Skip to main content

ORIGINAL RESEARCH article

Front. Phys. , 05 February 2025

Sec. Interdisciplinary Physics

Volume 12 - 2024 | https://doi.org/10.3389/fphy.2024.1526258

This article is part of the Research Topic Nonlinear Vibration and Instability in Nano/Micro Devices: Principles and Control Strategies View all 8 articles

Some novel exact solutions for the generalized time-space fractional coupled Hirota-Satsuma KdV equation

Yueling Cheng
Yueling Cheng*Siyuan HongSiyuan HongShujun YangShujun YangXu ChiXu ChiJinghao YangJinghao Yang
  • School of Mathematical Sciences, Jiangsu University, Zhenjiang, China

In this paper, two efficient methods, namely the modified G/G,1/G-expansion method and the G/bG+G+a-expansion method, are employed to obtain novel exact wave solutions for the generalized time-space fractional coupled Hirota-Satsuma KdV equation. Various types of analytical explicit solutions, including well-known bell-shape solitons, mixed solitary wave solutions, and periodic wave solutions are obtained. These solutions are of great significance for revealing the nonlinear interaction between two long waves with different dispersion effects. The two-dimensional and three-dimensional distribution maps and contour plots corresponding to partial solutions are simulated to visually display the evolution process of relevant physical quantities over time. Moreover, the potential applications of these solutions in nano/micro devices and systems, especially in MEMS (Micro-Electro-Mechanical Systems) are discussed. It is demonstrated that the methods and processes utilized have strong applicability for constructing analytical solutions of nonlinear evolution equations.

1 Introduction

As we all know, nonlinear partial differential equation models are applied to almost every corner of social life. For example, various nonlinear soliton equations can be used to describe wave phenomena in many natural sciences and engineering fields such as fluid physics, solid state physics, laser physics, astrophysics, geophysics, lattice vibration, optical fiber communication, quantum mechanics, geomechanics, oceanography, superconductivity, field theory, transportation, etc. Since fractional order nonlinear systems can describe these nonlinear processes more accurately than integer order systems, studying the solution of fractional order nonlinear systems is particularly important in the development of natural sciences, and has always been a hot topic for domestic and foreign scholars. Till now, people have given many forms of fractional derivative definitions for different situations. For example, Riemann-Liouville definition [1], Caputo definition [2], Jumaries’s definition [3], Atangana’s definition [4], Atangana-Baleanu-Riemann definition [5], conformable definition [6], Abu-Shady-Kaabar definition [7], He’s definition [8], etc. [915]. Each definition has its own advantages and disadvantages, for example, the Riemann-Liouville definition is to consider the derivative of the integral factor, the Caputo definition is to consider the integration of the derivative factor, the Jumaries’s definition is to consider the influence of the initial value and the He’s definition takes into account the more general problem of initial values, etc., and their efficiency varies in the process of solving some specific problems. In order to find the analytical solutions of nonlinear fractional partial differential equations, many domestic and foreign scholars have made great efforts, and the existing methods mainly include the Bäcklund transformation method [16], the homogeneous equilibrium method [17], the Riccati equation expansion method [18], the F-expansion method [19], the Jacobi elliptic function expansion method [20], the generalized expansion method [21], the Darboux transform method [22], the Lie symmetry method [23], the Adomian decomposition method [24], The homotopy perturbation method [25], the variational iterative method [26], and so on [2729]. These methods have their own advantages and characteristics, providing powerful tools for exploring the solutions of complex nonlinear equations.

Furthermore, the applications of these solutions are not limited to traditional fields. In the era of rapid development of nano/micro technology, they have potential applications in nano/micro devices and systems, especially in MEMS (Micro-Electro-Mechanical Systems) [30]. MEMS technology combines mechanical elements, sensors, actuators, and electronics on a microscale, and understanding the behavior of fractional partial differential equations can contribute to the design, optimization, and performance improvement of MEMS devices [31]. For example, in the field of sensors, fractional order models can help analyze and predict the response of micro-sensors to various stimuli more accurately. In actuators, the solutions of fractional equations can provide insights into the dynamic behavior and control strategies [32]. Additionally, in integrated micro-systems, the understanding of fractional order phenomena can enhance the functionality and reliability of the overall system [33, 34].

The study of fractional order nonlinear partial differential equations and their solutions is not only of theoretical significance but also has practical applications in a wide range of fields, especially in the emerging field of nano/micro devices and systems such as MEMS. Our research is based on the definition of M-fractional derivative proposed by Sousa and Oliveira recently [35], this new fractional derivative definition generalizes the conformable derivative by a truncated Mittag-Leffler function of one parameter [6]. By adopting the ideas of generalized Jacobi elliptic function method [36], modified G/G,1/G-expansion method [38, 39] and G/bG+G+a-expansion method [40], using the homogeneous equilibrium principle [41] and mathematical symbolic calculation software, to study a class of generalized time-space fractional coupled Hirota-Satsuma KdV system arising in interaction of two long waves with different dispersion effects under the definition of M-fractional derivative,

utα=14uxxx3β+3uuxβ+3v2+wxβ,vtα=12vxxx3β3uvxβ,wtα=12wxxx3β3uwxβ,0<α,β1.(1)

where tα=DM,tγ1,α,xβ=DM,xγ2,β,xxx3β=DM,xγ2,βDM,xγ2,βDM,xγ2,β mean the M-fractional derivative [35, 39, 42, 43], u=ux,t,v=vx,t,w=wx,t. If we select α=1,β=1, we get the well-known integer order coupled Hirota-Satsuma KdV equation. The equation is mainly used to describe the interaction between two columns of long waves with different dispersion relations [44]. Ref. [45] studies the case when w=0, and Ref. [46] obtains the general form when w0 through a matrix spectrum problem. Ref. [47] studies its elliptic sine function solution by direct expansion method. Refs. [48, 49] use the modified Riccati expansion method and the extended elliptic function expansion method to study its exact solutions in various forms. Ref. [50] studies the Darboux transformation of the equation, and the branch structure of the equation is studied by the theory of plane dynamic system in reference [51]. Under the definition of conformable fractional derivative with β=1, Ref. [52] studies the analytical solutions of system (1) by using auxiliary equation method and series expansion method, and Ref. [53] uses G/G expansion method to study the solitary wave solution and trigonometric function periodic solution of system (1). Additional relevant studies on the system can be referred to Refs. [5458]. Let’s first introduce several relevant definitions and properties.

Definition 1. For a function ft:[0,)R, We defined the M-fractional derivative operator of ft of order α as [35].

DM,tγ,αft=limε0ftEγεtαftε,γ0,0<α1.(2)

where Eγt=k=0tkΓγk+1 is a Mittag-Leffler function of parameter γ.

Property 1. The M-fractional derivative operator of ft of order α have the following important properties [35, 39, 42, 43]:

(1) DM,tγ,αft=tαΓγ+1dftdt.

(2) DM,tγ,αaft+bgt=aDM,tγ,αft+bDM,tγ,αgt,a,bR.

(3) DM,tγ,αftgt=ftDM,tγ,αgt+gtDM,tγ,αft.

(4) DM,tγ,αft/gt=gtDM,tγ,αftftDM,tγ,αgt/g2t.

(5) DM,tγ,αfgt=fgtDM,tγ,αgt=tαΓγ+1fgtdgtdt.

Definition 2. The M-fractional derivative system (1) determined by Definition 1 and Equation 2 performs the following travelling wave transformation:

u=ux,t=uξ,v=vx,t=vξ,w=wx,t=wξ(3)
ξ=Γγ2+1β2kx+Γγ1+1αCtα+ξ0,γ1,γ20,0<α,β1(4)

where k,C are undetermined constants, γ1,γ2ξ0 are arbitrary constants.

Substituting Equations 3, 4 into Equation 1, we obtain the following system of ordinary differential equations:

Cu=2k3u+6kuu12kvv+6kw,Cv=4k3v6kuv,Cw=4k3w6kuw.(5)

where

u=dudξ,u=d3udξ3,v=dvdξ,v=d3vdξ3,w=dwdξ,w=d3wdξ3.

2 Description of the two methods

2.1 The modified G/G,1/G-expansion method

Consider the following nonlinear M-fractional nonlinear partial differential equations:

E1u,utα,uxβ,uuxβ,v,vtα,vxβ,vvxβ,w,wtα,wxβ,wwxβ,uvxβ,uwxβ,vwxβ,=0,E2u,utα,uxβ,uuxβ,v,vtα,vxβ,vvxβ,w,wtα,wxβ,wwxβ,uvxβ,uwxβ,vwxβ,=0,E3u,utα,uxβ,uuxβ,v,vtα,vxβ,vvxβ,w,wtα,wxβ,wwxβ,uvxβ,uwxβ,vwxβ,=0.(6)

By using the wave transformation (4), Equation 6 is converted into a nonlinear ordinary differential equations (ODE):

O1u,u,uu,v,v,vv,w,w,ww,uv,uw,vw,=0,O2u,u,uu,v,v,vv,w,w,ww,uv,uw,vw,=0,O3u,u,uu,v,v,vv,w,w,ww,uv,uw,vw,=0.(7)

Assume that Equation 7 has the following solution:

u=i=0Maiψi+j=1Mbjϕj+i=1M1ciψiϕ,v=i=0Ndiψi+j=1Nejϕj+i=1N1fiψiϕ,w=i=0Pgiψi+j=1Phjϕj+i=1P1liψiϕ.(8)

where M,N,P are balance numbers, ϕ=ϕξ=GG,ψ=ψξ=1G, ai,bj,ci,di,ej,fi,gi,hj,li and variable function ξ=ξx,t are determined later. The G is a solution of the following auxiliary ODE:

G=εGεμ.(9)

where ε=±1,μ is an arbitrary real number. It satisfies the following constrained conditions:

ϕ=εεμψϕ2,ψ=ϕψ,ϕ2=ε2εμψεb2εc2μ2ψ2.(10)

where arbitrary constants μ,b,c satisfied the relation c2+b2+μ20. Equations 9, 10 admit the following solutions

Case 1: When ε=1, we have G=bcoshξ+csinhξ+μ, thus

ϕ=GG=bsinhξ+ccoshξbcoshξ+csinhξ+μ,ψ=1G=1bcoshξ+csinhξ+μ.(11)

Case 2: When ε=1, we have G=bcosξ+csinξ+μ, thus

ϕ=GG=bsinξ+ccosξbcosξ+csinξ+μ,ψ=1G=1bcosξ+csinξ+μ.(12)

Substituting Equations 8, 10 into Equation 7 and setting coefficients of ϕiψji=0,1,j=0,1,2,3,4, to zero yield a set of algebraic equations (AEs) for ai,bj,ci,di,ej,fi,gi,hj,li,b,c,μ,k,C. After solving the AEs and substituting each of the solutions ϕξ,ψξ from Equations 11, 12 along with (4) into Equation 1, we can get the analytical solutions of Equation 1.

