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Two-dimensional (2D) materials present novel electronic and catalytic
performances, showing a promising application as nano-device. In this
investigation, a family of 2D material, X2B6 (X = K, Na and Rb), is predicted
with puckered crystal structure by elemental mutation method. The dynamic
and thermal stability of the X2B6 monolayer is addressed. The anisotropic
mechanical properties of the X2B6 monolayer is obtained by the Young’s
modulus (296–406 N/m) and the Poisson’s ratio (0.36–0.35). Interestingly,
the K2B6 and Rb2B6 monolayers demonstrate a metallic band structure, while
the Na2B6 monolayer is a semiconductor with an ultra-narrow bandgap only
about 0.42 eV. Then, the ultra-high electron mobility in the Na2B6 monolayer
is calculated as about 9942 cm2.V−1.s−1, and the excellent optical performance
of the Na2B6 monolayer is also addressed. More importantly, the advantageous
catalytic activity in hydrogen evolution reduction (HER) and oxygen evolution
reactions (OER) is explored in these X2B6 monolayers. Our work suggests a
theoretical guidance to use the X2B6 monolayer as a high-speed electronic
devices and highly efficient catalyst.
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Introduction

2D materials have attracted considerable focus after the preparation of the graphene
[1], which shows the excellent thermal and catalytic performances [2–4]. While the
zero bandgap limits the application of graphene in power devices [5, 6], and then the
transition metal dichalcogenides (TMDs) materials are proposed with decent bandgaps
larger than that of the bulk one [7]. For example, theMoS2 monolayer presents novel optical
absorption characteristics as a potential photocatalyst [8, 9], which also can be prepared as
photoluminescence [10]. In particular, the Janus MoSSe monolayer, as popular asymmetric
TMDs, further demonstrates a novel thermal and phononic properties with a polar nature
[11–13]. Likewise, 2D Janus materials explain different characteristic on both sides, such
as adsorbed [14], catalytic [15], mechanical [16] and electronic properties [17]. All these
obtained novel performances of the 2D materials also can be tuned by strain engineering
[18, 19], interface coupling [20, 21], external electric field [22] and temperature [23] etc.

Using the nanoscale materials as a catalyst in the hydrogen evolution reaction (HER)
and oxygen evolution reaction (OER) is also popular [24–26], because more active sites can
be exposed [27–30]. For example, the ability of the OER of the CoO2 and FeO2 monolayers
can be improved by decreasing 40% overpotential under external strain [31]. The barrier of
the biphenylene network inHER is obtained as low as −0.03 eV by the decent atomic doping
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[32]. The intrinsic defect is also a popular strategy to tune the HER
and OER performances of the 2D materials [33]. Besides, to further
extend the application range of 2D material, the heterostructure
is constructed, which can induce novel electronic and catalytic
properties because of the built-in electric field across the interface
[17]. PtS2/arsenene heterostructure is constructed with a −0.487 eV
potential for the HER, which is lower than the origin PtS2 and
arsenene monolayers [34]. C2N/WS2 heterostructure can facilitates
OER with potential of about 1.81 eV [35]. Besides, the prediction
of new 2D materials is also an important approach to expand the
properties for nano-devices [36, 37]. For example, Ag2S monolayer
acts a semiconductor with auxetic mechanical properties using
as nano-electronics [38]. The band edge positions of the SnP2S6
monolayer promises the redox potential of the water splitting as
a photocatalyst [39]. IV–VI monolayers present ultrahigh carrier
mobility, which also act as an excellent HER catalyst [40]. Recently,
2D boron based compound has been proposed to possess excellent
electronic and catalytic properties. For example, the Janus B2P6
is predicted as potential photocatalyst for water splitting [41],
and the band edge energy also can be tuned by external strain
[42]. The Li2B2 monolayer is calculated with a high hole mobility
of 6.8 × 103 cm2⋅V− 1⋅s− 1 using as high-speed electronic devices
[43]. The auxetic B4N monolayer shows an apparent mechanical
anisotropy coupled with robust structural stability in future nano-
mechanical devices [44]. All these point that exploring the boron
(B) based 2D materials as advanced functional material presents
significant prospects.

