishing this model from
conventional designs. Lastly, the incorporation of advanced multi-
scale feature mapping, enriches feature representation through
additional outputs and improved loss propagation mechanisms.
Collectively, these innovations enhance the model’s capacity to
capture and represent complex image features, setting it apart from
traditional U-Net architectures.

2.3 Implementation plan

Thirty cases were randomly selected from 209 NPC patients
and imported into MIM Atlas software to establish a case database.
The remaining 29 cases used as test subjects. For these test cases,
Atlas, 2D U-Net, and the Trident Network were employed to
automatically delineate the organs at risk.The accuracy of these three
automated delineation methods was quantitatively evaluated based
on morphological similarity and geometric deviation.

2.4 Accuracy assessment

Using the manually delineated outlines of OARs by physicians
as the gold standard, a range of metrics were employed to evaluate
the accuracy of the automatic contours generated by Atlas, 2D U-
Net, and the Trident Network. These metrics included the DSC
[33], Sensitivity Index (SI), Inclusiveness Index (IncI), Jaccard Index
(JAC), Hausdorff Distance (HD) [34], and volume differences.

2.4.1 Dice similarity coefficient
The Dice Similarity Coefficient (DSC) is employed to quantify

the overlap between automatically and manually delineated
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FIGURE 3
Multi input mask attention 3D U-Net diagram.

contours. The DSC value ranges from 0 to 1, with values closer to 1
indicating a higher degree of similarity between the two structures.
According to the literature, a DSC greater than 0.7 represents
satisfactory contour overlap [35, 36].

The definition formula is shown in Equation 3:

DSC =
2(VA ∩VM)

VAVM
(3)

In the formula, VA represents the set of voxels within the
automatically delineated contour, while VM denotes the set of voxels
within the manually delineated contour.

2.4.2 Sensitivity index
The Sensitivity Index (SI) measures the ratio of the intersection

volume between the automatic and manual contours to the volume
of the manual contour. SI values range from 0 to 1, with an SI
value of 1 indicating that the manually delineated contour fully
encompasses the automatically delineated contour. The defining
formula is shown in Equation 4:

SI =
VA ∩VM

VM
(4)

2.4.3 Inclusiveness index
The Inclusiveness Index (IncI) represents the ratio of the

intersection volume between the automatic volume and manual
contours to the volume of the automatic contours. IncI value range
from 0 to 1, with an IncI value of 1 indicating that themanual outline
is fully encompassed within the automatically delineated contour.
The formula is shown in Equation 5:

IncI =
VM ∩VA

VA
(5)

2.4.4 Jaccard index
Tomeasure the similarity and difference between automatic and

manual contour, a parameter defined by Equation 6 is employed:

JAC =
VA ∩VM

VA ∪VM
(6)

Where 0≤JAC≤1, the closer the JAC value is to 1, the higher the
similarity between automatic and manual contours.
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2.4.5 Hausdorff Distance
HD represents the maximum distance between the outer

contour of the two structures. The smaller the value, the smaller
the geometric difference between the two structures. The formula
is shown in Equation 7:

HD(A,B) =max [h(A,B),h(B,A)]

h(A,B) =max
a∈A

min
b∈B
‖a− b‖ (7)

Where ||a-b|| represents the Euclidean distance frompoint a to point
b, A and B are two structures, and a and b are the points on the
boundary of structures A and B, respectively.

2.4.6 Volume difference
VD refers to the percentage of the manual delineated volume.

The closer the value is to 0, the better, the definition formula
is shown in Equation 8:

VD(A,M) =
|A−M|

M
(8)

2.5 Statistical analysis

For statistical analysis, SPSS 20.0 software was used. Depending
on the normality of the distribution of results between the two
groups, either a paired sample one-way ANOVA test or the Kruskal-
Wallis H test was applied. Parameter values are reported as mean
± standard deviation. A difference was considered statistically
significant at P < 0.05.

3 Results

3.1 Delineation evaluation

CT images from the same case were manually delineated, while
OARs were automatically delineated using the 2D U-Net, Trident
Network, and Atlas methods, as illustrated in Figure 4. Most OARs
achieved favorable results with all types of automatic contouring
software, with the generated contours closely approximating the
manual delineations.The contours produced by theTridentNetwork
demonstrated greater smoothness compared to those generated
by Atlas. However, the clinical application of most automatically
delineated OARs still requires subsequent manual modification.
Nonetheless, these tools significantly reduce the time needed for the
manual delineation of target volumes and OARs, highlighting their
clinical utility.