Remark 1. Due to the arbitrariness of taking values of b,c,μ, this method can encompass a lot of other methods, for example, when μ=0, it includes the results of (G/G) method and generalized (G/G)-expansion method in Refs. [59, 60], if selecting special values of b,c,μ, we can easily obtain all results of the Riccati equation method generalized in literature and the Kudryashov method generalized in Refs. [48, 61, 62]. Therefore, the method is highly applicable.

2.2 The G/bG+G+a-expansion method

Assume that Equation 7 has the following solution

u=i=0MaiGbG+G+ai,v=i=0NbiGbG+G+ai,w=i=0PciGbG+G+ai.(13)

where M,N,P are balance numbers. Parameters ai,bi,ci are determined later. G=Gξ satisfies the following second-order ordinary differential equation:

G=λbGμb2Gμb2a(14)

Set F=GbG+G+a, then F satisfies

F=λμ1F2+1b2μλF1b2μ(15)

Equations 14, 15 admit the following solutions.

Case 1: When Δ=λ24μ>0, we have the solitary wave solution

G=a+C1e12bλΔξ+C2e12bλ+Δξ(16)
F=C1λ+Δ+C2λΔeΔbξbC1λ2+Δ+bC2λ2ΔeΔbξ(17)

Case 2: When Δ=λ24μ<0, we have the periodic wave solution

G=eλ2bξC1cosΔ2bξ+C2sinΔ2bξa(18)
F=λC1ΔC2cosΔ2bξ+λC2+ΔC1sinΔ2bξbλ2C1ΔC2cosΔ2bξ+bλ2C2+ΔC1sinΔ2bξ(19)

Case 3: When Δ=λ24μ=0, we have the rational function solution

G=C1eλ2bξ+C2ξeλ2bξa(20)
F=2bC2λC1λC2ξ2b2C2+b2λC1+C2ξ(21)

Substituting Equations 13, 15 into Equation 7 and setting coefficients of Fii=0,1,2,3,4, zero yield a set of AEs for ai,bi,ci,b,λ,μ,k,C, after solving the AEs with the aid of mathematical software, the wave solutions of Equation 1 can be obtained by these solutions and Equations 4, 1621.

3 Exact solutions to the Hirota-Satsuma KdV equation

3.1 Solving Eq. (1) by the modified G/G,1/G-expansion method

From the homogeneous equilibrium principle [41], we can get M=2,N=2,P=2 in Equation 8. We assume that Equation 5 has solutions in the following form

u=a0+a1ψ+a2ψ2+a3ϕ+a4ψϕ+a5ϕ2,v=b0+b1ψ+b2ψ2+b3ϕ+b4ψϕ+b5ϕ2,w=c0+c1ψ+c2ψ2+c3ϕ+c4ψϕ+c5ϕ2.(22)

where ai,bi,cii=0,,5 are undetermined constants.

Substituting Equations 22, 10 into Equation 5, and setting the coefficients of ϕiψj(i=0,1,j=0,1,2,3,4, to zero yield a set of algebraic equations (AEs) for ai,bi,ci,b,c,μ,k,C.

