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This paper offers a concise overview regarding ancient Chinese mathematics,
centering on the Ying Buzu Shu, He Chengtian inequality, and the frequency
formulation stemming from them. Moreover, it delves into the Max-
min approach and Chunhui He’s iterative algorithm. What’s more, the spotlight
is cast on ancient Chinese mathematics, which bears certain similarities to the
ancient Babylonian mathematical tradition. Subsequently, the old Babylonian
algorithm for computing square roots is adapted to tackle the hurdle of nonlinear
differential equations. To showcase the potential of this approach, a set of
Micro-Electro-Mechanical systems (MEMS) problems are utilized to exemplify
the effectiveness of the modified old Babylonian algorithm in attaining high-
precision analytical solutions, accompanied by an exploration of its prospective
applications.
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1 Introduction

Every student knows Newton’s iteration method from a textbook, but few may be aware
of an ancient Chinese algorithm called Ying Buzu Shu, which has some advantages over
Newton’s method and is also widely used in numerical simulations. Ying Buzu Shu is a
sophisticated method for approximating solutions to a variety of mathematical problems.
It involves the initialization of two estimates and the subsequent refinement of the solution
through a series of calculations. Since Ying Buzu Shu is insensitive to initial estimates, but
predicts a fast rate of convergence, it has great practical implications for many real-world
challenges in various fields of engineering, such as industrial engineering, civil engineering,
electrical engineering, and mechanical engineering. The applications of Ying Buzu Shu in
modern sciences to nonlinear differential equations can be found in references [1–3].

A modern mathematical perspective on ancient mathematics can offer a fresh insight
into the applications of mathematics to practical problems. The application of ancient
Chinesemathematics tomodern engineering problemswas first initiated in 2006 byChinese
mathematician Dr. He [4]. Subsequently, many highly regarded analytical techniques have
been developed.Notable among these aremethods of approximating solutions to differential
equations. In addition, methods for studying the frequency-amplitude relationship of
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oscillators have been developed. The simplicity and effectiveness of
the formulation have contributed to its widespread use for quickly
and reliably gaining insight into the periodic characteristics of
nonlinear vibration systems. Professor He further developed the
ancient Chinese mathematical algorithm into a modern numerical
method called He’s frequency formula [5, 6]. It was proposed as a
means of solving nonlinear oscillators and has since been regarded
as the simplest method of doing so. The Chinese mathematician
Chun-Hui He provided a rigorous mathematical analysis and then
proposed a modification that was subsequently named the Chun-
Hui He iteration algorithm [7, 8]. TheMax-min approach [9, 10], as
a major extension, has been the subject of considerable research and
is widely used in engineering.

Another topic of considerable interest in the field of ancient
Chinese mathematics is He Chengtian inequality, which was used
for astronomical problems such as calculating the lunar cycle. It
has been proved that Ying Buzu Shu and He Chengtian inequality
are equivalent under some special cases, that means He Chengtian
inequality can be derived from the method of Ying Buzu Shu [11].
Although both methods are originally proposed to solve nonlinear
algebraic equations, they can also be extended to solve various
nonlinear differential equations [4, 12].

2 Old Babylonian mathematics

Closely related to the He Chengtian inequality is the old
Babylonian algorithm, which can even be seen as a special case of
the He Chengtian inequality in a sense.

The old Babylonian mathematics, a brilliant mathematical
treasure of ancient civilization, not only made outstanding
achievements in algebra, geometry, astronomy and other fields,
but also made unique contributions to numerical computation [13,
14].The algorithm used by the old Babylonians to solve square roots
was not only practical at the time, but also had a profound impact
on the later development of mathematics [15–17]. It inspired later
mathematicians to develop more efficient and accurate numerical
solution methods, such as Newton’s iteration method. In addition,
the ideas of the old Babylonian algorithm are widely used in fields
such as computer science, engineering andphysics, andhave become
one of the foundations of numerical computation.