3.2 Efficiency evaluation

The automatic contouring of Organs at Risk (OARs) in a
single nasopharyngeal cancer patient using MIM Atlas software
takes approximately 2–3 min. In comparison, the 2D U-Net and
Trident Network require roughly 3–5 min to complete the same
task. In contrast, manual delineation by a physician takes at least a
minimum of 150 min.

3.2.1 Difference evaluation
The DSC difference evaluation results for the three automatic

delineation methods are shown in Figure 5A. Instances exist where
the mean DSC exceeds 0.7, with the associated statistical analyses
detailed in Table 1. The mean DSC values were 0.67 ± 0.02 for
Atlas, 0.71 ± 0.02 for 2D U-Net, and 0.87 ± 0.07 for the Trident
Network. Nine structures delineated by Atlas had a mean DSC >
0.7, all structures by the Trident Network, and fourteen by the 2D
U-Net. In this study, the Trident Network outperformed both Atlas
and 2D U-Net in terms of DSC values. Except for the Left and Right
Eyeball, Mandible, and Oral Cavity, all other structures exhibited
statistically significant differences (P < 0.05). ANOVA or Kruskal-
Wallis H analysis results indicated that, for multiple structures such
as the Left and Right Eyeball, Mandible, Trachea and Oral Cavity,
the Trident Network significantly outperformedAtlas. Furthermore,
fourteen structures demonstrated significantly better performance
with the Trident Network compared to the 2D U-Net, including
the Left and Right optic nerve, Optic Chiasma, Hypophysis, Left
and Right parotid, Left and Right TMJ, Trachea, Esophagus,
Larynx, Left and Right Inner ear, and Thyroid. Additionally, the
2D U-Net significantly outperformed Atlas in five structures,
including the Brain Stem, Left and Right Lens, Left Parotid,
andThyroid.

Figures 5B, C separately present the assessment outcomes
for SI and IncI, with their respective statistical analyses
provided in Supplementary Tables S1, S2. The SI and IncI values
ranged from 0.54 to 0.91 and 0.49 to 0.86 for Atlas, 0.79 to 0.96
and 0.70 to 0.97 for Trident Network, and 0.38 to 0.97 and 0.47 to
0.93 for 2D U-Net. Except for the Brain stem, Spinal cord, Right
TMJ and Left Inner ear all other structures demonstrated significant
differences in SI (P < 0.05). For IncI, all structures except the Left
lens exhibited significant differences (P < 0.05). In this study, the
mean SI value for the Trident Network significantly surpassed
that of Atlas, except in the Brain stem, Spinal cord, Left and right
eyeballs, Left and right parotid, Right TMJ, Trachea, larynx, Left
inner ear, and Oral cavity. Ten structures showed significantly
better performance with the Trident Network compared to the
2D U-Net, highlighting its effectiveness in capturing details
across diverse anatomical regions, including the left and right
eyeball, Right lens, left and right optic nerves, optic chiasm,
mandible, temporal lobe, esophagus, and thyroid. However, three
structures of Atlas, namely the Left eyeball, optic chiasm and
mandible, exhibited significantly better performance compared
to 2D U-Net.

The Trident Network demonstrated a highermean Inclusiveness
IncI than Atlas for structures such as the Brain Stem, Spinal Cord,
Left and right optic nerve, Optic chiasm, Hypophysis, Left and
rigth parotid, Left and Right TMJ, Trachea, Esophagus, Larynx,
Left and Right inner ear, and Thyroid. Fourteen structures showed
significantly better performance with the Trident Network than
with the 2D U-Net, including Left and Right optic nerve, optic
chiasm, Hypophysis, Left and Right parotid, Oral Cavity, Trachea,
Left and Right TMJ, Left and Right inner ear, Larynx, and Thyroid.
Eight structures delineated by the 2DU-Net performed significantly
better than those delineated by Atlas, including Brain stem, Spinal-
cord, Left and Right Eyeball, Left and Right lens, Mandible, and
Esophagus. Additionally, five structures performed significantly
better with the 2D U-Net than with the Trident Network, including
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FIGURE 4
Evaluation of manual delineation, Atlas, 2D U-Net, and Trident Network.∗denotes the manual delineation of OARs,∗_A represents the Atlas automatic
delineation of OARs,∗_Unet represents the 2D U-Net automatic delineation of OARs, and∗_AI represents the Trident Network automatic
delineation of OARs.
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FIGURE 5
Difference evaluation on five metrics among (Altas, 2D U-Net and
Trident Network): (A) DSC; (B) SI; (C) IncI; (D) Jaccard; (E) VD.