ψ:Cεμa32k3ε2μa36kεμa0a3+6kεa1a3Cϵa4+2k3ε2a4+6kεa0a418kε2μa3a5+6kε2a4a5+12kεμb0b312kεb1b312kεb0b4+36kε2μb3b512kε2b4b56kεμc3+6kεc4=0,ϕψ:Ca1+2k3εa1+6ka0a16kεμa32+6kεa3a4+2Cεμa54k3ε2μa512kεμa0a5+6kεa1a512kε2μa5212kb0b1+12kεμb3212kεb3b4+24kεμb0b512kεb1b5+24kε2μb52+6kc112kεμc5=0,ψ2:b2Cεa3c2Cε2a38b2k3ε2a3+8c2k3ε3a3Cεμ2a3+14k3ε2μ2a36b2kεa0a3+6c2kε2a0a3+6kεμ2a0a318kεμa1a3+12kεa2a3+3Cεμa430k3ε2μa418kεμa0a4+12kεa1a418b2kε2a3a5+18c2kε3a3a5+54kε2μ2a3a542kε2μa4a5+12b2kεb0b312c2kε2b0b312kεμ2b0b3+36kεμb1b324kεb2b3+36kεμb0b424kεb1b4+36b2kε2b3b536c2kε3b3b5108kε2μ2b3b5+84kε2μb4b56b2kεc3+6c2kε2c3+6kεμ2c318kεμc4=0,ϕψ2:12k3εμa1+6ka122Ca2+16k3εa2+12ka0a26b2kεa32+6c2kε2a32+6kεμ2a3224kεμa3a4+6kεa42+2b2Cεa52c2Cε2a516b2k3ε2a5+16c2k3ε3a52Cεμ2a5+40k3ε2μ2a512b2kεa0a5+12c2kε2a0a5+12kεμ2a0a524kεμa1a5+12kεa2a512b2kε2a52+12c2kε3a52+36kε2μ2a5212kb1224kb0b2+12b2kεb3212c2kε2b3212kεμ2b32+48kεμb3b412kεb42+24b2kεb0b524c2kε2b0b524kεμ2b0b5+48kεμb1b524kεb2b5+24b2kε2b5224c2kε3b5272kε2μ2b52+12kc212b2kεc5+12c2kε2c5+12kεμ2c5=0,ψ3:24b2k3ε2μa324c2k3ε3μa324k3ε2μ3a312b2kεa1a3+12c2kε2a1a3+12kεμ2a1a330kεμa2a3+2b2Cεa42c2Cε2a440b2k3ε2a4+40c2k3ε3a42Cεμ2a4+100k3ε2μ2a412b2kεa0a4+12c2kε2a0a4+12kεμ2a0a430kεμa1a4+18kεa2a4+54b2kε2μa3a554c2kε3μa3a554kε2μ3a3a530b2kε2a4a5+30c2kε3a4a5+90kε2μ2a4a5+24b2kεb1b324c2kε2b1b324kεμ2b1b3+60kεμb2b3+24b2kεb0b424c2kε2b0b424kεμ2b0b4+60kεμb1b436kεb2b4108b2kε2μb3b5+108c2kε3μb3b5+108kε2μ3b3b5+60b2kε2b4b560c2kε3b4b5180kε2μ2b4b512b2kεc4+12c2kε2c4+12kεμ2c4=0,ϕψ3:12b2k3εa1+12c2k3ε2a1+12k3εμ2a160k3εμa2+18ka1a218b2kεa3a4+18c2kε2a3a4+18kεμ2a3a418kεμa42+84b2k3ε2μa584c2k3ε3μa584k3ε2μ3a518b2kεa1a5+18c2kε2a1a5+18kεμ2a1a536kεμa2a5+36b2kε2μa5236c2kε3μa5236kε2μ3a5236kb1b2+36b2kεb3b436c2kε2b3b436kεμ2b3b4+36kεμb42+36b2kεb1b536c2kε2b1b536kεμ2b1b5+72kεμb2b572b2kε2μb52+72c2kε3μb52+72kε2μ3b52=0,
ψ4:12b4k3ε2a324b2c2k3ε3a3+12c4k3ε4a324b2k3ε2μ2a3+24c2k3ε3μ2a3+12k3ε2μ4a318b2kεa2a3+18c2kε2a2a3+18kεμ2a2a3+120b2k3ε2μa4120c2k3ε3μa4120k3ε2μ3a418b2kεa1a4+18c2kε2a1a4+18kεμ2a1a442kεμa2a4+18b4kε2a3a536b2c2kε3a3a5+18c4kε4a3a536b2kε2μ2a3a5+36c2kε3μ2a3a5+18kε2μ4a3a5+78b2kε2μa4a578c2kε3μa4a578kε2μ3a4a5+36b2kεb2b336c2kε2b2b336kεμ2b2b3+36b2kεb1b436c2kε2b1b436kεμ2b1b4+84kεμb2b436b4kε2b3b5+72b2c2kε3b3b536c4kε4b3b5+72b2kε2μ2b3b572c2kε3μ2b3b536kε2μ4b3b5156b2kε2μb4b5+156c2kε3μb4b5+156kε2μ3b4b5=0,ϕψ4:48b2k3εa2+48c2k3ε2a2+48k3εμ2a2+12ka2212b2kεa42+12c2kε2a42+12kεμ2a42+48b4k3ε2a596b2c2k3ε3a5+48c4k3ε4a596b2k3ε2μ2a5+96c2k3ε3μ2a5+48k3ε2μ4a524b2kεa2a5+24c2kε2a2a5+24kεμ2a2a5+12b4kε2a5224b2c2kε3a52+12c4kε4a5224b2kε2μ2a52+24c2kε3μ2a52+12kε2μ4a5224kb22+24b2kεb4224c2kε2b4224kεμ2b42+48b2kεb2b548c2kε2b2b548kεμ2b2b524b4kε2b52+48b2c2kε3b5224c4kε4b52+48b2kε2μ2b5248c2kε3μ2b5224kε2μ4b52=0,ψ5:48b4k3ε2a496b2c2k3ε3a4+48c4k3ε4a496b2k3ε2μ2a4+96c2k3ε3μ2a4+48k3ε2μ4a424b2kεa2a4+24c2kε2a2a4+24kεμ2a2a4+24b4kε2a4a548b2c2kε3a4a5+24c4kε4a4a548b2kε2μ2a4a5+48c2kε3μ2a4a5+24kε2μ4a4a5+48b2kεb2b448c2kε2b2b448kεμ2b2b448b4kε2b4b5+96b2c2kε3b4b548c4kε4b4b5+96b2kε2μ2b4b596c2kε3μ2b4b548kε2μ4b4b5=0,ψ:6kεa3b1+Cεμb3+4k3ε2μb3+6kεμa0b3+6kε2μa5b3Cεb44k3ε2b46kεa0b46kε2a5b4+12kε2μa3b5=0,ϕψ:Cb14k3εb16ka0b16kεa5b1+6kεμa3b36kεa3b4+2Cεμb5+8k3ε2μb5+12kεμa0b5+12kε2μa5b5=0,ψ2:12kεμa3b16kεa4b112kεa3b2+b2Cεb3c2Cε2b3+16b2k3ε2b316c2k3ε3b3Cεμ2b328k3ε2μ2b3+6b2kεa0b36c2kε2a0b36kεμ2a0b3+6kεμa1b3+6b2kε2a5b36c2kε3a5b318kε2μ2a5b3+3Cεμb4+60k3ε2μb4+18kεμa0b46kεa1b4+30kε2μa5b4+12b2kε2a3b512c2kε3a3b536kε2μ2a3b5+12kε2μa4b5=0,ϕψ2:24k3εμb16ka1b1+12kεμa5b12Cb232k3εb212ka0b212kεa5b2+6b2kεa3b36c2kε2a3b36kεμ2a3b3+6kεμa4b3+18kεμa3b46kεa4b4+2b2Cεb52c2Cε2b5+32b2k3ε2b532c2k3ε3b52Cεμ2b580k3ε2μ2b5+12b2kεa0b512c2kε2a0b512kεμ2a0b5+12kεμa1b5+12b2kε2a5b512c2kε3a5b536kε2μ2a5b5=0,ψ3:6b2kεa3b16c2kε2a3b16kεμ2a3b1+12kεμa4b1+24kεμa3b212kεa4b248b2k3ε2μb3+48c2k3ε3μb3+48k3ε2μ3b3+6b2kεa1b36c2kε2a1b36kεμ2a1b3+6kεμa2b318b2kε2μa5b3+18c2kε3μa5b3+18kε2μ3a5b3+2b2Cεb42c2Cε2b4+80b2k3ε2b480c2k3ε3b42Cεμ2b4200k3ε2μ2b4+12b2kεa0b412c2kε2a0b412kεμ2a0b4+18kεμa1b46kεa2b4+18b2kε2a5b418c2kε3a5b454kε2μ2a5b436b2kε2μa3b5+36c2kε3μa3b5+36kε2μ3a3b5+12b2kε2a4b512c2kε3a4b536kε2μ2a4b5=0,ϕψ3:24b2k3εb124c2k3ε2b124k3εμ2b16ka2b1+6b2kεa5b16c2kε2a5b16kεμ2a5b1+120k3εμb212ka1b2+24kεμa5b2+6b2kεa4b36c2kε2a4b36kεμ2a4b3+12b2kεa3b412c2kε2a3b412kεμ2a3b4+18kεμa4b4168b2k3ε2μb5+168c2k3ε3μb5+168k3ε2μ3b5+12b2kεa1b512c2kε2a1b512kεμ2a1b5+12kεμa2b536b2kε2μa5b5+36c2kε3μa5b5+36kε2μ3a5b5=0,ψ4:6b2kεa4b16c2kε2a4b16kεμ2a4b1+12b2kεa3b212c2kε2a3b212kεμ2a3b2+24kεμa4b224b4k3ε2b3+48b2c2k3ε3b324c4k3ε4b3+48b2k3ε2μ2b348c2k3ε3μ2b324k3ε2μ4b3+6b2kεa2b36c2kε2a2b36kεμ2a2b36b4kε2a5b3+12b2c2kε3a5b36c4kε4a5b3+12b2kε2μ2a5b312c2kε3μ2a5b36kε2μ4a5b3240b2k3ε2μb4+240c2k3ε3μb4+240k3ε2μ3b4+12b2kεa1b412c2kε2a1b412kεμ2a1b4+18kεμa2b442b2kε2μa5b4+42c2kε3μa5b4+42kε2μ3a5b412b4kε2a3b5+24b2c2kε3a3b512c4kε4a3b5+24b2kε2μ2a3b524c2kε3μ2a3b512kε2μ4a3b536b2kε2μa4b5+36c2kε3μa4b5+36kε2μ3a4b5=0,ϕψ4:96b2k3εb296c2k3ε2b296k3εμ2b212ka2b2+12b2kεa5b212c2kε2a5b212kεμ2a5b2+12b2kεa4b412c2kε2a4b412kεμ2a4b496b4k3ε2b5+192b2c2k3ε3b596c4k3ε4b5+192b2k3ε2μ2b5192c2k3ε3μ2b596k3ε2μ4b5+12b2kεa2b512c2kε2a2b512kεμ2a2b512b4kε2a5b5+24b2c2kε3a5b512c4kε4a5b5+24b2kε2μ2a5b524c2kε3μ2a5b512kε2μ4a5b5=0,ψ5:12b2kεa4b212c2kε2a4b212kεμ2a4b296b4k3ε2b4+192b2c2k3ε3b496c4k3ε4b4+192b2k3ε2μ2b4192c2k3ε3μ2b496k3ε2μ4b4+12b2kεa2b412c2kε2a2b412kεμ2a2b412b4kε2a5b4+24b2c2kε3a5b412c4kε4a5b4+24b2kε2μ2a5b424c2kε3μ2a5b412kε2μ4a5b412b4kε2a4b5+24b2c2kε3a4b512c4kε4a4b5+24b2kε2μ2a4b524c2kε3μ2a4b512kε2μ4a4b5=0,ψ:6kεa3c1+Cεμc3+4k3ε2μc3+6kεμa0c3+6kε2μa5c3Cεc44k3ε2c46kεa0c46kε2a5c4+12kε2μa3c5=0,ϕψ:Cc14k3εc16ka0c16kεa5c1+6kεμa3c36kεa3c4+2Cεμc5+8k3ε2μc5+12kεμa0c5+12kε2μa5c5=0,
ψ2:12kεμa3c16kεa4c112kεa3c2+b2Cεc3c2Cε2c3+16b2k3ε2c316c2k3ε3c3Cεμ2c328k3ε2μ2c3+6b2kεa0c36c2kε2a0c36kεμ2a0c3+6kεμa1c3+6b2kε2a5c36c2kε3a5c318kε2μ2a5c3+3Cεμc4+60k3ε2μc4+18kεμa0c46kεa1c4+30kε2μa5c4+12b2kε2a3c512c2kε3a3c536kε2μ2a3c5+12kε2μa4c5=0,ϕψ2:24k3εμc16ka1c1+12kεμa5c12Cc232k3εc212ka0c212kεa5c2+6b2kεa3c36c2kε2a3c36kεμ2a3c3+6kεμa4c3+18kεμa3c46kεa4c4+2b2Cεc52c2Cε2c5+32b2k3ε2c532c2k3ε3c52Cεμ2c580k3ε2μ2c5+12b2kεa0c512c2kε2a0c512kεμ2a0c5+12kεμa1c5+12b2kε2a5c512c2kε3a5c536kε2μ2a5c5=0,ψ3:6b2kεa3c16c2kε2a3c16kεμ2a3c1+12kεμa4c1+24kεμa3c212kεa4c248b2k3ε2μc3+48c2k3ε3μc3+48k3ε2μ3c3+6b2kεa1c36c2kε2a1c36kεμ2a1c3+6kεμa2c318b2kε2μa5c3+18c2kε3μa5c3+18kε2μ3a5c3+2b2Cεc42c2Cε2c4+80b2k3ε2c480c2k3ε3c42Cεμ2c4200k3ε2μ2c4+12b2kεa0c412c2kε2a0c412kεμ2a0c4+18kεμa1c46kεa2c4+18b2kε2a5c418c2kε3a5c454kε2μ2a5c436b2kε2μa3c5+36c2kε3μa3c5+36kε2μ3a3c5+12b2kε2a4c512c2kε3a4c536kε2μ2a4c5=0,ϕψ3:24b2k3εc124c2k3ε2c124k3εμ2c16ka2c1+6b2kεa5c16c2kε2a5c16kεμ2a5c1+120k3εμc212ka1c2+24kεμa5c2+6b2kεa4c36c2kε2a4c36kεμ2a4c3+12b2kεa3c412c2kε2a3c412kεμ2a3c4+18kεμa4c4168b2k3ε2μc5+168c2k3ε3μc5+168k3ε2μ3c5+12b2kεa1c512c2kε2a1c512kεμ2a1c5+12kεμa2c536b2kε2μa5c5+36c2kε3μa5c5+36kε2μ3a5c5=0,ψ4:6b2kεa4c16c2kε2a4c16kεμ2a4c1+12b2kεa3c212c2kε2a3c212kεμ2a3c2+24kεμa4c224b4k3ε2c3+48b2c2k3ε3c324c4k3ε4c3+48b2k3ε2μ2c348c2k3ε3μ2c324k3ε2μ4c3+6b2kεa2c36c2kε2a2c36kεμ2a2c36b4kε2a5c3+12b2c2kε3a5c36c4kε4a5c3+12b2kε2μ2a5c312c2kε3μ2a5c36kε2μ4a5c3240b2k3ε2μc4+240c2k3ε3μc4+240k3ε2μ3c4+12b2kεa1c412c2kε2a1c412kεμ2a1c4+18kεμa2c442b2kε2μa5c4+42c2kε3μa5c4+42kε2μ3a5c412b4kε2a3c5+24b2c2kε3a3c512c4kε4a3c5+24b2kε2μ2a3c524c2kε3μ2a3c512kε2μ4a3c536b2kε2μa4c5+36c2kε3μa4c5+36kε2μ3a4c5=0,ϕψ4:96b2k3εc296c2k3ε2c296k3εμ2c212ka2c2+12b2kεa5c212c2kε2a5c212kεμ2a5c2+12b2kεa4c412c2kε2a4c412kεμ2a4c496b4k3ε2c5+192b2c2k3ε3c596c4k3ε4c5+192b2k3ε2μ2c5192c2k3ε3μ2c596k3ε2μ4c5+12b2kεa2c512c2kε2a2c512kεμ2a2c512b4kε2a5c5+24b2c2kε3a5c512c4kε4a5c5+24b2kε2μ2a5c524c2kε3μ2a5c512kε2μ4a5c5=0,ψ5:12b2kεa4c212c2kε2a4c212kεμ2a4c296b4k3ε2c4+192b2c2k3ε3c496c4k3ε4c4+192b2k3ε2μ2c4192c2k3ε3μ2c496k3ε2μ4c4+12b2kεa2c412c2kε2a2c412kεμ2a2c412b4kε2a5c4+24b2c2kε3a5c412c4kε4a5c4+24b2kε2μ2a5c424c2kε3μ2a5c412kε2μ4a5c412b4kε2a4c5+24b2c2kε3a4c512c4kε4a4c5+24b2kε2μ2a4c524c2kε3μ2a4c512kε2μ4a4c5=0.