In this work, we propose a novel 2D materials, X2B6 (X
= K, Na and Rb) monolayer, using elemental mutation method
by the prototype of Li2B6 monolayer [43]. The stability of the
predicted K2B6, Na2B6 and Rb2B6 monolayers is addressed by
phonon spectrum and the ab initio molecular dynamics (AIMD)
simulations. The mechanical and the electronic performances are
investigated by the density functional theory (DFT).Then, the ultra-
high electronmobility and the optical light absorption properties are
obtained in the Na2B6 monolayer. The unique catalytic activity of
these X2B6 monolayer in HER and OER is studied.

Computational details

All the calculations in this investigation were implemented by
Vienna ab initio simulation package (VASP) using first-principle
method, which is based on the DFT [45–47]. The core electrons
was addressed in the simulations using projector augmented wave
potentials (PAW) [48, 49].The Perdew–Burke–Ernzerhof (PBE) was
carried out to demonstrate the exchange correlation method based
on the generalized gradient approximation [50–52]. To correct the
weak van der Waals interaction in the HER and OER system, the
DFT-D3methodwas used byGrimme functional [53]. Furthermore,
the Heyd–Scuseria–Ernzerhof (HSE06) calculations were explored
to investigate the electronic and optical performances of the Na2B6
monolayer [54]. It is worth noting that the spin effect was not taken
into account in the calculation of electronic properties, because we
found that the obtained band structure with the spin turned on
and off are exactly the same, shown as Supplementary Figure S1.
The Monkhorst–Pack with a k-point grids as 11 × 11 × 1 and 17 ×
17 × 1 were used in the relaxation and self-consistent simulations,

respectively. The vacuum space was set as 25 Å, which can optimize
the interaction of nearby layers. The parameter of the convergence
for force and energy are set as 0.01 eVÅ−1 and 0.01 meV, respectively.
In the simulation of the phonon spectra, the PHONOPY code was
used based on the density functional perturbation theory [55, 56].

Results and discussion

First, the atomic structure of the K2B6, Na2B6 and Rb2B6
monolayers are predicted with the puckered crystal structure
showing a space group of Pca21, by elemental mutation method
using the prototype of structure from the Li2B6 monolayer [43].The
optimized structure of the X2B6monolayer is presented as Figure 1A
and the obtained lattice parameters of the a (or b) in unit-cell of the
K2B6, Na2B6 and Rb2B6 monolayers are 4.311 (or 3.554), 4.313 (or
3.616) Å and 4.312 (or 3.552) Å, respectively, which is smaller than
that of the Li2B6 monolayer. The bond length of X–B (LXB) and the
B–B (LBB) in the K2B6, Na2B6 and Rb2B6 monolayers are obtained
as LXB = 2.850 Å and LBB = 5.018 Å, LXB = 2.523 Å and LBB =
3.598 Å,LXB =2.978 Å andLBB =5.450 Å, respectively. Furthermore,
the cohesive energy of the K2B6, Na2B6 and Rb2B6 monolayers
is calculated as 6.794 eV/atom, 5.974 eV/atom and 6.048 eV/atom,
respectively, which is obtained by (2EX + 6EB–EXB)/8, where EX, EB
and EXB are used to present the total energy of an X, B atoms and
the X2B6 system, respectively. Thus, the calculated cohesive energy
of the X2B6 system is also larger than that the predicted IV–VI
system (about 3.37–3.81 eV/atom) [57] and comparable with the CB
monolayer (about 6.13 eV/atom) [58], showing a stability for these
K2B6, Na2B6 and Rb2B6 monolayers. Besides, the dynamic stability
of the K2B6, Na2B6 and Rb2B6 monolayers is also studied by phonon
spectra obtained in Figure 1B. Obviously, no imaginary frequency
can be found in the phonon spectra of these X2B6 monolayer,
suggesting the dynamic stability of the K2B6, Na2B6 and Rb2B6
monolayers.The highest frequency of the optical branch of the K2B6,
Na2B6 and Rb2B6 monolayers is about 34 THz which is smaller than
the prototype of the Li2B6 system.

Then, the thermal stability of the K2B6, Na2B6 and Rb2B6
monolayers is also investigated by the AIMD method by the
Nosé−Hoover heat bath functional [59]. The supercell of the X2B6
monolayer is obtained as 7 × 4 × 1 to prevent the lattice translational
constraints, which also presents 192 atoms [60]. Besides, the
structure of the X2B6 monolayer is totally relaxed under 300 K and
600 K for 10 ps, after the complete calculations. One can see that the
crystal structure of the X2B6 monolayer is still undamaged shown
as the insets of Figure 2. The temperature and energy of the X2B6
monolayer system in the AIMD calculations are also convergent
demonstrated as Figure 2, explaining a clear thermal stability at
300 K. Furthermore, the K2B6 and Na2B6 monolayers are also stable
at 600 K because the structure is still intact, while the structure of the
Rb2B6 monolayer can be melted down at 600 K, shown as Figure 2.

