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This paper presents a novel approach for simulating acoustic-shell interaction,
specifically focusing on seabed reflection effects. The interaction between
acoustic waves and shell vibration is crucial in various engineering applications,
particularly in underwater acoustics and ocean engineering. The study employs
the finite element method (FEM) with Kirchhoff-Love shell elements to
numerically analyze thin-shell vibrations. The boundary element method (BEM)
is applied to simulate exterior acoustic fields and seabed reflections, using
half-space fundamental solutions. The FEM and BEM are coupled to model
the interaction between acoustic waves and shell vibration. Furthermore, the
FEM-BEM approach is implemented within an isogeometric analysis (IGA)
framework, where the basis functions used for geometric modeling also
discretize the physical fields. This ensures geometric exactness, eliminates
meshing, and enables the use of Kirchhoff-Love shell theory with high-order
continuous fields. The coupled FEM-BEM system is accelerated using the fast
multipole method (FMM), which reduces computational time and memory
storage. Numerical examples demonstrate the effectiveness and efficiency of
the proposed algorithm in simulating acoustic-shell interaction with seabed
reflection.
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1 Introduction

Themanagement of noise has consistently been a focal point within the field of marine
engineering [1, 2]. In the realm of structural design aimed at mitigating noise emissions and
reflections from marine structures, numerical simulation is of paramount importance [3,
4]. While the Finite Element Method (FEM) is highly adaptable for structural dynamics, its
application in exterior acoustic scenarios is challenging [5-8]. This is because FEM requires
the discretization of a vast finite region from an unbounded domain and necessitates the
imposition of artificial boundary conditions using specialized techniques, which can be
complex and may compromise the accuracy of the simulation. In contrast, the Boundary
Element Method (BEM) is often favored for external acoustic issues as it necessitates the
discretization of only the structural surfaces, which are the boundaries of the infinite
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acoustic domain, and inherently satisfies the boundary conditions at
infinity [9-12].

Thin-shell structures submerged in water exhibit characteristics
through the interplay between structural vibrations and acoustic
phenomena, as referenced in various studies [13-17]. Essentially,
when an acoustic wave propagates through a fluid, it has the capacity
to induce vibrations in surrounding structures. These structural
vibrations subsequently generate additional acoustic waves that
radiate back into the fluid [18, 19]. A practical method for
modeling the interaction between acoustics and shells is through
the integration of FEM and BEM. This approach leverages the
individual strengths of FEM and BEM in the realms of exterior
acoustics, which deals with unbounded domains, and structural
dynamics, respectively [20-22]. The coupling of FEM and BEM was
pioneered by Everstine and Henderson for the analysis of acoustic-
shell interactions [23]. Subsequent developments have expanded its
application to encompass shape sensitivity analysis [24], structural
optimization [25], and uncertainty quantification [26].

In numerous real-world situations, the reflection of sound
waves by the seabed can exert a substantial impact on acoustic
fields, particularly in the shallow-water offshore areas [27-30]. This
phenomenon is known as the half-space or plane symmetrical
acoustic issue [31, 32]. To address this challenge, a variety of
boundary element methods that utilize mirroring techniques have
been put forward by researchers such as [33, 34], and [35]. However,
these methods presuppose that the acoustic waves are scattered
by rigid bodies and do not account for the interaction between
acoustics and structural elements.

Based on the authors’ comprehensive understanding, no
existing studies have yet addressed the simulation of acoustic-
shell interactions in the context of seabed reflections. This research
aims to bridge this gap in the literature. Pioneering an approach,
this study couples BEM with half-space fundamental solutions
to FEM to assess acoustic-shell interactions, thereby enabling the
inclusion of seabed reflection effects. Furthermore, to enhance the
computational efficiency of the BEM with half-space fundamental
solutions and tominimize its memory usage, we have developed fast
multipole expansions for this method.

The layout of the paper is as follows: Section 2 details the
coupling scheme of FEM and BEM for simulating acoustic-shell
interactions that consider seabed reflections. Section 3 elaborates
on the implementation of fast multipole methods to expedite
the acoustic simulation process. Section 4 presents a range of
numerical examples to illustrate the approach. Finally, Section 5
concludes the paper.