Left and Right Eyeball, Right lens, Mandible, and Temporal lobe.
Two structures performed significantly better with Atlas than
with the 2D U-Net, including Oral Cavity, and Trachea. The IncI
variations for multiple structures were statistically significant (P
< 0.05). Figure 5D elucidates the differing Jaccard Index results
among the three automatic delineation methods, with the relevant
statistical findings detailed in Supplementary Table S3. The mean
Jaccard index ranged from 0.34 to 0.75 for Atlas, 0.25 to 0.77 for the

2D U-Net, and 0.62 to 0.83 for Trident Network. Discrepancies in
Jaccard values were statistically significant acrossmultiple structures
(P < 0.05). The Trident Network achieved significantly better
performance than Atlas for 18 structures, except for the Left and
Right eyeball, Mandible, Trachea, and Oral cavity. Additionally,six
structures of 2D U-Net performed significantly better than Atlas,
including Brain stem, Left and Right Lens, Left Parotid,Thyroid, and
Right Inner Ear.

Figure 5E shows the variation in OARs volume differences (VD)
using manual delineation as the gold standard. The statistics are
presented in Supplementary Table S4. The mean volume difference
for Atlas ranged from 0.11 to 0.91, and for the 2D U-Net, from
0.11 to 1.16, with the Trachea showing the maximum mean
volume difference for both methods. In contrast, the Trident
Network demonstrated a mean volume difference ranging from
0.08 to 0.42, with the Thyroid having the lowest mean volume
difference. For the Right TMJ, the Trident Network’s volume
differences were statistically significantly better than those of Atlas
(P < 0.05). The Hypophysis, Right TMJ, and Thyroid also showed
statistically significant improvements in the Trident Network
compared to Atlas. The 2D U-Net demonstrated statistically
significantly better volume differences for the brainstem compared
toAtlas, whileAtlas exhibited statistically significantly better volume
differences for the mandible and trachea compared to the 2D U-
Net. The Trident Network showed statistically significantly better
volume differences for the Hypophysis, Right TMJ, Mandible,
Trachea, Thyroid, Esophagus, Oral Cavity, and Larynx compared
to the 2D U-Net. Conversely, the Left parotid delineated by the
2D U-Net demonstrated statistically significantly better volume
differences compared to the Trident Network. Analysis of the
Kruskal-Wallis H test for the left lens and right optic nerve
revealed significant differences in overall performance, indicating
that at least one algorithm model differed significantly from
the others. For the Left lens, while the original comparisons
between the 2D U-Net and Atlas (P = 0.029) and 2D U-Net
and the Trident Network (P = 0.02) were statistically significant,
these differences were no longer significant after applying the
Bonferroni correction (adjusted P-values of 0.086 and 0.061,
respectively). Similarly, for the Right optic nerve, the original
comparisons between the Trident Network and Atlas (P = 0.043)
and the Trident Network and the 2D U-Net (P = 0.023) were
statistically significant but became nonsignificant after applying
Bonferroni correction (adjusted P-values of 0.129 and 0.069,
respectively). These suggests that the sample size may not be
sufficient to confirm these differences under more stringent
statistical criteria. Although some comparisons were not statistically
significant, the calculated effect sizes and 95% confidence intervals
provide valuable insights into the magnitude of the differences in
algorithm performance. These metrics are particularly useful for
assessing the practical implications of these differences in practical
applications.

3.2.2 Geometric deviation evaluation
Figure 6 illustrates the Hausdorff Distance (HD) evaluation

results among the three automatic delineation methods, with the
corresponding statistical analysis detailed in Table 2. In this study,
except for the 2D U-Net, the mean HD values for all the automatic
contouring methods were below 5 mm. Specifically, the maximum
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TABLE 1 Difference evaluation of DSC for automatically delineated OARs in 29 NPC patients among Altas,2D U-Net and Trident Network.