Then, the mechanical properties of these X2B6 monolayer is
investigated by the orientation dependences of Young’s modulus
using [61] Equation 1 as follows:

E(θ) =
C11C22 −C2

12

C11 sin4 θ+C22 cos4 θ+(
C11C22−C

2
12

C66
− 2C12)cos2 θ sin2 θ

(1)
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FIGURE 1
(A) The crystal structure and the (B) phonon spectrum of the X2B6 monolayer. The green and the purple atoms are B and X atoms, respectively.

FIGURE 2
The energy and the temperature of the X2B6 monolayer in the AIMD calculations, the inset is the relaxed structure of the X2B6 monolayer at 300 K and
600 K for 10 ps.

where θ explains the angle of a direction shown as Figure 1A.
The calculated Young’s modulus of the K2B6, Na2B6 and Rb2B6
monolayers is demonstrated in Figures 3A, C, E, respectively. One
can see that K2B6, Na2B6 and Rb2B6 monolayers present the
anisotropic Young’s modulus with the maximal and minimal values
at θ = 90° and θ = 0°, respectively, shown as Figures 3A, C, E. The
obtained maximal Young’s modulus of the K2B6, Na2B6 and Rb2B6
monolayers are 296 N/m, 397 N/m and 406 N/m, respectively.Then,
the orientation dependent Poisson’s ratio of the X2B6 monolayer is
also studied by [57] Equation 2 as follows:

v(θ) = −
(C11 +C22 −

C11C22−C2
12

C66
)cos2 θ sin2 θ−C12(cos4 θ+ sin4 θ)

C11 sin4 θ+C22 cos4 θ+(
C11C22−C2

12
C66
− 2C12)cos2 θ sin2 θ

(2)

The calculated Poisson’s ratio of the K2B6, Na2B6 and Rb2B6
monolayers are demonstrated by Figures 3B, D, F, respectively.
Obviously, themaximal Poisson’s ratio of theK2B6, Na2B6 andRb2B6
monolayers are obtained as about 0.35, 0.29 and 0.26, respectively,
with the θ about 45°. Such obtained Young’s modulus and Poisson’s
ratio of the X2B6 monolayer is also higher than that of the carbon
monochalcogenides [62] and biphenylene [61].

Furthermore, the band structure of the K2B6, Na2B6 and Rb2B6
monolayers is calculated shown by Figure 4 using PBE method.
The K2B6 and Rb2B6 monolayers present a semi-metallic property,
shown as Figures 4A, C, while the Na2B6 monolayer suggests
semiconductor nature with the direct bandgap that the conduction
band minimum (CBM) and the valence band maximum (VBM) are
located at the Г point, shown as Figure 4B. In order to obtain a
more accurate bandgap of the Na2B6 monolayer, HSE06 functional
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FIGURE 3
The obtained (A, C, E) Young’s modulus and the (B, D, F) Poisson’s ratio of the (A, B) K2B6, (C, D) Na2B6 and (E, F) Rb2B6 monolayers.

FIGURE 4
The PBE obtained band structure of the (A) K2B6, (B) Na2B6 and (C) Rb2B6 monolayers. The Fermi level is set as 0 eV.

is explored. Interestingly, the Na2B6 monolayer presents an ultra-
narrow bandgap as about 0.42 eV, smaller than the As2X3 system
[63], shown as Supplementary Figure S2. It is worth noting that
such ultra-narrow bandgap in Na2B6 monolayer is also reported
in the PbN/CdO heterostructure (about 0.128 eV) [64], which can
serve as a promising efficient nano-electronic and catalyst [65, 66].
Besides, the projected band structure of the Na2B6 monolayer is also
demonstrated by Figure 4B. Obviously, B atoms almost contribute to
the band energy comparing with the Na atoms.