2 Acoustic interaction with shells and
seabed reflections

2.1 Defining the problem

Figure 1 depicts a system involving the interaction between
acoustic and structural components. An elastic thin-shell occupies
the region Ωs, which is encompassed by an infinite fluid domain Ω f .
The interface where the fluid and the structure meet is denoted by
Γs f , defined as the intersection of Ωs and Ω f . The space within the
shell is occupied by air, forming the domainΩa. Given the significant

FIGURE 1
System for acoustic-structural interaction. The unit normal vector of
the shell structure is denoted as n⃗s, while that of the fluid is n⃗ f . A
dashed line indicates the mid-surface of the shell structure. The
pressure load from the sound field is f⃗p, and the external mechanical
load is f⃗s.

difference in density between the air and the structural material, it is
reasonable to disregard the influence of air pressure on the structural
vibrations.

The mechanical response of the thin-shell is defined by the
Kirchhoff-Love shell theory, as detailed in references [36, 37].
Meanwhile, the acoustic fields within the fluid domain are regulated
by the Helmholtz equation, which is discussed in [38-41]. The
thin-shell structure is actuated by a time-varying force with an
angular frequency of ω. Consequently, the equations governing
the acoustic-structural interaction system are presented as
Equations 1–4.

∇ ⋅ σ (x) +ω2ρsu (x) = 0 x ∈Ωs (1)

∇2p (x) + k2p (x) = 0 x ∈Ω f (2)

σ (x) ⋅ns (x) − p (x)n f (x) = 0 x ∈ Γs f (3)

−iωu (x) ⋅n f (x) = v
n
f (x) x ∈ Γs f (4)

Equations 1, 2 serve as the foundational equations that shape
the configuration of acoustic fields. Equations 3, 4 delineate the
conditions for continuous displacement and balanced forces at
the interfaces where the fluid and structure interact. The symbol
∇ denotes the Laplacian operator, σ signifies the stress tensor, u
represents the displacement vector, ρs is the density of the shell, p(x)
denotes the acoustic pressure, ns is the outward normal vector to
the shell surfaces, n f is the inward normal vector to the structural
surface, i is the imaginary unit with i = √−1, vnf is the normal
velocity of the fluid, and k, defined as ω/c, represents the wave
number, with c being the speed of sound propagation within
the fluid domain.
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FIGURE 2
Method for generating Catmull-Clark Subdivision Surfaces. The black points represent the control points prior to subdivision, while the red points
indicate the positions after subdivision has been applied. (A) Initial control mesh. (B) One level refined mesh.

2.2 Geometric modeling employing
Catmull-Clark subdivision surfaces

The choice of a discretization approach or the selection of
basis functions is crucial in numerical simulations. Typically,
in traditional FEM and BEM, polynomial functions are the
preferred choice for basis functions. In this study, we integrate
FEM and BEM within the framework of isogeometric analysis
(IGA), as referenced in [42-46]. This integration leverages
the same basis functions used for geometric modeling to
discretize the physical fields. This approach not only preserves
the geometric precision but also eliminates the need for mesh
generation. Most significantly, it facilitates the construction
of high-order continuous fields, which is essential for the
application of the Kirchhoff-Love shell theory, as further
elaborated in [47].

Non-Uniform Rational B-splines (NURBS), as discussed
in [48- 52], are a prevalent choice for geometric construction
in Computer-Aided Design (CAD), with polygonal meshes
subsequently derived for numerical analysis. In this research,
we embrace the principles of isogeometric analysis, utilizing
identical basis functions for both geometric modeling and
numerical simulation. We opt for Catmull-Clark subdivision
surfaces over NURBS for CAD model construction, as they ensure
watertight geometries with support for arbitrary topologies, as
described in [53].

Constructing geometry with Catmull-Clark subdivision
surfaces begins with the establishment of a control mesh,
which is made up of quadrilateral elements. The vertices of
this mesh are known as control points. Following the initial
setup, the control mesh undergoes subdivision, during which
new control points are introduced and the positions of the
existing ones are adjusted, as shown in Figure 2. This process
of subdivision can be repeated iteratively, adhering to a set of
subdivision rules that progress from level k to level k+ 1, as
illustrated in Figure 3. However, since continuous subdivision
is not feasible, practical implementations of limit subdivision
surfaces are assessed through the use of spline basis functions for
parameterization.

Subdivision surfaces excel in their capacity to manage singular
points while ensuring controlled curvature at these locations.