Organ Atlas Trident network 2D U-net F/H value P value

Brain stem 0.76 ± 0.07 0.85 ± 0.04a 0.83 ± 0.04a 30.952 0.001

Spinal-cord 0.81 ± 0.04 0.85 ± 0.05a 0.83 ± 0.04 10.963 0.004

Eyeball_L 0.86 ± 0.05 0.87 ± 0.05 0.87 ± 0.02 0.953 0.621

Eyeball_R 0.84 ± 0.08 0.85 ± 0.05 0.86 ± 0.07 3.405 0.182

Lens_L 0.56 ± 0.12 0.76 ± 0.06a 0.74 ± 0.08a 31.273 0.001

Lens_R 0.58 ± 0.17 0.77 ± 0.05a 0.74 ± 0.15a 23.780 0.001

Optic nerve_L 0.54 ± 0.11 0.90 ± 0.02a 0.62 ± 0.09b 60.964 0.001

Optic nerve_R 0.54 ± 0.10 0.90 ± 0.02a 0.62 ± 0.12b 62.262 0.001

Optic-chiasma 0.50 ± 0.13 0.89 ± 0.02a 0.39 ± 0.13ab 172.255 0.001

Hypophysis 0.55 ± 0.08 0.89 ± 0.02a 0.60 ± 0.14b 103.724 0.001

Parotid_L 0.69 ± 0.09 0.90 ± 0.02a 0.78 ± 0.09ab 61.812 0.001

Parotid_R 0.70 ± 0.11 0.89 ± 0.02a 0.77 ± 0.10b 56.567 0.001

TMJ_L 0.59 ± 0.13 0.89 ± 0.02a 0.61 ± 0.10b 88.008 0.001

TMJ_R 0.56 ± 0.14 0.89 ± 0.02a 0.58 ± 0.11b 91.815 0.001

Mandible 0.85 ± 0.06 0.87 ± 0.05 0.85 ± 0.05 2.908 0.234

Temporal lobe 0.74 ± 0.07 0.86 ± 0.14a 0.77 ± 0.07 12.743 0.002

Trachea 0.81 ± 0.06 0.88 ± 0.10 0.73 ± 0.06ab 38.201 0.001

Esophagus 0.65 ± 0.11 0.87 ± 0.12a 0.72 ± 0.06b 35.512 0.001

Larynx 0.62 ± 0.15 0.90 ± 0.02a 0.59 ± 0.12b 63.735 0.001

Inner Ear_L 0.61 ± 0.12 0.89 ± 0.02a 0.69 ± 0.14b 56.207 0.001

Inner Ear_R 0.56 ± 0.11 0.89 ± 0.02a 0.66 ± 0.19b 58.440 0.001

Oral Cavity 0.79 ± 0.08 0.82 ± 0.09 0.80 ± 0.09 1.308 0.52

Thyroid 0.69 ± 0.09 0.88 ± 0.06a 0.77 ± 0.04ab 47.936 0.001

In the annotations, “a” signifies statistical significance relative to Atlas, “b” denotes significance in comparison with Trident Network, and “ab” highlights significance relative to both Atlas and
Trident Network.

HD values were 3.45 mm for the Larynx using Altas, 2.76 mm
for the Left inner ear using the Trident Network, and 5.74 mm
for Optic-chiasma using the 2D U-net. Excluding the Left and
Right Optic Nerve, Optic Chiasma, Hypophysis and Left and
right Inner Ear, the mean HD for the Trident Network were
lower than that for Atlas. Significant differences in HD values
were observed for the Hypophysis and Left and Right Innner
ear (P < 0.05). Except for the Left and Right Inner ear, the
HD values for the Trident Network were significantly better than
those for the 2D U-Net. Additionally, the HD values for Atlas
were significantly better than those for the 2D U-Net across
all structures.