Since the ultra-narrow bandgap is obtained as about 0.42 eV
for the Na2B6 monolayer, the potential application as nano-devices

is promising. Thus, the carrier mobility of the Na2B6 monolayer
is necessary to be investigated. The electrons and holes mobility
of the Na2B6 monolayer along the transport directions (a and b
demonstrated in Figure 1A) is explored using the Bardeen-Shockley
method [45] which is calculated by Equation 3 as follows:

μ = eℏ3C/(kBTm∗√m∗xm∗yE2) (3)

where elementary charge, the Planck constant and the Boltzmann
constant are e, ћ and kB, respectively. The effective mass of the
electron and hole is represented using the m∗, which is calculated
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FIGURE 5
The obtained (A) total and (B) band energy positions of the Na2B6 monolayer under different external strain.

by Equation 4 as follows:

m∗ = ℏ2(
d2Ek
 dk2
)
−1

(4)

where k and Ek are the wave vector and electronic energy,
respectively. C represents the elastic modulus of the monolayered
Na2B6, which is obtained by C = [∂2E/∂((l–l0)/l0)/S0. In this
equation, the original lattice constant, the free energy and difference
of the lattice constant by the strain are expressed as l, E and
l0, respectively. S0 is used to represent the area of the Na2B6
monolayer. The energy difference of the Na2B6 system by the
external uniaxial strain is calculated as Figure 5A. Furthermore, E
is the potential constant of the Na2B6, which is obtained using E
= ΔEedge/((l–l0)/l0), where the ΔEedge is difference of the CBM or
VBM energy tuned by external strain in the a or b directions. As
shown in Figure 5B, the CBM and the VBM of the Na2B6 monolayer
can be obviously increased and decreased, respectively, when the
external strain is applied. Besides, Figure 5B demonstrates that the
dependence of VBM energy of the Na2B6 monolayer is obvious
under applied strain, suggesting the large potential constant in the
Na2B6 monolayer for holes.

Next, the calculated effective mass of the Na2B6 monolayer
along a and b directions are shown as Table 1. One can see that
the effective mass of electrons and holes is relatively uniform in
transport direction. The calculated deformation potential constant
of the hole is larger than that of the electrons in theNa2B6monolayer
shown as Table 1. Besides, the elasticmodulus ofNa2B6monolayer is
also explained as Table 1. It is worth noting that the elastic modulus
of the Na2B6 monolayer is obtained as 409 N.m−1 and 420 N.m−1,
respectively, which is consistent with the previous calculation results
of Young’smodulus along a and b directions.Therefore, the apparent
isotropic carrier mobility of the Na2B6 monolayer is also obtained
that electron shows a fast mobility as about 9942 cm2.V−1.s−1 and
5486 cm2.V−1.s−1 along a and b directions, respectively. While the
hole mobility in Na2B6 monolayer is calculated as 650 cm2.V−1.s−1

and 862 cm2 V−1 s−1, along a and b directions, respectively. In the
same transport direction, the huge difference between electrons and
holes allows them to be effectively separated, about 15 (a direction)
times and 6 (b direction) times, suggesting the potential application
as photocatalyst. Besides, the calculated electron mobility of the

TABLE 1 The obtained effective mass (m∗) and the deformation potential
constant (E, eV) of the Na2B6 monolayer. The calculated elastic modulus
(C, N·m−1) and carrier mobility (μ, cm2·V−1.s−1) of the Na2B6 monolayer
along transport directions.

Material Direction Carrier m∗ E C μ

Na2B6

A
E 1.153 0.66

409
9942

H 1.029 −2.89 650

B
E 1.180 0.89

420
5486

h 1.056 −2.51 862

Na2B6 monolayer is even higher than that of other 2D materials,
such as B2P6 monolayer (5888 cm2.V−1.s−1) [42], Li2B6 monolayer
(6800 cm2.V−1.s−1) [43] and MoSi2N4 (2169 cm2.V−1.s−1) [67].

Considering the ultra-narrow bandgap obtained for
semiconductor of the Na2B6 monolayer, the optical absorption
spectrum is further calculated by HSE06 method, which is defined
as [8] Equation 5 as follows:

α(ω) =
√2ω
c
{[ε21(ω) + ε

2
2(ω)]

1/2 − ε1(ω)}
1/2 (5)

where ε1(ω) shows the real parts and the ε2(ω) suggests the
imaginary part of the dielectric constant. ω is demonstrating
the angular frequency. While the complex dielectric function is
calculated by ε(ω) = ε1(ω) + iε2(ω), where ε1 can be calculated from
ε2 via the Kramers–Kronig relation. Furthermore, the ε1(ω) and
ε2(ω) can be decided as Equation 6 as follows:

ε2(q→ O ̂u,ℏω) =
2e2π
Ωε0
∑
k,v,c
∣ ⟨Ψc

k| ̂u ⋅ r|Ψ
v
k ⟩|

2 × δ(Eck −E
v
k −E) (6)

where Ψk, Ek and ̂u are the wave function, energy and unit vector of
the electric field of the incident light. The superscripts (v and c) in
Ψk, Ek, label the conduction bands and valence bands, respectively.