The algorithm used by the old Babylonians to solve square
roots is known as the predecessor of the old Babylonian algorithm
or the Newton-Raphson algorithm [18]. The principle of the old
Babylonian algorithm is based on the property of square roots,
which means that the square root of a number is approximately
equal to the value obtained by adding it to another approximation
and dividing by 2. As the number of iterations increases, this
approximation becomes closer to the true square root value.Modern
mathematics has proven the correctness of this algorithm and
extended it to more general numerical solution methods.

With its simplicity, efficiency andpracticality, the oldBabylonian
algorithm has become a shining pearl of ancient mathematics.
Through in-depth research on this algorithm, we can not only
understand the development process and achievements of ancient
mathematics, but also draw wisdom from it, providing reference
and inspiration for the development of modern mathematics and
scientific technology. Recently, Professor He studied the application

of the old Babylonian algorithm in modern technology and
proposed for the first time that the old Babylonian algorithm can
solve equations, including differential equations [18].

Differential equations are an important branch of mathematics.
By establishing the relationship between variables and their rates
of change, differential equation models can be used to predict
and analyze the behavior of systems, such as the vibrations
of physical systems, economic market fluctuations, population
growth, etc. Differential equations have wide applications in fields
such as physics, engineering, biology, chemistry, economics and
demography, and can be used to describe numerous dynamic
processes in nature and engineering. As a bridge between
mathematics and practical applications, differential equations
provide us with an important tool for quantifying and predicting
how systems evolve over time. Among them, MEMS differential
equations refer to the differential equations in mathematical
models related to Micro-Electro-Mechanical systems (MEMS).
These equations are commonly used to describe the dynamic
properties and behavior of MEMS devices. MEMS systems are a
revolutionary high-tech industry, highly valued by governments
and experts around the world. They have wide applications
in biotechnology, aerospace and military fields. The pull-in
phenomenon is an important characteristic in MEMS systems,
especially in electrostatically driven micro actuators. It refers to
the suction phenomenon that occurs when two polar plates reach
a critical position under the drive of electrostatic force. The pull-in
phenomenon inMEMS systems is a complex and important research
area, and obtaining accurate pull-in point data is crucial for both
theoretical research and practical applications [19–22]. Studying
the differential equations of MEMS is of great importance for
promoting the development of micro-nano electronics technology,
optimizing the performance of MEMS systems and providing
theoretical support.

In this article, we attempt for the first time to apply the old
Babylon algorithm to a class of MEMS differential equations and
search for high-precision frequency and approximate solutions, in
order to apply it to the study of more differential equations that
cannot provide analytical solutions.

3 The old Babylonian algorithm

Friberg analyzed the effectiveness of the old Babylonian
approximation method for finding square roots in quadratic
equations [23]. Ilic et al. gave a note on the old square root
algorithm and related variants [24]. Below, wewill provide a detailed
introduction to this method.

Consider the following algebraic equation

x2 = a (a > 0) (1)

To find the square root of a, the iterative formula of Equation 1 is

xn =
1
2
xn−1 +

1
2

a
xn−1

(2)

An initial guess x0 is chosen, an approximation xn is
calculated by Equation 2

x0
a
x0
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TABLE 1 Four iterations to seek the value of √3.

n = 0 x0 = 1
3
x0
= 3 [1, 3]

n = 1 x1 = 2
3
x1
= 1.5 [1.5, 2]

n = 2 x2 = 1.75
3
x2
≈ 1.7142857143 [1.7142857143,1.75]

n = 3 x3 ≈ 1.7321428571
3
x3
≈ 1.7319587629 [1.7319587629,1.7321428571]

n = 4 x4 ≈ 1.7320508100
3
x4
≈ 1.7320508051 [1.7320508051,1.7320508100]