3.2.3 External validation of the Trident network
To further evaluate the robustness and generalizability of the

Trident Network, an external validation was conducted using
imaging data from 24 nasopharyngeal carcinoma (NPC) patients
from an independent medical institution. Overall, the Trident
Network outperformed the 2D U-Net in both Dice Similarity
Coefficient (DSC) and Hausdorff Distance (HD) across most
Organs at Risk (OARs). Specifically, the Trident Network achieved
a mean DSC of 0.84 ± 0.01 compared to 0.66 ± 0.02 for the
2D U-Net, and a mean HD of 1.78 ± 0.52 mm compared to
3.42 ± 0.8 mm for the 2D U-Net. These results confirm the
Trident Network’s superior performance, highlighting its robustness
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FIGURE 6
Difference evaluation on three geometric deviation metrics among (Altas, 2D U-Net and Trident Network).

and generalizability in handling diverse datasets and complex
anatomical structures. Detailed DSC and HD comparisons are
provided in Supplementary Tables S5, S6.

4 Discussion

In radiotherapy planning, precise delineation of OARs plays a
critical role in determining dose distribution within the patient, as
well as the actual target volume andOARs doses, thereby influencing
therapeutic efficacy [37, 38]. Radiotherapy physicians often face
substantial workloads due to the extensive and repetitive nature
of OAR delineation, a process further complicated by inherent
subjectivity and variability in expertise. As a result, automated
delineation has emerged as a key focus of current research, aiming to
improce efficiency and minmize discrepancies, maintain high levels
of accuracy.

This study evaluated the performance of our deep learning-
based Trident network in delineating OARs in nasopharyngeal
carcinoma, comparing its efficacy with conventional methods such
as the 2D-Unet and atlas models. The findings revealed that the
automatic contouring efficiency of Atlas was comparable to that
the Trident Network. However, the Trident Network generated
smoother contours with fewer internal voids compared to Atlas.
While tools in MIM Atlas provide automation for processes
such as smoothing and shape scaling, addressing issues like edge
jaggedness and internal voids significantly increases time costs.
Automatic delineation methods demonstrated strong performance
on larger organs with distinct edges, such as the Spinal Cord,
Eyeball, andMandible, achieving a mean Dice Similarity Coefficient
(DSC) above 0.8. This indicates high morphological similarity
and minimal geometric deviation. However, accuracy was lower
for smaller organs, such as the lens, consistent with existing
literature [39–41]. In our study, the Trident Network also showed
higher similarity and lower geometric deviation when segmenting

the small-volume OARs which is particularly meaningful for
clinical applications.

The study identified notable positional deviations in some
automatic delineations based on the atlas database, with limited
edge discernment for OARs, consistent with the findings of Lujun
LiLi. The results of the deep learning-based delineation were in
agreement with those reported by Tao Xue et al. [42], Shuming
Zhang et al. [43], and Zhe Wu et al. [44]. According to Van
Rooij et al. [45], when the DSC of auto-delineated head and
neck OARs exceeds 0.7, most OARs plans show no significant
dosimetric differences compared to manual delineation. In this
study, the mean DSC values for most OARs delineated by the 2D
U-Net and Atlas exceeded 0.7, highlighting their clinical relevance.
Moreover, the average DSC values for all OARs delineated by
the Trident Network were above 0.7, further demonstrating its
clinical utility.

The performance of the Trident Network, with a Dice Similarity
Coefficient (DSC) of 0.87 ± 0.07, indicates its superiority over
both the Atlas method (DSC: 0.67 ± 0.02) and the 2D U-Net
(DSC: 0.71 ± 0.02). This finding aligns with recent studies, such
as those conducted by Zhou et al [46]. Additionally, the Trident
Network achieved a Hausdorff Distance (HD) of 1.52 ± 1.09, further
demonstrating its superiority over both the Atlas method (HD: 1.80
± 1.31) and the 2D U-Net (HD: 4.01 ± 5.83). These results are
consistent with recent research by Ge et al [43, 47], emphasizing
the potential of advanced deep learning architectures, such as the
Trident Network, in achieving higher accuracy in medical image
segmentation, particularly for complex anatomical regions.

In our study, all the structures achieved a DSC value exceeding
0.70. Among these, with the exception of the Left and Right
lens and Oral cavity, the DSC of all structures reached as high
as 0.85. The HD results similarly indicate that uniform or bony
structures, such as the Eyeball and Mandible, perfomed better
than irregular structures like the Parotid gland and Temporal
lobe. Overall, most delineation produced by deep learning-based
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TABLE 2 Difference evaluation of HD for automatically delineated OARs in 29 NPC patients among Altas, 2D U-Net and Trident Network.