Shown as Figure 6A, the optical absorption ability is presented
that the light absorption peak of the Na2B6 monolayer is
about 11.8 × 105 cm−1 with the wavelength about 335 nm.
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FIGURE 6
(A) The calculated optical absorption spectrum of the Na2B6 monolayer. The free energy of the in the (B) HER and (C) OER of the K2B6, Na2B6 and
Rb2B6 monolayers. The insets represent the structures of the intermediates in the HER and OER.

Such excellent optical absorption performance of the Na2B6
monolayer is more advantages than that of other 2D materials
such as AlN/Zr2CO2 heterostructure (3.79 × 105 cm−1) [68],
CdO/Arsenene heterostructure (8.47 × 104 cm−1) [69] and SiSe
monolayer (7.98 × 105 cm−1) [57].

Then, the catalytic properties of K2B6, Na2B6 and Rb2B6
monolayers are investigated by calculating the Gibb’s free
energy of the system. First, the overall process of HER and
the OER in water splitting is demonstrated as Equations
7–10 as follows:

H2O+ 2h+→ 2H+ + 1/2O2 (7)

2H+ + 2e− → H2 (8)

where the main reactions in the HER process are:

∗+H+ + e– → H∗ (9)

H∗ +H+ + e– → H2 +∗ (10)

where∗indicates the active site on the Na2B6 monolayer. It can
be seen that the intermediate product of the HER process is
only H∗. As an efficient catalyst, its Gibb’s free energy should
satisfy ΔGH = 0 as much as possible. The most excellent Gibb’s
free energy in HER of these X2B6 monolayer are obtained
as Na2B6 monolayer, shown as Figure 6B, as about 0.64 eV,
which is even lower than that of the MoSi2N4 (2.33 eV)
[67]. Besides, in the OER reaction, the intermediate products
are OH∗, O∗and OOH∗. This process can be expressed as
Equations 11–14 as follows:

∗+H2O → OH∗ +H+ + e– (11)

OH∗ → O∗ +H+ + e– (12)

O∗ +H2O → OOH∗ +H+ + e– (13)

OOH∗ →∗+O2 +H+ + e– (14)

One can see that the rate-determining step in the OER of
the K2B6, Na2B6 and Rb2B6 monolayers is first step with the
overpotentials about 1.78 eV, 2.19 eV and 2.28 eV, respectively,
shown as Figure 6C. The insets in Figure 6C also demonstrated the
adsorption configuration of intermediate. Moreover, the calculated
OER catalytic activity of these X2B6 monolayers is also lower
than that of the PtS2/arsenene heterostructure (5.516 eV) and
WSSe monolayer (2.39 eV). It is worth noting that the most
stable HER and OER adsorption configuration of these system
is demonstrated by binding energy (Eb), which is obtained
as Eb = Esystem–Epure–E, where Esystem, Epure and E are the
energy of the adsorbed X2B6, pure X2B6 monolayer and single
intermediates, respectively. The lower binding energy imply the
more stable configuration of the H∗, OH∗, O∗and OOH∗, showing
as inset of Figures 6B, C.

Conclusion

In summary, the first-principle calculations are explore
to predict the structural, electronic, mechanical, optical and
catalytic properties systematically of the novel K2B6, Na2B6 and
Rb2B6 monolayers. All these X2B6 monolayers present a stability
structure, with an anisotropic Young’s modulus (296–406 N/m)
and the Poisson’s ratio (0.36–0.35). Then, the ultra-narrow
bandgap (0.42 eV) is obtained in the Na2B6 monolayer with
high electron mobility as about 9942 cm2. V−1.s−1. in decent
transport direction. Furthermore, the excellent light absorption
properties of the Na2B6 monolayer is also investigated. All these
X2B6 monolayers suggest a low Gibb’s free energy in HER and
OER, suggesting the potential applications as efficient nanodevice
and catalyst.
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