x1 =
1
2
x0 +

1
2
a
x0

a
x1

x2 =
1
2
x1 +

1
2
a
x1

a
x2

x3 =
1
2
x2 +

1
2
a
x2

a
x3

x4 =
1
2
x3 +

1
2
a
x3

a
x4

x5 =
1
2
x4 +

1
2
a
x4

a
x5

……

xn =
1
2
xn−1 +

1
2

a
xn−1

a
xn

……

This results in a closed interval set [ a
xn
,xn] (or [xn,

a
xn
]). As the

number of iterations increases, the length of the interval set becomes
shorter. Continuing in sequence will yield the exact value of the
square root. Table 1 displays the iterative process of solving √3 in
old Babylonian mathematics. Taking the calculation of √3 as an
example, here √3 = 1.7320508075⋯⋯. After the fourth iteration,
the interval [1.7320508100, 1.7320508051] appeared. This interval
already contains a high-precision approximate solution of√3, which
can be accurate to the seventh decimal place, that is, millions of
decimal places.

4 The modified old Babylonian
algorithm

Recently, He studied the application of old Babylonian
mathematics in finding high-precision approximate solutions for
differential equations [18]. Now we are studying a more general
extension of this method.

4.1 Ordinary differential equation

The third part elaborates on the iterative method for the square
root of a real number a. It is easy to find that in the iterative formula
for finding√a, the sum of the coefficients of xn−1 and

a
xn−1

is 1, so it is
advisable to introduce parameter α (a positive integer) to make the

recursive formula more generalized. The formula is as follows

xn =
α
2
xn−1 +
(2‐α)
2

a
xn−1
(0 < α < 2) (3)

When α = 1, Equation 3 becomes Equation 2.
For a general equation as follows

xm − a = 0 (4)

The modified old Babylonian algorithm of Equation 4 is

xn =
α
m
xn−1 +
(m‐α)
m

a
xn−1
(m− 2 < α <m) (5)

This method can not only solve algebraic equations but also
differential equations. Let’s take a second-order differential equation
as an example

x″ + f (x) = 0 (6)

Construct an iteration algorithm based on Equation 5 as follows:

xn =
α
2
xn−1 +
(2‐α)
2

x″n−1 + f (xn−1) + (xn−1)
2

xn−1
(0 < α < 2) (7)

Firstly, select trial solution x0 that meets the initial
conditions. For Equation 6, we often choose

x0 = Acos(wt +φ) (8)

Here, A and φ are two constants determined by the initial
conditions, and w is the undetermined parameter. The method for
finding w is given by the following Equation 9 [18]

x1(t) =
α
2
x0(t) +

(2‐α)
2

x″0 (t) + f (x0(t)) + (x0(t))
2

x0(t)
(9)

where t is a location point.

4.2 MEMS systems

With the advancement of science and technology, the
MEMS system has become a widespread technology due to its
miniature size, minimal power consumption, high integration,
and sophisticated intelligence. However, a major challenge in the
application of these devices is the pull-in phenomenon, which can
lead to device malfunction.
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A thorough study of the pull-in phenomenon in electrostatic
actuation devices is of paramount importance to ensure the optimal
performance and reliability of these devices. Pull-in instability has
become a topic of great interest in both industry and academia,
and numerous studies have been conducted on the dynamic pull-
in of MEMS models. Tian and her colleagues proposed a fractal
MEMS system and demonstrated that the pull-in instability can be
transformed into a stable state [25]. He established a variational
principle that can be used for both analytical and numerical analysis
of the MEMS system [26, 27].

As a practical application, we consider the following nonlinear
equation arising in MEMS systems

y″ + y + θ
y − 1
= 0,y(0) = 0,y′(0) = 0,θ > 0 (10)

Here y is the dimensionless distance, θ represents a voltage-
related parameter.

The system displays periodic or unsteady behavior.When θ does
not exceed a critical value, the phase space trajectory closes on
itself and the system moves periodically, and when θ exceeds the
critical value, it becomes the pull-in instability. The critical value
is θ = 0.203632188. The pull-in behavior is an inherent property of
the MEMS oscillator, which occurs when the voltage is larger than
its threshold value. It plays an important role in electrostatic drive
sensors because of their efficient and reliable operation [28–30].