Solving the equations by Mathematical software can get the following solutions, where the unstated parameters are taking any constant.

Case 1: When ε=1,

1a1=4k2μ,a2=a3=a4=a5=0,b1=2k2μ,b2=b3=b4=b5=0,c1=42a0k2μb0k2μ+k4μ,c2=c3=c4=c5=0,b=±c2+μ2,C=23a0k+2k3.2a1=4k2μ,a2=4k2b2c2μ2,a3=a4=a5=0,b1=±k4k22b22c2μ2+8a0b2c2μ2,b2=b3=b4=b5=0,c1=4k2a0kμ+k3μ±b0k22b22c2μ2+2a0b2c2μ2,c2=c3=c4=c5=0,C=23a0k+2k3.
3a1=8k2μ,a2=8k2μ2,a3=a4=a5=0,b1=4k2μ,b2=4k2μ2,b3=b4=b5=0,c1=8k22a0+b0+k2μ,c2=8k22a0+b0+k2μ2,c3=c4=c5=0,b=±c,C=23a0k+2k3.4a1=a2=a3=a4=0,a5=2k2,b1=b2=b3=b4=0,b5=±k2,c1=c2=c3=c4=0,c5=22a0k2±b0k22k4,b=±c2+μ2,C=23a0k4k3.5a1=a3=a5=0,a2=2k2b2c2,a4=2b2k4+c2k4,b2=b4=b5=0,b1=b2c2k22a0+k2,b3=±k22a0+k2,c1=2b0b2c2k22a0+k2,c3=±2b0k22a0+k2,c2=c4=c5=0,μ=0,C=6a0k4k3.

According to Equations 4, 11, 22, we can get the solutions of Equation 1 when ε=1

u1=a0+4k2μ±c2+μ2coshξ1+csinhξ1+μ,v1=b0+2k2μ±c2+μ2coshξ1+csinhξ1+μ,w1=c042a0k2μb0k2μ+k4μ±c2+μ2coshξ1+csinhξ1+μ,ξ1=2kΓγ2+1βxβ2Γγ1+1α3a0k+2k3tα+ξ0.

Remark 2. When α=β=1,γ1=γ2=0, the system of solutions u1,v1,w1 converted to the first set of solutions in the Ref. [48].

u2=a0+4k2μbcoshξ2+csinhξ2+μ+4k2b2c2μ2bcoshξ2+csinhξ2+μ2,v2=b0±k4k22b22c2μ2+8a0b2c2μ2bcoshξ2+csinhξ2+μ,w2=c04k2a0kμ+k3μ±b0k22b22c2μ2+2a0b2c2μ2bcoshξ2+csinhξ2+μ,ξ2=2kΓγ2+1βxβ2Γγ1+1α3a0k+2k3tα+ξ0.

Remark 3. If we set b=c2+μ2, then the system of solutions u2,v2,w2 converted to the system of solutions u1,v1,w1.

u3=a0+8k2μ±ccoshξ3+csinhξ3+μ8k2μ2±ccoshξ3+csinhξ3+μ2,v3=b04k2μ±ccoshξ3+csinhξ3+μ+4k2μ2±ccoshξ3+csinhξ3+μ2,w3=c08k22a0+b0+k2μ±ccoshξ3+csinhξ3+μ+8k22a0+b0+k2μ2±ccoshξ3+csinhξ3+μ2,ξ3=2kΓγ2+1βxβ2Γγ1+1α3a0k+2k3tα+ξ0.
u4=a02k2±c2+μ2sinhξ4+ccoshξ4±c2+μ2coshξ4+csinhξ4+μ2,v4=b0±k±c2+μ2sinhξ4+ccoshξ4±c2+μ2coshξ4+csinhξ4+μ2,w4=c0+22a0k2±b0k22k4±c2+μ2sinhξ4+ccoshξ4±c2+μ2coshξ4+csinhξ4+μ2,ξ4=2kΓγ2+1βxβ2Γγ1+1α3a0k4k3tα+ξ0.
u5=a0+2k2b2c2bcoshξ5+csinhξ5+μ2+2b2k4+c2k4bsinhξ5+ccoshξ5bcoshξ5+csinhξ5+μ2,v5=b0+b2c2k22a0+k2bcoshξ5+csinhξ5+μ±k22a0+k2bsinhξ5+ccoshξ5bcoshξ5+csinhξ5+μ,w5=c0+2bb2c2k22a0+k20bcoshξ5+csinhξ5+μ±2b0k22a0+k2bsinhξ5+ccoshξ5bcoshξ5+csinhξ5+μ,ξ5=2kΓγ2+1βxβ2Γγ1+1α3a0k+2k3tα+ξ0.

Case 2: when ε=1,

6a0=0,a1=4k2μ,a2=4k2b2+c2μ2,a3=a4=0,b1=±2k22b2+2c2μ2,b2=b3=b4=0,c1=4k4μ±b0k22b2+2c2μ2,c2=c3=c4=0,C=23a0k+2k3.7a1=±4b2+c2k2,a2=a3=a4=0,b1=±2b2+c2k2,b2=b3=b4=0,μ=±c2+b2,c1=±8a0c2+b2k24c2+b2k4+4b0b2+c2k4,c2=c3=c4=0,C=6a0k+4k3.8a1=8k2μ,a2=8k2b2+c2μ2,a3=a4=0,b1=±4k2μ,b2=4k2μ2,b3=b4=0,b=±ic,c1=82a0k2μ±b0k2μk4μ,c2=8k22a0b0+k2μ2,c3=c4=0,C=6a0k+4k3.
9a1=a2=a3=a4=0,a5=2k2,b1=b2=b3=b4=0,b5=±k2,c1=c2=c3=c4=0,c5=22a0k2±b0k2+2k4,μ=±c2+b2,C=23a0k+4k3.10a1=a3=a5=0,a2=2k2b2+c2,a4=2b2+c2k4,b2=b4=b5=0,c2=c4=c5=0,b1=b2+c2k22a0+k2,b3=±k22a0+k2,c1=±2b0b2+c2k22a0+k2,c3=±2b0k22a0+k2,μ=0,C=6a0k+4k3.

According to Equations 4, 11, 22, we could get solutions of the system (1) as ε=1

u6=4k2μbcosξ6+csinξ6+μ4k2b2+c2μ2bcosξ6+csinξ6+μ2,v6=b0±2k22c2+2b2μ2bcosξ6+csinξ6+μ,w6=c04k2μ±b0k22c2+2b2μ2bcosξ6+csinξ6+μ,ξ6=2kΓγ2+1βxβ+2Γγ1+1α3a0k+2k3tα+ξ0.

Remark 4. When α=β=1,γ1=γ2=0, if we let μ=c2+b2, then the solution group u6,v6,w6 can be transformed into the fifth set of solutions in Ref. [48].

u7=a0±4b2+c2k2bcosξ7+csinξ7±c2+b2,v7=b0±2b2+c2k2bcosξ7+csinξ7±c2+b2,w7=c0±8a0c2+b2k24c2+b2k4+4b0b2+c2k4bcosξ7+csinξ7±c2+b2,ξ7=2kΓγ2+1βxβ+2Γγ1+1α3a0k+2k3tα+ξ0.
u8=a08k2μ±iccosξ8+csinξ8+μ8k2b2+c2μ2±iccosξ8+csinξ8+μ2,v8=b0±4k2μ±iccosξ8+csinξ8+μ4k2μ2±iccosξ8+csinξ8+μ2,w8=c0+82a0k2μ±b0k2μk4μ±iccosξ8+csinξ8+μ+8k22a0b0+k2μ2±iccosξ8+csinξ8+μ2,ξ8=2kΓγ2+1βxβ+2Γγ1+1α3a0k+2k3tα+ξ0.
u9=a02k2±c2+μ2sinξ9+ccosξ9±c2+μ2cosξ9+csinξ9+μ2,v9=b0±k2±c2+μ2sinξ9+ccosξ9±c2+μ2cosξ9+csinξ9+μ2,w9=c0+22a0k2±b0k2+2k4±c2+μ2sinξ9+ccosξ9±c2+μ2cosξ9+csinξ9+μ2,ξ9=2kΓγ2+1βxβ2Γγ1+1α3a0k+4k3tα+ξ0.
u10=a0+2k2b2+c2bcosξ10+csinξ10+μ22b2+c2k4bsinξ10+ccosξ10bcosξ10+csinξ10+μ2,v10=b0+b2+c2k22a0+k2bcosξ10+csinξ10+μ±k22a0+k2bsinξ10+ccosξ10bcosξ10+csinξ10+μ,w10=c0+±2b0b2+c2k22a0+k2bcosξ10+csinξ10+μ±2b0k22a0+k2bsinξ10+ccosξ10bcosξ10+csinξ10+μ,ξ10=2kΓγ2+1βxβ2Γγ1+1α3a0k2k3tα+ξ0.