Organ Atlas Trident network 2D U-net F/H value P value

Brain stem 2.03 ± 0.86 1.17 ± 0.26a 3.85 ± 1.17ab 64.081 0.001

Spinal-cord 0.99 ± 0.24 0.78 ± 0.31 3.39 ± 1.32ab 61.682 0.001

Eyeball_L 0.95 ± 0.33 0.89 ± 0.33 2.14 ± 0.90ab 49.004 0.001

Eyeball_R 1.07 ± 0.75 0.99 ± 0.36 1.90 ± 0.90ab 35.355 0.001

Lens_L 0.95 ± 0.35 0.51 ± 0.11a 2.15 ± 1.05ab 60.169 0.001

Lens_R 0.89 ± 0.42 0.60 ± 0.60a 1.79 ± 1.69ab 43.580 0.001

Optic nerve_L 1.32 ± 0.50 1.89 ± 1.03 4.04 ± 2.02ab 45.659 0.001

Optic nerve_R 1.25 ± 0.43 1.28 ± 0.28 4.36 ± 5.85ab 54.558 0.001

Optic-chiasma 1.64 ± 0.67 1.74 ± 0.36 5.74 ± 2.55ab 56.680 0.001

Hypophysis 1.17 ± 0.30 2.07 ± 0.64a 4.82 ± 2.43ab 54.552 0.001

Parotid_L 2.64 ± 0.99 2.52 ± 0.82 4.96 ± 1.86ab 37.656 0.001

Parotid_R 2.42 ± 1.01 1.51 ± 0.24a 5.27 ± 2.47ab 55.545 0.001

TMJ_L 1.82 ± 1.09 1.46 ± 0.26 4.18 ± 1.81ab 48.862 0.001

TMJ_R 2.01 ± 0.90 1.49 ± 0.25 3.83 ± 1.51ab 46.722 0.001

Mandible 1.43 ± 1.42 0.95 ± 0.81 3.42 ± 1.72ab 44.927 0.001

Temporal lobe 3.43 ± 1.16 2.00 ± 2.03 4.56 ± 1.65ab 22.237 0.001

Trachea 1.66 ± 1.08 1.06 ± 1.18 5.24 ± 2.46ab 46.150 0.001

Esophagus 2.25 ± 1.32 0.97 ± 1.27a 4.63 ± 1.69ab 51.809 0.001

Larynx 3.45 ± 1.48 2.62 ± 0.53a 5.28 ± 2.14ab 22.836 0.001

Inner Ear_L 1.56 ± 0.68 2.76 ± 0.74a 3.35 ± 1.74a 31.172 0.001

Inner Ear_R 1.75 ± 0.55 2.68 ± 0.45a 3.56 ± 2.11a 34.341 0.001

Oral Cavity 2.77 ± 1.28 2.42 ± 1.24 5.61 ± 1.91ab 40.094 0.001

Thyroid 1.82 ± 0.83 0.67 ± 0.63a 4.10 ± 1.53ab 64.507 0.001

In the annotations, “a” signifies statistical significance relative to Atlas, “b” denotes significance in comparison with Trident Network, and “ab” highlights significance relative to both Atlas and
Trident Network.

automatic segmentation models were significantly better than that
those of the Atlas method, with the Trident Network outperforming
the 2D U-Net. Notably, the geometric deviations of all structures
delineated by the Trident Network were significantly smaller than
those for Atlas. The superior performance of the Trident Network
can likely be attributed to its ability to integrate multi-dimensional
learning processes and its robust handling of anatomical
variability. This capability is particularly crucial for accurately
delineating complex structures within the nasopharyngeal
region, which are often challenging for less sophisticated models
like the Atlas method, which relies on a more generalized
anatomical template.

5 Conclusion

In conclusion, we developed and validated the Trident
Network model for auto-contouring most organs at risk in
nasopharyngeal carcinoma radiotherapy. The model demonstrated
high segmentation accuracy across both large-volume organs, such
as the mandible and temporal lobes, and smaller, lower-contrast
organs, such as the lens and optic nerve. Following minor manual
adjustments, most organs met clinical requirements, reducing
clinical workload and improving efficiency. The Trident Network
outperformed traditional methods, highlighting its robustness and
potential for reliable clinical application.
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