Figure 4A illustrates a regularly colored subdivision surface element,
where each vertex within the element has a valence of 4, signifying
the lack of extraordinary vertices within the element. A patch is
delineated as a collection of all elements that share vertices with
a particular target element. A regular patch is composed of nine
elements featuring sixteen vertices. The element highlighted in
Figure 4B contains an extraordinary vertex, which adds complexity
to surface evaluation as it disrupts the tensor-product property.
It should be noted that the initial grid might include irregular
elements with multiple extraordinary vertices, but after subdivision,
each resulting sub-element will contain at most one exceptional
vertex.The evaluation of a surface point with parametric coordinates
(ξ,η) is conducted through a linear combination of control points
and 2κ+ 8 basis functions, characterized by a valence of κ,
as shown in Equation 5.

x (ξ,η) =
2κ+7

∑
ℓ=0

N̂ℓ (ξ,η)Pℓ (5)

in which x represents the Cartesian coordinates of the point, N̂ℓ
refers to the basis functions, Pℓ signifies the control points, and κ
indicates the valence of the vertex.

2.3 Analysis of thin-shell vibrations
employing IGAFEM

As previously stated, subdivision surfaces are employed for both
crafting geometric models and discretizing the physical fields. The
collective elements establish the boundary Γ, which is delineated by
Equation 6.

Γ =
Ne

⋃
e=1

Γe (6)

in which Ne denotes the overall count of elements, with element Γe
signifying the e-th element. Consequently, the displacement can be
articulated as follows by leveraging the basis functions associated
with the Catmull-Clark subdivision, as shown in Equation 7.

ũe =
2κ+7

∑
ℓ=0

N̂ℓ (ξ,η) ũ
e
ℓ (7)
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FIGURE 3
Algorithm pertaining to the topology of Catmull-Clark subdivision surfaces.

FIGURE 4
Patches associated with elements in a Catmull-Clark subdivision surface. (A) For a regular element. (B) For an irregular element.

in which ũeℓ denotes the nodal parameter associated with the
ℓ-th control point, employed for discretizing the displacements.
Combining all the individual element matrices results in the
subsequent Equation 8.

Aũ = f (8)

in which ũ represents the vector of displacements at all vertices,
and f signifies the load vector. Furthermore, the matrix A can be

formulated as Equation 9.

A = K−ω2M, K =
Ne

⋃
e=1

Ke, M =
Ne

⋃
e=1

Me (9)

in whichK signifies the global stiffnessmatrix of the structure, while
M represents the global mass matrix. The element stiffness matrix is
denoted byKe and the elementmassmatrix byMe. It should be noted
that the load vector f is the sum of two components, fs and fp, where
fs corresponds to the external mechanical load, and fp corresponds
to the load due to acoustic pressure.
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2.4 Analysis of acoustic phenomena
employing IGABEM

Within the three-dimensional domain Ω ⊂ ℝ3 bounded by Γ,
the propagation of acoustic waves is governed by the Helmholtz
equation. This equation can be transformed into boundary integral
equations. To address the issue of irregular frequencies or spurious
modes in exterior acoustic scenarios, we employ the Burton-Miller
formulation, which is a linear combination of the conventional
boundary integral equation (CBIE) and its derivatives [54-57], as
shown in Equation 10.

C (x)p (x) + αC (x)q (x) =∫
Γ
G (x,y)q (y)dΓ+ α∫

Γ

∂G (x,y)
∂n f (x)

q (y)dΓ

−∫
Γ

∂G (x,y)
∂n f (y)

p (y)dΓ

− α∫
Γ

∂2G (x,y)
∂n f (x)∂n f (y)

p (y)dΓ+ ̃pinc (x)

(10)

in which x and y correspond to the source and field points,
respectively. The term C(x) represents the discontinuity across the
boundary, which takes a value of 1

2
for smooth surfaces.The coupling

parameter α is given by i
k
when k > 1, and α = i in other cases.

The quantity q(y) = ∂p(y)
∂nf(y)

denotes the flux of sound pressure. The

term ̃pinc(x) = pinc(x) +
∂pinc(x)
∂nf(x)

encompasses both the incident wave’s
sound pressure and its normal derivative at point x, with pinc(x)
being the incident wave’s sound pressure at that location. The
functions G(x,y) and its normal derivative for three-dimensional
full-space acoustics are specified as Equations 11, 12.