The transcendental equation describing the pull-in
phenomenon is

(1+
√1− 4θ
2
)

2

+ 2θ ln|1− 1+
√1− 4θ
2
| = 0 (11)

where θ is a positive root of Equation 11.
We need to solve this nonlinear equation to discuss the effect

of the MEMS oscillator parameter on the pull-in voltage. For this
purpose, we use the improved old Babylonian algorithm andwe have

1+√1− 4θn
2
= 1
2

1+√1− 4θn−1
2

+ 1
2

−2θn−1 ln|1−
1+√1−4θn−1

2
|

1+√1−4θn−1
2

(12)

The process is initiated with a value of θ0 = 0.2, and the initial
iteration produces θ1 = 0.202812891 based on Equation 12. The
relative error for the first iteration result is 0.4023%.

Subsequently, the improved old Babylonian algorithm will
be employed to ascertain approximate solutions to differential
equations. However, it is important to acknowledge that thismethod
is not applicable to differential equationswith zero initial conditions.
So, the first objective is to introduce a transformation to overcome
the drawbacks.

Assuming x = A− y and substituting it into Equation 10, we
obtain

x″ + x −A+ θ
1−A+ x

= 0,x(0) = A,x′(0) = 0 (13)

The nonlinear term θ
1−A+x

could be expanded in the form

θ
1−A+ x

= θ
1−A
(1+ x

A− 1
+ x2

(A− 1)2
+⋯) (14)

Substituting Equation 14 into Equation 13 yields

x″ + x + θ
1−A
( x
A− 1
+ x2

(A− 1)2
+⋯)−A+ θ

1−A
= 0 (15)

This equation−A+ θ
1−A
= 0 needs to be assumed to eliminate the

constant term, and it gets θ = A(1−A) in Equation 15.
He’s frequency formula ωHe of Equation 13 is approximated as

follows [31–34]

ωHe =
√d(x −A+

θ
1−A+x
)

dx
|||

|x= A
2
,θ=A(1−A)

= √5A
2 − 8A+ 4
(A− 2)2

(16)

The frequency formula has been utilized to gain rapid and
reliable insights into the frequency-amplitude relationship of
nonlinear vibration systems. The location point is a topic that has
been the subject of considerable debate, with a lot of modifications
having been proposed. Lyu and colleagues put forward an alternative
location point [35], while He and others recommended the use
of multiple location points, followed by the calculation of an
average value [36]. Shen suggested the employment of Lagrange
interpolation for the location points [37], while Mohammadian
introduced a novel approach for determining the location point [38].

According Equation 8 and Equation 16, the approximate
solution of Equation 10 is

y = A−Acos(√5A
2 − 8A+ 4
(A− 2)2

t) (17)

Rewrite Equation 13

x2 = (A− 1− x)x″ + (2A− 1)x,x(0) = A,x′(0) = 0 (18)

For Equation 7, the iteration algorithm of Equation 18
can be set as

xn =
α
2
xn−1 +
(2‐α)
2
(A− 1− xn−1)x

″
n−1 + (2A− 1)xn−1
xn−1

(19)

We can assume the trial solution is

x0 = Acos(wt) (20)

Here, α will also be taken as 1. Substituting
Equation 20 into Equation 19 yields

x1 =
1
2
Acos(wt)

+ 1
2
(A− 1−Acos(wt))(−Aw2)cos (wt) + (2A− 1)Acos(wt)

Acos(wt)

= A+Aw
2

2
cos (wt) + 2A− 1−Aw2 +w2 (21)

By the initial condition, Equation 21 becomes

x1(0) =
A+Aw2

2
+ 2A− 1−Aw2 +w2 = A (22)

Based on Equation 22, the frequency w has the following form

w = √1− 1.5A
1− 0.5A

(23)
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FIGURE 1
Comparison of the approximate solutions of Equation 17 and Equation 24 with the exact ones for (A) θ = 0.0475, A = 0.05; (B) θ = 0.09, A = 0.1; (C) θ =
0.1275, A = 0.15; and (D) θ = 0.16, A = 0.2.