By selecting different parameters, we can get some graphical simulation including the famous bell-shape soliton solutions and blow-up pattern wave solution of system (1) in Figures 1, 2. Some simulation of the above periodic wave solutions are shown in Figures 3, 4.

c=1,μ=1,a0=1,γ1=2,ξ0=0,t=0.55.
c=1,μ=1,a0=2,γ1=1,ξ0=100,t=0.42.

Figure 1
www.frontiersin.org

Figure 1. When α=0.9,β=1,k=0.2,b=45, c=45,μ=40,a0=0.1,γ1=1,ξ0=0, t = 0.1, the 3D plot, 2D plot and contour plot of the solitary wave pulse u2.

Figure 2
www.frontiersin.org

Figure 2. When α=0.9,β=0.8,k=1,b=c=2,μ=1, a0 = b0 = c0 = 1, γ1=γ2=5,ξ0=0,x=1, the 3D plot, 2D plot and contour plot of the solitary wave pulse w3.

Figure 3
www.frontiersin.org

Figure 3. The 3D plot, 2D plot and contour plot of v6 with α=0.8,β=1,k=0.2,b=45,

Figure 4
www.frontiersin.org

Figure 4. The 3D plot, 2D plot and contour plot of v7 with α=0.9,β=1,k=0.4,b=2,

3.2 Solving Eq. (1) by the G/bG+G+a-expansion method

Suppose Equation 5 has solutions of the following form:

u=a0+a1GbG+G+a+a2GbG+G+a2=a0+a1F+a2F2,v=b0+b1GbG+G+a+b2GbG+G+a2=b0+b1F+b2F2,w=c0+c1GbG+G+a+c2GbG+G+a2=c0+c1F+c2F2.(23)

Where ai,bi,cii=0,1,2 are constants to be determined.

Substituting Equations 23, 15 into Equation 5, and setting the coefficients Fii=0,1,2,3,4, to zero, we could get a set of algebraic equations about ai,bi,ci,b,λ,μ,k,C. Without losing generality, we let b=1:

F0:Cμa1+2k3λ2μa1+4k3μ2a112k3λμ2a1+12k3μ3a1+6kμa0a1+12k3λμ2a224k3μ3a212kμb0b1+6kμc1=0,F:Cλa1+2k3λ3a1+2Cμa1+16k3λμa128k3λ2μa132k3μ2a1+72k3λμ2a148k3μ3a1+6kλa0a112kμa0a1+6kμa122Cμa2+28k3λ2μa2+32k3μ2a2144k3λμ2a2+144k3μ3a2+12kμa0a212kλb0b1+24kμb0b112kμb1224kμb0b2+6kλc112kμc1+12kμc2=0,
F2:Ca1+Cλa1+14k3λ2a114k3λ3a1Cμa1+16k3μa188k3λμa1+86k3λ2μa1+88k3μ2a1144k3λμ2a1+72k3μ3a1+6ka0a16kλa0a1+6kμa0a1+6kλa1212kμa122Cλa2+16k3λ3a2+4Cμa2+104k3λμa2200k3λ2μa2208k3μ2a2+504k3λμ2a2336k3μ3a2+12kλa0a224kμa0a2+18kμa1a212kb0b1+12kλb0b112kμb0b112kλb12+24kμb1224kλb0b2+48kμb1b236kμb1b2+6kc16kλc1+6kμc1+12kλc224kμc2=0,F3:24k3λa148k3λ2a1+24k3λ3a148k3μa1+144k3λμa196k3λ2μa196k3μ2a1+120k3λμ2a148k3μ3a1+6ka126kλa12+6kμa122Ca2+2Cλa2+76k3λ2a276k3λ3a22Cμa2+80k3μa2464k3λμa2+460k3λ2μa2+464k3μ2a2768k3λμ2a2+384k3μ3a2+12ka0a212kλa0a2+12kμa0a2+18kλa1a236kμa1a2+12kμa2212kb12+12kλb1212kμb1224kb0b2+24kλb0b224kμb0b236kλb1b2+72kμb1b224kμb22+12kc212kλc2+12kμc2=0,F4:12k3a136k3λa1+36k3λ2a112k3λ3a1+36k3μa172k3λμa1+36k3λ2μa1+36k3μ2a136k3λμ2a1+12k3μ3a1+108k3λa2216k3λ2a2+108k3λ3a2216k3μa2+648k3λμa2432k3λ2μa2432k3μ2a2+540k3λμ2a2216k3μ3a2+18ka1a218kλa1a2+18kμa1a2+12kλa2224kμa2236kb1b2+6kλb1b236kμb1b224kλb22+48kμb22=0,F5:48k3a2144k3λa2+144k3λ2a248k3λ3a2+144k3μa2288k3λμa2+144k3λ2μa2+144k3μ2a2144k3λμ2a2+48k3μ3a2+12ka2212kλa22+12kμa2224kb22+24kλb2224kμb22=0,F0:Cμb14k3λ2μb18k3μ2b1+24k3λμ2b124k3μ3b16kμa0b124k3λμ2b2+48k3μ3b2=0,F:Cλb14k3λ3b1+2Cμb132k3λμb1+56k3λ2μb1+64k3μ2b1144k3λμ2b1+96k3μ3b16kλa0b1+12kμa0b16kμa1b12Cμb256k3λ2μb264k3μ2b2+288k3λμ2b2288k3μ3b212kμa0b2=0,F2:Cb1+Cλb128k3λ2b1+28k3λ3b1Cμb132k3μb1+176k3λμb1172k3λ2μb1176k3μ2b1+288k3λμ2b1144k3μ3b16ka0b1+6kλa0b16kμa0b16kλa1b1+12kμa1b16kμa2b12Cλb232k3λ3b2+4Cμb2208k3λμb2+400k3λ2μb2+416k3μ2b21008k3λμ2b2+672k3μ3b212kλa0b2+24kμa0b212kμa1b2=0,F3:48k3λb1+96k3λ2b148k3λ3b1+96k3μb1288k3λμb1+192k3λ2μb1+192k3μ2b1240k3λμ2b1+96k3μ3b16ka1b1+6kλa1b16kμa1b16kλa2b1+12kμa2b12Cb2+2Cλb2152k3λ2b2+152k3λ3b22Cμb2160k3μb2+928k3λμb2920k3λ2μb2928k3μ2b2+1536k3λμ2b2768k3μ3b212ka0b2+12kλa0b212kμa0b212kλa1b2+24kμa1b212kμa2b2=0,F4:24k3b1+72k3λb172k3λ2b1+24k3λ3b172k3μb1+144k3λμb172k3λ2μb172k3μ2b1+72k3λμ2b124k3μ3b16ka2b1+6kλa2b16kμa2b1216k3λb2+432k3λ2b2216k3λ3b2+432k3μb21296k3λμb2+864k3λ2μb2+864k3μ2b21080k3λμ2b2+432k3μ3b212ka1b2+12kλa1b212kμa1b212kλa2b2+24kμa2b2=0,F5:96k3b2+288k3λb2288k3λ2b2+96k3λ3b2288k3μb2+576k3λμb2288k3λ2μb2288k3μ2b2+288k3λμ2b296k3μ3b212ka2b2+12kλa2b212kμa2b2=0,F0:Cμc14k3λ2μc18k3μ2c1+24k3λμ2c124k3μ3c16kμa0c124k3λμ2c2+48k3μ3c2=0,F:Cλc14k3λ3c1+2Cμc132k3λμc1+56k3λ2μc1+64k3μ2c1144k3λμ2c1+96k3μ3c16kλa0c1+12kμa0c16kμa1c12Cμc256k3λ2μc264k3μ2c2+288k3λμ2c2288k3μ3c212kμa0c2=0,F2:Cc1+Cλc128k3λ2c1+28k3λ3c1Cμc132k3μc1+176k3λμc1172k3λ2μc1176k3μ2c1+288k3λμ2c1144k3μ3c16ka0c1+6kλa0c16kμa0c16kλa1c1+12kμa1c16kμa2c12Cλc232k3λ3c2+4Cμc2208k3λμc2+400k3λ2μc2+416k3μ2c21008k3λμ2c2+672k3μ3c212kλa0c2+24kμa0c212kμa1c2=0,F3:48k3λc1+96k3λ2c148k3λ3c1+96k3μc1288k3λμc1+192k3λ2μc1+192k3μ2c1240k3λμ2c1+96k3μ3c16ka1c1+6kλa1c16kμa1c16kλa2c1+12kμa2c12Cc2+2Cλc2152k3λ2c2+152k3λ3c22Cμc2160k3μc2+928k3λμc2920k3λ2μc2928k3μ2c2+1536k3λμ2c2768k3μ3c212ka0c2+12kλa0c212kμa0c212kλa1c2+24kμa1c212kμa2c2=0,
F4:24k3c1+72k3λc172k3λ2c1+24k3λ3c172k3μc1+144k3λμc172k3λ2μc172k3μ2c1+72k3λμ2c124k3μ3c16ka2c1+6kλa2c16kμa2c1216k3λc2+432k3λ2c2216k3λ3c2+432k3μc21296k3λμc2+864k3λ2μc2+864k3μ2c21080k3λμ2c2+432k3μ3c212ka1c2+12kλa1c212kμa1c212kλa2c2+24kμa2c2=0,F5:96k3c2+288k3λc2288k3λ2c2+96k3λ3c2288k3μc2+576k3λμc2288k3λ2μc2288k3μ2c2+288k3λμ2c296k3μ3c212ka2c2+12kλa2c212kμa2c2=0.