G (x,y) = e
ikr

4πr
(11)

∂G (x,y)
∂n f (y)

= − e
ikr

4πr2
(1− ikr) ∂r

∂n f (y)
(12)

in which r = |x− y|. The fundamental solution for half-space
problems is represented by G

∗
(x,y), as shown in Equation 13.

G∗ (x,y) = G (x,y) + βG (x∗,y) (13)

in which x∗ denotes the reflection of point x across the infinite plane
Γh, and β signifies the reflection coefficient. The coefficient β equals
one for a rigid boundary and −1 for a soft boundary. By replacing
G(x,y) with G

∗
(x,y), Equation 10 is converted into Equation 14.

C (x)p (x) + αC (x)q (x) =∫
Γ
G∗ (x,y)q (y)dΓ+ α∫

Γ

∂G∗ (x,y)
∂n f (x)

q (y)dΓ

−∫
Γ

∂G∗ (x,y)
∂n f (y)

p (y)dΓ

− α∫
Γ

∂2G∗ (x,y)
∂n f (x)∂n f (y)

p (y)dΓ+ ̃p∗inc (x) (14)

in which ̃p
∗
inc(x) = p

∗
inc(x) +

∂p
∗
inc(x)

∂nf(x)
, and the partial derivative of

G∗(x,y) is shown in Equations 15–17.

∂G∗ (x,y)
∂n f (y)

= − e
ikr

4πr2
(1− ikr) ∂r

∂n f (y)
− β eikr

∗

4π(r∗)2
(1− ikr∗) ∂r∗

∂n f (y)
(15)

∂G∗ (x,y)
∂n f (x)

= − e
ikr

4πr2
(1− ikr) ∂r

∂n f (x)
− β eikr

∗

4π(r∗)2
(1− ikr∗) ∂r∗

∂n f (x)
(16)

∂2G∗ (x,y)
∂n f (x)∂n f (y)

= eikr

4πr3
[(3− 3ikr− k2r2) ∂r

∂n f (y)
∂r

∂n f (x)
+ (1− ikr)ni (x)ni (y)]

+ β eikr
∗

4π(r∗)3
[(3− 3ikr∗ − k2(r∗)2) ∂r

∂n f (y)
∂r

∂n f (x)

+(1− ikr∗)ni (x)ni (y)] (17)

In this approach, the physical field is discretized using the basis
functions of the subdivision surface that are employed in the
geometric construction, as displayed in Equation 18.

pe =
2κ+7

∑
ℓ=0

N̂ℓ (ξ,η) ̃p
e
ℓ

qe =
2κ+7

∑
ℓ=0

N̂ℓ (ξ,η) ̃q
e
ℓ (18)

in which pe represents the acoustic pressure at the point (ξ,η)
within the element Γe; qe signifies the normal flux associated with pe.
Additionally, ̃peℓ refers to the ℓ-th nodal variable associated with the
sound pressure, while ̃qeℓ represents the normal flux corresponding
to ̃peℓ. By inserting Equation 18 into Equation 14 and applying these
equations at a discrete set of collocation points xj, Equation 19 can
be derived.

C(xj)p(xj) + αC(xj)q(xj) +
Ne

∑
e=1

2κ+7

∑
ℓ=0
∫
Γe
N̂ℓ (ξ,η)

∂G∗ (xj,y (ξ,η))

∂n f (y (ξ,η))
dΓ ̃peℓ

+ α
Ne

∑
e=1

2κ+7

∑
ℓ=0
∫
Γe
N̂ℓ (ξ,η)

∂2G∗ (xj,y (ξ,η))

∂n f (xj)∂n f (y (ξ,η))
dΓ ̃peℓ

=
Ne

∑
e=1

2κ+7

∑
ℓ=0
∫
Γe
N̂ℓ (ξ,η)G∗ (xj,y (ξ,η))dΓ ̃q

e
ℓ

+ α
Ne

∑
e=1

2κ+7

∑
ℓ=0
∫
Γe
N̂ℓ (ξ,η)

∂G∗ (xj,y (ξ,η))

∂n f (xj)
dΓ ̃qeℓ + ̃p

∗
inc (xj) (19)

in which the subscript j indicates the index of the collocation
point. These collocation points are determined by projecting the
control points onto the surface. Equation 19 can be expressed in
matrix-vector form as Equation 20.