So, based on Equation 23, the approximate solution of
Equation 10 is

y = A−Acos(√1− 1.5A
1− 0.5A

t) (24)

We compare the numerical solution with the analytical solution
according to Equation 17 and Equation 24 in Figure 1 for different
values of θ. We can find that the approximation is better and the
error is smaller. The example shows that He’s frequency formula
method and the modified old Babylonian algorithm are all useful
tools for nonlinear systems. But as the value of θ increases, the error
between the approximate solution and the exact solution becomes
larger and larger.

In order to increase the accuracy of the approximation, it is
usually advisable to search for a trial solution in the following way

x0 = μcos(wt) + (A− μ)cos (3wt) (25)

where μ is an unknown constant that satisfying the following form
according to Equation 13: x0(0) = A, x

′
0(0) = 0, x

″
0 (0) = A

2 −A.

FIGURE 2
Comparison of the approximate solutions of Equation 32 with the
exact ones for θ = 0.16, and A = 0.2.
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Using the above formula, it is easy to obtain

μ = A(A− 1
8w2 +

9
8
) (26)

By Equation 19 and Equation 25, it yields

x1(t) =
1
2
(μcos(wt) + (A− μ)cos (3wt))

+ 1
2
[
(A− 1− μcos(wt) − (A− μ)cos (3wt))(−μw2 cos(wt) − 9w2(A− μ)cos (3wt))

μcos(wt) + (A− μ)cos (3wt)

+(2A− 1)] (27)

The location point [18] is chosen as

wt = π
6

(28)

This means

x1(t) =
√3
2

μ (29)

By Equations 27–29, we have

w2 =
2A− 1− √3

2
μ

A− 1− √3
2
μ

(30)

Substituting Equation 26 into Equation 30 yields

[(8− 9
√3
2
)A− 8]w4 −[

√3
2

A2 + (16− 5√3)A− 8]w2 +
√3
2

A(A− 1) = 0

(31)

Equation 31 is a fourth-order equation about frequencyw, which
can also be seen as a quadratic equation of w2. For different values
of A, solving this equation can obtain the frequency values.

Then a higher precision approximate solution of Equation 10 is

y = A− μcos(√
2A− 1− √32 μ

A− 1− √32 μ
t)−(A− μ)cos(3√

2A− 1− √32 μ

A− 1− √32 μ
t)

(32)

Figure 2 shows that the images of the approximate solution (32)
and the exact solution of Equation 10 almost overlap. By selecting
slightly more complex trial solutions, errors can be reduced and
the accuracy of the approximate solutions can be improved. This
demonstrates that if the initial point is selected with care, a superior
result can be obtained. Similarly, in the homotopy perturbation
method [32–34], where a suitable starting point facilitates the
attainment of dependable outcomes in a timely manner, it is of
paramount importance to have the appropriate initial condition in
this equation. This also indicates that the modified old Babylonian
algorithm is a very effective method for obtaining highly accurate
approximate solutions to differential equations.

5 Summary and conclusion

This article provides an overview on ancient mathematics’
modern application with a focus on the old Babylonian

mathematics. It is an amazingly effective way to solve more complex
problems. The algorithm is then successfully extended vertically
to solve general algebraic equations and horizontally extended to
solve differential equations. However, further research is needed to
evaluate its convergence and reliability in solving nonlinear systems.
The modified old Babylonian algorithm is applied to solve a class
of MEMS systems. Comparisons demonstrate the effectiveness
and correctness of the modified algorithm. The iterative process
illustrates that this traditional old Babylonianmethodology provides
a novel and highly effective approach for addressing contemporary
issues with remarkable ease, offering a promising solution to a wide
range of modern challenges. Although old Babylonian mathematics
originated in ancient times, its core ideas and certain techniques
still play a significant role in modern society and demonstrate
potential application prospects. With the continuous development
of science and technology, we believe that more applications and
innovations of old Babylonian mathematics will be discovered
and realized.
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