After solving the above AEs, we can get the following solutions, where the parameters not specified are arbitrary constants.

11a1=0,a2=8k21+μ2,b1=0,b2=4k21+μ2,λ=2μ,Δ=λ24μ=4μμ1,c1=0,c2=8k21+μ22a0b08k2μ+8k2μ2,b=1,C=23a0k+16k3μ16k3μ2.
12b=1,a1=4k2λ2+2μ1+μλ1+3μ,a2=4k21λ+μ2,b0=0,b1=±2k1λ+μ2[2a0+k2(λ28λμ+4μ1+2μ],b2=0,c2=0,c1=4k2λ2+2μμ+1λ1+3μ[2a0+k2(λ28λμ+4μ1+2μ,C=6a0k4k3λ2+2μ6λμ+6μ2.

According to Equations 4, 17, 19, 21, 23, we obtain the following solutions for system (1):

u11=a08k21+μ2F2,v11=b0+4k21+μ2F2,w11=c08k21+μ22a0b08k2μ+8k2μ2F2,ξ11=2kΓγ2+1βxβ2Γγ1+1α3a0k+16k3μ16k3μ2tα+ξ0.
u12=a0+4k2λ2+2μ1+μλ1+3μF4k21λ+μ2F2,v12=±2k1λ+μ2[2a0+k2(λ28λμ+4μ1+2μ]F,w12=c04k2λ2+2μμ+1λ1+3μ[2a0+k2(λ28λμ+4μ1+2μF,ξ12=2kΓγ2+1βxβΓγ1+1α6a0k+4k3λ2+2μ6λμ+6μ2tα+ξ0.

We can determine the following solutions.

Case 1: Δ>0, when μ<0 or μ>1.

u11.1=a08k21+μ21+2C1+2C2eΔξ11.1C12+λ+Δ+C22+λΔeΔξ11.12,v11.1=b0+4k21+μ21+2C1+2C2eΔξ11.1C12+λ+Δ+C22+λΔeΔξ11.12,w11.1=c08k21+μ22a0b08k2μ+8k2μ21+2C1+2C2eΔξ11.1C12+λ+Δ+C22+λΔeΔξ11.12,ξ11.1=2kΓγ2+1βxβ2Γγ1+1α3a0k+16k3μ16k3μ2tα+ξ0.
u12.1=a0+4k2λ2+2μ1+μλ1+3μ1+2C1+2C2eΔξ12.1C12+λ+Δ+C22+λΔeΔξ12.14k21λ+μ21+2C1+2C2eΔξ12.1C12+λ+Δ+C22+λΔeΔξ12.12,v12.1=±2k1λ+μ2[2a0+k2(λ28λμ+4μ1+2μ]1+2C1+2C2eΔξ12.1C12+λ+Δ+C22+λΔeΔξ12.1,w12.1=c04k2λ2+2μμ+1λ1+3μ[2a0+k2(λ28λμ+4μ1+2μ1+2C1+2C2eΔξ12.1C12+λ+Δ+C22+λΔeΔξ12.1,ξ12.1=2kΓγ2+1βxβΓγ1+1α6a0k+4k3λ2+2μ6λμ+6μ2tα+ξ0.

Case 2: Δ<0, when 0<μ<1.

u11.2=a08k21+μ2λC1ΔC2cosΔ2ξ11.2+λC2+ΔC1sinΔ2ξ11.2λ2C1ΔC2cosΔ2ξ11.2+λ2C2+ΔC1sinΔ2ξ11.22,v11.2=b0+4k21+μ2λC1ΔC2cosΔ2ξ11.2+λC2+ΔC1sinΔ2ξ11.2λ2C1ΔC2cosΔ2ξ11.2+λ2C2+ΔC1sinΔ2ξ11.22,w11.2=c08k21+μ22a0b08k2μ+8k2μ2λC1ΔC2cosΔ2ξ11.2+λC2+ΔC1sinΔ2ξ11.2λ2C1ΔC2cosΔ2ξ11.2+λ2C2+ΔC1sinΔ2ξ11.22,ξ11.2=2kΓγ2+1βxβ2Γγ1+1α3a0k+16k3μ16k3μ2tα+ξ0.
u12.2=a0+4k2λ2+2μ1+μλ1+3μF12.24k21λ+μ2F12.22,v12.2=±2k1λ+μ2[2a0+k2(λ28λμ+4μ1+2μ]F12.2,w12.2=c04k2λ2+2μμ+1λ1+3μ2a0+k2(λ28λμ+4μ1+2μF12.2,ξ12.2=2kΓγ2+1βxβΓγ1+1α6a0k+4k3λ2+2μ6λμ+6μ2tα+ξ0.F12.2=λC1ΔC2cosΔ2ξ12.2+λC2+ΔC1sinΔ2ξ12.2λ2C1ΔC2cosΔ2ξ12.2+λ2C2+ΔC1sinΔ2ξ12.2.

Case 3: Δ=0, when μ=0.

u11.3=a08k22C2λC1λC2ξ11.32C2+2λC1+C2ξ11.32,v11.3=b0+4k22C2λC1λC2ξ11.32C2+2λC1+C2ξ11.32,w11.3=c08k22a0b02C2λC1λC2ξ11.32C2+2λC1+C2ξ11.32,ξ11.3=2kΓγ2+1βxβΓγ1+1α6a0ktα+ξ0.
u12.3=a0+4k2λ2λ2C2λC1λC2ξ12.32C2+2λC1+C2ξ12.34k21λ22C2λC1λC2ξ12.32C2+2λC1+C2ξ12.32,v12.3=±2k1λ22a0+k2λ22C2λC1λC2ξ12.32C2+2λC1+C2ξ12.3,w12.3=c04k2λ2λ2a0+k2λ22C2λC1λC2ξ2C2+2λC1+C2ξ12.3,ξ12.3=2kΓγ2+1βxβΓγ1+1α6a0k+4k3λ2tα+ξ0.

Selecting different parameters, we can get some graphical simulation of above solutions α=1,β=1 (Figures 5, 6) and α=0.8,β=1 (Figure 7) as follows:

γ1=0,ξ0=0,t=0.02,C1=1,C2=2.
γ1=0,ξ0=0,t=0.02,C1=1,C2=2.
γ1=1,ξ0=10,t=0.12,C1=3,C2=0.3.

Figure 5
www.frontiersin.org

Figure 5. The 3D plot, 2D plot and contour plot of u11.1 with μ=3,λ=6,k=1,b0=1,c0=1,a0=1,

Figure 6
www.frontiersin.org

Figure 6. The 3D plot, 2D plot and contour plot of v11.2 with μ=12,λ=1,k=1,b0=1,c0=1,a0=1,

Figure 7
www.frontiersin.org

Figure 7. The 3D plot, 2D plot and contour plot of w11.3 with μ=0,λ=1.5,k=3,b0=1,c0=10,a0=3,

Remark 5. All of the above results have been checked by computer programs, and they are founded for the first time to our knowledge.

3.3 Results and discussion

We have obtained many types of new analytical solutions of the system (1) by two efficient methods, which include the famous bell-shaped solitary wave u2, this smooth solution reveals a balance of nonlinear effects and dispersion effects, the blow-up wave w3 which is distorted between the interval (0.190, 0.192) etc. There are also many forms of periodic waves, and these periodic wave solutions embody different properties. For example, the waveform of v6 alternates up and down in both directions, periodicity of v7 and v11.2 are only reflected in one direction. If we choose different parameters and orders, we could find that the waveform of system (1) will evolve with time t. The Figures (a) and (b) in Figure 8 show the evolutionary process of u4,v6 with time fractional order with parameters a0=b0=c0=1,b=1,c=1,μ=1,k=1,t=1,γ1=γ2=2,β=1 and a0=b0=c0=1, b=45,c=1,μ=1,k=0.2,t=0.55,γ1=2, γ2=0,β=1 respectively. Numerical simulations show that the waveform shifts to the right as the time order increases, and these properties may be of great significance for revealing the internal structure of system (1). However, In MEMS, the understanding of nonlinear wave phenomena and the availability of exact solutions can contribute to the design and optimization of various components. For example, in MEMS sensors, these solutions can help analyze the response to external stimuli and improve the sensitivity and accuracy.

Figure 8
www.frontiersin.org

Figure 8. Fractional evolution of u4 in (A) and v6 in (B) over time under different parameters.

4 Conclusion

In conclusion, by utilizing the modified G/G,1/G-expansion method, the G/bG+G+a-expansion method and the travelling wave transform under the definition of M fractional derivative, twelve new types of exact solutions of the generalized time-space fractional coupled Hirota-Satsuma KdV system are obtained successfully. These solutions include complex solitary wave solutions, trigonometric periodic wave solutions, and rational function solutions. These solutions can be transformed into integer order cases under special parameter selection, and they have important theoretical guiding value for profoundly revealing the interaction between two nonlinear long waves with different dispersion effects. The waveforms of partial solutions and their characteristic images of time evolution are obtained by numerical simulation. It is proved by practice that these two methods can be applied to many other nonlinear equations including the MEMS. Additionally, in integrated MEMS systems, the knowledge of these solutions can enhance the functionality and reliability. However, the proposed definition of M-fractional derivatives still has some limitations, and it is difficult to characterize the necessary connection between two real number or complex number order derivatives. On the other hand, the unified definition of fractional derivatives definition needs to be further explored and developed for us in the future. Once our definition has been substantially refined, then we work on perturbation theory, dynamical system theory, soliton theory, etc., will be better developed [6365]. How to extend this method to discretely-coupled nonlinear systems with arbitrary subhigher dimensions is still worth further study. This will open up new avenues for exploring more complex nonlinear phenomena and expanding the application scope of these methods in the field of nano/micro devices and systems.