Hp̃ = Gq̃+ pi (20)

in whichn H and G are the matrices of coefficients, while p̃ and q̃
are the column vectors that compile the nodal parameters related to
the acoustic pressure and its flux, respectively. pi signifies the nodal
pressure vector attributed to the incidentwave. It is crucial to address
the singular integrals present in Equation 10. Numerous methods
have been proposed to handle these singular integrals within BEM,
as cited in [58-61]. This research adopts the singularity subtraction
technique introduced by Guiggiani, recognized for its precision and
efficiency, as detailed in [62].

2.5 Integration of IGAFEM and IGABEM

Equations 8, 20, originating from the structure (using FEM) and
the acoustic (using BEM) respectively, are tightly interlinked and
cannot be resolved in isolation.They are interconnected through the
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boundary conditions outlined in Equations 3, 4.The sound pressure
within the fluid domain can be perceived as a force exerted on the
shell surface. Consequently, the nodal force vector fp due to the
acoustic load can be formulated as Equation 21.

fp = ñ fΘp̃ (21)

in which Θ is defined as the integral over the boundary Γ of the
product of the transpose of the subdivision basis functions’ global
vector N̂ℓ and N̂ℓ itself, multiplied by dΓ. The vector N̂ℓ denotes the
global vector of subdivision basis functions, and ñ f represents the
matrix of normal vectors, which is given by Equation 22.

ñ f =

{{{{{{{{{{{{{{
{{{{{{{{{{{{{{
{

n1 f ⋅ e1 0 …
n1 f ⋅ e2 0 …
n1 f ⋅ e3 0 …
0 n2 f ⋅ e1 …
0 n2 f ⋅ e2 …
0 n2 f ⋅ e3 …
… … …

}}}}}}}}}}}}}}
}}}}}}}}}}}}}}
}

(22)

in which e1,e2,e3 denote the three unit normal vectors. By applying
Equation 21, we can derive a new expression for the global nodal
force vector, which is presented in Equation 23.

f = Cs f p̃+ fs (23)

in which Cs f = ñ fΘ.
Next, we will investigate the relationship between the velocities

on the shell’s mid-surface and the sound pressure. The vector
vnf represents the nodal parameters related to the fluid’s normal
velocity component, while the vector vns signifies the nodal variables
associated with the normal velocity component of the structure.
Assuming no energy dissipation occurs at the interface between the
fluid and structural domains, we get Equation 24.

vnf − v
n
s = 0 (24)

in which vns = iωC fsũ, and C fs = ñ
T
f . Subsequently, the vector q̃,

encompassing the nodal parameters related to the acoustic flux, can
be formulated as Equation 25.

q̃ =
∂p̃
∂n
= −iωρ fv

n
f = ω

2ρ fC fsũ (25)

in which ρ f represents the fluid’s density.
By inserting Equation 25 into Equation 20, we obtain the

following coupled system of equations for the acoustics, as shown
in Equation 26.

Hp̃ = Gω2ρ fC fsũ+ pi (26)

Incorporating Equation 23 into Equation 8 yields the following
coupled system of equations for structural dynamics shown in
Equation 27.

Aũ = Cs f p̃+ fs (27)

By integrating Equation 27 into Equation 26, the indeterminate
displacement ũ is eliminated, leading to a boundary element

FIGURE 5
Nodes at the boundary and the points for multipole expansion in the
half-space Fast Multipole Method (FMM).

FIGURE 6
System for acoustic-structural interaction involving elastic
spherical shells.

formulation that is linked with the finite element equation, as shown
in Equation 28.

[H−GY] p̃ = Gq̃s + pi (28)

in which Y denotes the global admittance matrix, and q̃s accounts
for the influence of sound speeds originating from the structural
domain. These are given by Equation 29.

Y = ω2ρ fC fsA−1Cs f

q̃s = ω
2ρ fC fsA−1fs (29)

3 Enhancing computation speed with
the fast multipole method

The Fast Multipole Method (FMM) is a highly efficient
algorithm designed to accelerate the computation of long-range
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FIGURE 7
The numerical results of the sphere model are verified in the
convergence of three mesh node numbers.

interactions in N-body problems. Introduced by [63], FMM reduces
the computational complexity from O(N2) to O(N) or O(N log N),
depending on the implementation. This significant improvement
is achieved through hierarchical space decomposition and the use
of multipole and local expansions, which approximate interactions
between distant clusters of particles. The fundamental solution for
the full-space, as introduced in Equation 11, is expanded into the
following series shown in Equation 30.

G(x,y) = ik
4π

∞

∑
n=0

n

∑
m=−n
(2n+ 1)Imn (k, o⃗y)Om

n (k, o⃗x) (30)

in which O serves as a local expansion point in proximity to
y, as shown in Figure 5. The terms Imn and Om

n are defined as
Equations 31, 32.

Imn (k,a) = jn (kr)Y
m
n (θ,ϕ) (31)

Om
n (k,a) = h

(1)
n (kr)Ym

n (θ,ϕ) (32)

The terms Imn represent the complex conjugates of Imn . The
functions jn and h(1)n correspond to the n-th order spherical Bessel
and Hankel functions of the first kind, respectively, as detailed
in [64]. The spherical harmonics are denoted by Ym

n , which
are given by Equation 33.

Ym
n (θ,ϕ) = cmn Pm

n (cos θ)eimϕ (33)

in which cmn = √
(n−m)!
(n+m)!

and Pm
n refers to the associated Legendre

functions.
To derive a Fast Multipole Method (FMM) scheme tailored for

a half-space acoustic problem, we modify the fundamental solution
for the half-space into the following form in Equation 34.

G∗ (x,y) = G (x,y) + βG (x,y∗) (34)

Subsequently, the boundary integral for the j-th element in
Equation 28 can be re-expressed as Equations 35, 36.

gij = ∫
Γj
G(x,y) + βG(x,y∗)]q (y)dΓ (y) (35)

hij = ∫
Γj
[
∂G(x,y)
∂n f (y)
+ β

∂G(x,y∗)
∂n f (y)

]p (y)dΓ (y) (36)

Consequently, employing Equation 13, we can express the boundary
integrals over a boundary element Γj that is situated at a distance

from the source point x in the following manner in Equations 37,
38.

gij = ik
4π

∞

∑
n=0

n

∑
m=−n
(2n+ 1)  [Mm

n  (k, o⃗yj) O
m
n  (k, o⃗x)

+ βMm
n  (k, o⃗∗y∗j ) O

m
n  (k, o⃗∗x)] (37)

hij = ik
4π

∞

∑
n=0

n

∑
m=−n
(2n+ 1)  [M̃m

n  (k, o⃗yj) O
m
n  (k, o⃗x)

+ βM̃m
n  (k, o⃗∗y∗j ) O

m
n  (k, o⃗∗x)] (38)

in which yj denotes a field point on Γj; Mm
n (k, o⃗yj) and M̃m

n (k, o⃗yj)
are the multipole moments of the low-frequency FMM techniques
in the real domain, respectively, and are defined as Equations 39, 40.

Mm
n (k, o⃗yj) = ∫

Γj
Imn (k, o⃗yj)q (y)dΓ (y) (39)

M̃m
n (k, o⃗yj) = ∫

Γj

∂Imn (k, o⃗yj)

∂n (y)
p (y)dΓ (y) (40)

By replacing o and yj with o∗ and y∗j in Equations 39, 40, we obtain
the expressions for Mm

n (k, o⃗
∗y∗j) and M̃m

n (k, o⃗
∗y∗j) as presented in

Equations 37, 38, respectively. To determine the moments of the
leaf cell, we aggregate the multipole moments from Nl boundary
elements in the vicinity of point o, as shown in Equations 41–44.

Mm
n (k,o) =

Nl

∑
j=1

Mm
n (k, o⃗yj) (41)

Mm
n (k,o∗) =

Nl

∑
j=1

Mm
n (k, o⃗∗y∗j ) (42)

M̃m
n (k,o) =

Nl

∑
j=1

M̃m
n (k, o⃗yj) (43)

M̃m
n (k,o∗) =

Nl

∑
j=1

M̃m
n (k, o⃗∗y∗j ) (44)

When |o1x| > |o1y| and |o∗1x| > |o∗1y∗|, the low-frequency Fast
Multipole Method (FMM) facilitates the relocation of the moment
center from o and o∗ to o1 and o∗1 using the M2M (moments to
moments) translation formula, which is expressed as Equations 45,
46.