Data availability statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.

Author contributions

YC: Funding acquisition, Investigation, Supervision, Writing–original draft, Formal Analysis. SH: Methodology, Resources, Writing–review and editing, Conceptualization, Project administration. SY: Conceptualization, Data curation, Writing–original draft, Formal Analysis, Visualization. XC: Formal Analysis, Investigation, Methodology, Resources, Writing–review and editing. JY: Conceptualization, Project administration, Visualization, Writing–original draft.

Funding

The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This work is partially supported by the practical innovation training program projects for the university students of Jiangsu Province (Grant No. 202410299873X).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Haq A. Partial-approximate controllability of semi-linear systems involving two Riemann-Liouville fractional derivatives. Chaos, Solitons and Fractals (2022) 157:111923. doi:10.1016/j.chaos.2022.111923

CrossRef Full Text | Google Scholar

2. Caputo M. Linear models of dissipation whose Q is almost frequency independent-II. Geophys J Int (1967) 13:529–39. doi:10.1111/j.1365-246x.1967.tb02303.x

CrossRef Full Text | Google Scholar

3. Guner O, Atik H, Kayyrzhanovich AA. New exact solution for space-time fractional differential equations via G'/G-expansion method. Optik (2017) 130:696–701. doi:10.1016/j.ijleo.2016.10.116

CrossRef Full Text | Google Scholar

4. Atangana A, Baleanu D, Alsaedi A. Analysis of time-fractional Hunter-Saxton equation: a model of neumatic liquid crystal. Open Phys (2016) 14:145–9. doi:10.1515/phys-2016-0010

CrossRef Full Text | Google Scholar

5. Atangana A, Koca I. Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order. Chaos, Solitons and Fractals (2016) 89:447–54. doi:10.1016/j.chaos.2016.02.012

CrossRef Full Text | Google Scholar

6. Khalil R, Al Horani M, Yousef A, Sababheh M. A new definition of fractional derivative. J Comput Appl Mathematics (2014) 264:65–70. doi:10.1016/j.cam.2014.01.002

CrossRef Full Text | Google Scholar

7. Shady MA, Kaabar MKA. A novel computational tool for the fractional-order special functions arising from modeling scientific phenomena via Abu-Shady-Kaabar fractional derivative. Comput Math Methods Med (2022) 2022:2138775. doi:10.1155/2022/2138775

PubMed Abstract | CrossRef Full Text | Google Scholar

8. He JH. Fractal calculus and its geometrical explanation. Results Phys (2018) 10:272–6. doi:10.1016/j.rinp.2018.06.011

CrossRef Full Text | Google Scholar

9. He JH. A tutorial review on fractal spacetime and fractional calculus. Int J Theor Phys (2014) 53:3698–718. doi:10.1007/s10773-014-2123-8

CrossRef Full Text | Google Scholar

10. Nadeem M, Ahmad J, Nusrat F, Iambor LF. Fuzzy solutions of some variants of the fractional order Korteweg-de-Vries equations via an analytical method. Alexandria Eng J (2023) 80:8–21. doi:10.1016/j.aej.2023.08.012

CrossRef Full Text | Google Scholar

11. Tajadodi H. A Numerical approach of fractional advection-diffusion equation with Atangana Baleanu derivative. Chaos, Solitons and Fractals (2020) 130:109527. doi:10.1016/j.chaos.2019.109527

CrossRef Full Text | Google Scholar

12. Yusuf A, Inc M, Aliyu AI, Baleanu D. Optical solitons possessing beta derivative of the Chen-Lee-Liu equation in optical fibers. Front Phys (2019) 7:00034. doi:10.3389/fphy.2019.00034

CrossRef Full Text | Google Scholar

13. Khater MMA, Ghanbari B, Nisar KS, Kumar D. Novel exact solutions of the fractional Bogoyavlensky -Konopelchenko equation involving the Atangana-Baleanu-Riemann derivative. Alexandria Eng J (2020) 59:2957–67. doi:10.1016/j.aej.2020.03.032

CrossRef Full Text | Google Scholar

14. Madiha S, Muhammad A, Farah AA, Majeed A, Abdeljawad T, Alqudah MA. Numerical solutions of time fractional Burgers equation involving Atangana-Baleanu derivative via cubic B-spline functions. Results Phys (2022) 34:105244. doi:10.1016/j.rinp.2022.105244

CrossRef Full Text | Google Scholar

15. Nadeem M, Alsayaad Y. A new study for the investigation of nonlinear fractional drinfeld–sokolov–wilson equation. Math Probl Eng (2023) 2023(1):9274115. doi:10.1155/2023/9274115

CrossRef Full Text | Google Scholar

16. Hu XB, Wang DL, Tam HW. Lax pairs and Bäcklund transformations for a coupled Ramani equation and its related system. Appl Mathematics Lett (2000) 13:45–8. doi:10.1016/s0893-9659(00)00052-5

CrossRef Full Text | Google Scholar

17. Liu CP. A Modified homogeneous balance method and its applications. Commun Theor Phys (2011) 56(08):223–7. doi:10.1088/0253-6102/56/2/05

CrossRef Full Text | Google Scholar

18. Huang Q, Wang LZ, Zuo SL. Consistent riccati expansion method and its applications to nonlinear fractional partial differential equations. Commun Theor Phys (2016) 65(02):177–84. doi:10.1088/0253-6102/65/2/177

CrossRef Full Text | Google Scholar

19. Ebaid A, Aly EH. Exact solutions for the transformed reduced Ostrovsky equation via the -expansion method in terms of Weierstrass-elliptic and Jacobian-elliptic functions. Wave Motion (2012) 49:296–308. doi:10.1016/j.wavemoti.2011.11.003

CrossRef Full Text | Google Scholar

20. Hong BJ. New Jacobi elliptic functions solutions for the variable-coefficient mKdV equation. Appl Math Comput (2009) 215(8):2908–13. doi:10.1016/j.amc.2009.09.035

CrossRef Full Text | Google Scholar

21. Mohanty SK, Kravchenko OV, Dev AN. Exact traveling wave solutions of the Schamel Burgers equation by using generalized-improved and generalized (G'/G)-expansion methods. Results Phys (2022) 33:105124. doi:10.1016/j.rinp.2021.105124

CrossRef Full Text | Google Scholar

22. Matveev VA, Salle MA. Darboux transformations and solitons. Berlin, Heidelberg: Springer Verlag (1991).

Google Scholar

23. Nass AM. Lie symmetry analysis and exact solutions of fractional ordinary differential equations with neutral delay. Appl Mathematics Comput (2019) 347:370–80. doi:10.1016/j.amc.2018.11.002

CrossRef Full Text | Google Scholar

24. Rach R. On the Adomian(decomposition) method and comparisions with Picard’s method. J Math Anal Appl (1987) 128:480–3. doi:10.1112/S1461157017000018

CrossRef Full Text | Google Scholar

25. He JH. Homotopy perturbation technique. Comput Methods Appl Mech Eng (1999) 178:257–62. doi:10.1016/s0045-7825(99)00018-3

CrossRef Full Text | Google Scholar

26. Ramos JI. On the variational iteration method and other iterative techniques for nonlinear differential equations. Appl Mathematics Comput (2008) 199:39–69. doi:10.1016/j.amc.2007.09.024

CrossRef Full Text | Google Scholar

27. He CH, Liu HW, Liu C. A fractal-based approach to the mechanical properties of recycled aggregate concretes. Facta Universitatis, Ser Mech Eng (2024) 22(2):329–42. doi:10.22190/fume240605035h

CrossRef Full Text | Google Scholar

28. He CH, Liu C. Fractal dimensions of a porous concrete and its effect on the concrete’s strength. Facta Universitatis Ser Mech Eng (2023) 21(1):137–50. doi:10.22190/fume221215005h

CrossRef Full Text | Google Scholar

29. Yang XJ. New general fractional-order rheological models with kernels of Mittag-Leffler functions. Rom Rep Phys (2017) 69(4):118.

Google Scholar

30. Meng G, Zhang WM, Huang H, Li HG, Chen D. Micro-rotor dynamics for micro-electro-mechanical systems (MEMS). Chaos, Solitons and Fractals (2009) 40(2):538–62. doi:10.1016/j.chaos.2007.08.003

CrossRef Full Text | Google Scholar

31. Jindal SK, Varma MA, Thukral D. Comprehensive assessment of MEMS double touch mode capacitive pressure sensor on utilization of SiC film as primary sensing element: mathematical modelling and numerical simulation. Microelectronics J (2018) 73:30–6. doi:10.1016/j.mejo.2018.01.002

CrossRef Full Text | Google Scholar

32. Aghababa MP. Chaos in a fractional-order micro-electro-mechanical resonator and its suppression. Chin Phys B (2012) 21(10):100505. doi:10.1088/1674-1056/21/10/100505

CrossRef Full Text | Google Scholar

33. Yaghoubi Z, Adeli M. Adaptive observer-based control for fractional-order chaotic MEMS system. IET Control Theor Appl (2023) 17(11):1586–98. doi:10.1049/cth2.12495

CrossRef Full Text | Google Scholar

34. He JH. Periodic solution of a micro-electromechanical system. Facta Universititatis. Ser Mech Eng (2024) 22(2):187–98. doi:10.22190/fume240603034h

CrossRef Full Text | Google Scholar

35. Sousa JVDC, de Oliveira EC. A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties. Int J Anal Appl (2018) 16(Number 1):83–96. doi:10.48550/arXiv.1704.08187

CrossRef Full Text | Google Scholar

36. Hong BJ, Wang JH. Exact solutions for the generalized Atangana-Baleanu-Riemann fractional (3 + 1)-dimensional Kadomtsev-Petviashvili equation. Symmetry (2023) 15(3):3–15. doi:10.3390/sym15010003

CrossRef Full Text | Google Scholar

38. Hong BJ. Abundant explicit solutions for the M-fractionalgeneralized coupled nonlinear Schrödinger KdV equations. J Low Frequency Noise,Vibration Active Control (2023) 42(3):1222–41. doi:10.1177/14613484221148411

CrossRef Full Text | Google Scholar

39. Hong BJ, Zhou JX, Zhu XC, Wang YT. Some Novel Optical Solutions for the Generalized M-Fractional Coupled NLS System. J Funct Spaces (2023) 2023:8283092. doi:10.1155/2023/8283092

CrossRef Full Text | Google Scholar

40. Hong BJ. Assorted exact explicit solutions for the generalized Atangana’s fractional BBM–Burgers equation with the dissipative term. Front Phys (2022) 10:1071200. doi:10.3389/fphy.2022.1071200

CrossRef Full Text | Google Scholar

41. Wang ML, Zhou YB, Li ZB. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys Lett A (1996) 16(2):67–75. doi:10.1016/0375-9601(96)00283-6

CrossRef Full Text | Google Scholar

42. Salahshour S, Ahmadian A, Abbasbandy S, Baleanu D. M-fractional derivative under interval uncertainty: theory, properties and applications. Chaos, Solitons and Fractals (2018) 117:84–93. doi:10.1016/j.chaos.2018.10.002

CrossRef Full Text | Google Scholar

43. Yao SW, Manzoor R, Zafar A, Inc M, Abbagari S, Houwe A. Exact soliton solutions to the Cahn-Allen equation and Predator-Prey model with truncated M-fractional derivative. Results Phys (2022) 37:105455. doi:10.1016/j.rinp.2022.105455

CrossRef Full Text | Google Scholar

44. Abazari R, Abazari M. Numerical simulation of generalized Hirota-Satsuma coupled KdV equation by RDTM and comparison with DTM. Commun Nonlinear Sci Numer Simulation (2012) 17:619–29. doi:10.1016/j.cnsns.2011.05.022

CrossRef Full Text | Google Scholar

45. Hirota R, Satsuma J. Soliton solutions of a coupled Korteweg-de Vries equation. Phys Lett A (1981) 85:407–8. doi:10.1016/0375-9601(81)90423-0

CrossRef Full Text | Google Scholar

46. Wu YT, Geng XG, Hu XB, Zhu SM. A generalized HirotaSatsuma coupled Korteweg-de Vries equation and miura transformations. Phys Lett A (1999) 255:259–64. doi:10.1016/s0375-9601(99)00163-2

CrossRef Full Text | Google Scholar

47. Fan EG, Hon BYC. Double periodic solutions with Jacobi elliptic functions for two generalized HirotaCSatsuma coupled KdV systems. Phys Lett A (2002) 292:335–7. doi:10.1016/S0375-9601(01)00815-5

CrossRef Full Text | Google Scholar

48. Lu DC, Hong BJ, Tian LX. New explicit exact solutions for the generalized coupled Hirota-Satsuma KdV system. Comput Mathematics Appl (2007) 53(8):1181–90. doi:10.1016/j.camwa.2006.08.047

CrossRef Full Text | Google Scholar

49. Hong BJ. New exact Jacobi elliptic functions solutions for the generalized coupled Hirota-Satsuma KdV system. Appl Mathematics Comput (2010) 217:472–9. doi:10.1016/j.amc.2010.05.079

CrossRef Full Text | Google Scholar

50. Hu HC, Liu QP. New Darboux transformation for HirotaCSatsuma coupled KdV system. Chaos Solitions and Fractals (2003) 17:921–8. doi:10.1016/S0960-0779(02)00309-0

CrossRef Full Text | Google Scholar

51. Wu LP, Chen SF, Pang CP. Bifurcations of traveling wave solutions for the generalized coupled Hirota-Satsuma KdV system. Nonlinear Anal (2008) 68:3860–9. doi:10.1016/j.na.2007.04.025

CrossRef Full Text | Google Scholar

52. Kurt A, Rezazadeh H, Senol M, Neirameh A, Tasbozan O, Eslami M, et al. Two effective approaches for solving fractional generalized Hirota-Satsuma coupled KdV system arising in interaction of long waves. J Ocean Eng Sci (2019) 4:24–32. doi:10.1016/j.joes.2018.12.004

CrossRef Full Text | Google Scholar

53. Rezazadeh H, Seadawy AR, Eslami M, Mirzazadeh M. Generalized solitary wave solutions to the time fractional generalized Hirota-Satsuma coupled KdV via new definition for wave transformation. J Ocean Eng Sci (2019) 4:77–84. doi:10.1016/j.joes.2019.01.002

CrossRef Full Text | Google Scholar

54. Yan ZY. The extended Jacobian elliptic function expansion method and its application in the generalized Hirota-Satsuma coupled KdV system. Chaos Solitions and Fractals (2003) 15:575–83. doi:10.1016/s0960-0779(02)00145-5

CrossRef Full Text | Google Scholar

55. Zayed EME, Zedan HA, Gepreel KA. On the solitary wave solutions for nonlinear Hirota-Satsuma coupled KdV of equations. Chaos Solitions and Fractals (2004) 22:285–303. doi:10.1016/j.chaos.2003.12.045

CrossRef Full Text | Google Scholar

56. Dogan K. Solitary wave solutions for a generalized Hirota-Satsuma coupled KdV equation. Appl Mathematics Comput (2004) 147:69–78. doi:10.1016/s0096-3003(02)00651-3

CrossRef Full Text | Google Scholar

57. Chen Y, Yan ZY, Li B, Zhang HQ. New explicit solitary wave solutions and periodic wave solutions for the generalized coupled Hirota-Satsuma KdV system. Commun Theor Phys (2002) 38:261–6. doi:10.1088/0253-6102/38/3/261

CrossRef Full Text | Google Scholar

58. Feng Y, Zhang HQ. A new auxiliary function method for solving the generalized coupled Hirota-Satsuma KdV system. Appl Mathematics Comput (2008) 200:283–8. doi:10.1016/j.amc.2007.11.007

CrossRef Full Text | Google Scholar

59. Zuo JM, Zhang YM. Application of the G'/G-expansion method to solve coupled MKdV equations and coupled Hirota-Satsuma coupled KdV equations. Appl Mathematics Comput (2011) 217:5936–41. doi:10.1016/j.amc.2010.12.104

CrossRef Full Text | Google Scholar

60. Guo SM, Zhou YB. The extended G'/G-expansion method and its applications to the Whitham Broer-Kaup-Like equations and coupled Hirota-Satsuma KdV equations. Appl Mathematics Comput (2010) 215:3214–21. doi:10.1016/j.amc.2009.10.008

CrossRef Full Text | Google Scholar

61. Mirhosseini-Alizamini SM, Ullah N, Sabi J, Rezazadeh H, Inc M. New exact solutions for nonlinear Atangana conformable Boussinesq-like equations by new Kudryashov method. Int J Mod Phys B (2021) 35(12):2150163. doi:10.1142/s0217979221501630

CrossRef Full Text | Google Scholar

62. Hosseini K, Bekir A, Ansari R. New exact solutions of the conformable time-fractional Cahn- Allen and Cahn-Hilliard equations using the modified Kudryashov method. Optik (2017) 132:203–9. doi:10.1016/j.ijleo.2016.12.032

CrossRef Full Text | Google Scholar

63. Nadeem M, Li Z. Yang transform for the homotopy perturbation method: promise for fractal-fractional models. Fractals (2023) 31(07):2350068. doi:10.1142/s0218348x23500688

CrossRef Full Text | Google Scholar

64. Nadeem M, Ain QT, Alsayaad Y. Approximate solutions of multidimensional wave problems using an effective approach. J Funct Spaces (2023) 2023(1):5484241–9. doi:10.1155/2023/5484241

CrossRef Full Text | Google Scholar

65. Rafikov M, Balthazar JM. Optimal pest control problem in population dynamics. Comput Appl Mathematics (2005) 24(1):65–81. doi:10.1590/s1807-03022005000100004

CrossRef Full Text | Google Scholar

Keywords: time-space fractional coupled Hirota-Saturma KdV equation, the modified (G′/G,1/G)-expansion method, the G′/(bG′+G+a)-expansion method, blow-up, analytical solutions

Citation: Cheng Y, Hong S, Yang S, Chi X and Yang J (2025) Some novel exact solutions for the generalized time-space fractional coupled Hirota-Satsuma KdV equation. Front. Phys. 12:1526258. doi: 10.3389/fphy.2024.1526258

Received: 11 November 2024; Accepted: 27 November 2024;
Published: 05 February 2025.

Edited by:

Chun-Hui He, Xi’an University of Architecture and Technology, China

Reviewed by:

Ji-Huan He, Soochow University, China
Muhammad Nadeem, Qujing Normal University, China
Shao-Wen Yao, Henan Polytechnic University, China

Copyright © 2025 Cheng, Hong, Yang, Chi and Yang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Yueling Cheng, MTAwMDAwMzI4NEB1anMuZWR1LmNu

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Research integrity at Frontiers

Man ultramarathon runner in the mountains he trains at sunset

94% of researchers rate our articles as excellent or good

Learn more about the work of our research integrity team to safeguard the quality of each article we publish.


Find out more