Mm
n  (k,o1) =

∞

∑
n1=0

n1
∑

m1=−n1

∑
l∈I
(2n1 + 1)

− 1m1 Wn,n1,m,m1,l × I
−m−m1
l  (k, o⃗1o) (45)

Mm
n  (k,o∗1 ) =

∞

∑
n1=0

n1
∑

m1=−n1

∑
l∈I
(2n1 + 1)

− 1m1 Wn,n1,m,m1,l × I
−m−m1
l  (k, o⃗∗1o∗) (46)

in whichWn,n1,m,m1,l is expressed in Equation 47.

Wn,n1,m,m1,l = (2l+ 1) i
n1−n+l(

n n1 l
0 0 0

)(
n n1 l

m m1 −m−m1
)

(47)
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FIGURE 8
Sound pressure at computational points on circles with a 2-m radius across various frequencies. (A) 100 Hz. (B) 200 Hz.

FIGURE 9
Sound pressure and displacement distributions on the surface of a spherical shell: the first three columns depict the three components of
displacement, while the fourth column shows the sound pressure. (A) 100 Hz, displacement x. (B) 100 Hz, displacement y. (C) 100 Hz, displacement z.
(D) 100 Hz, sound pressure. (E) 200 Hz, displacement x. (F) 200 Hz, displacement y. (G) 200 Hz, displacement z. (H) 200 Hz, sound pressure.

The symbol (
.
.
) represents the Wigner 3j symbol, and the set I

is defined as Equation 48.

I (n,n1,m,m1) = {
l|l ∈ Z,n+ n1 − l:even,
max {|m+m1| , |n− n1|} ≤ l ≤ n+ n1

} (48)

Taking into account the influence of the infinite/symmetry
plane, we can formulate the M2L (moments to local expansion
coefficients) translation formula as shown in Equations 49, 50.

Lmn (k,x1) =
∞

∑
n1=0

n1
∑

m1=−n1
∑
l∈I
(2n1 + 1) (−1)

m1Wn,n1,m,m1,l

× [Om+m1
l (k, o⃗1x1)M

m1
n1 (k,o1) + βO

m+m1
l (k, o⃗1x1)M

m1
n1 (k,o

∗
1 )]
(49)

L̃mn (k,x1) =
∞

∑
n1=0

n1
∑

m1=−n1
∑
l∈I
(2n1 + 1) (−1)m1Wn,n1,m,m1,l

× [Om+m1
l (k, o⃗1x1)M̃

m1
n1 (k,o1) + βO

m+m1
l (k, o⃗1x1)M̃

m1
n1 (k,o

∗
1 )]
(50)

Following that, the L2L (local expansion to local
expansion) translation formula can be employed to shift the
center of the local expansion from x1 to x2, as shown in
Equations 51, 52.

Lmn (k,x2) =
∞

∑
n1=0

n1
∑

m1=−n1

∑
l∈I
(2n1 + 1) (−1)m1Wn,n1,−m,m1,l

× Im−m1
l (k, x⃗1x2)L

m1
n1 (k,x1) (51)
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FIGURE 10
Sound pressure of the sphere model across various frequencies with
β = 0, incremented by a frequency step of 1 Hz. (A) β = 0, real part. (B)
β = 0, imaginary part. (C) β = 0, sound pressure.

L̃mn (k,x2) =
∞

∑
n1=0

n1
∑

m1=−n1

∑
l∈I
(2n1 + 1) (−1)m1Wn,n1,−m,m1,l

× Im−m1
l (k, x⃗1x2) L̃

m1
n1 (k,x1) (52)

For the set of Nl boundary elements that are close to o but far from
the source points x, the sums∑Nl

j=1h
ij or∑Nl

j=1g
ij can be expressed using

the local expansion coefficients shown in Equation 53.

Nl

∑
j=1

gij = ik
4π

∞

∑
n=0

n

∑
m=−n
(2n+ 1)Lmn (k,x2)I

m
n (k, x⃗2x1) (53)

Nl

∑
j=1

hij = ik
4π

∞

∑
n=0

n

∑
m=−n
(2n+ 1) L̃mn (k,x2)I

m
n (k, x⃗2x1) (54)

within the low-frequency FMM. To refine the Burton-Miller
formulation, which is a linear combination of the Conventional
Boundary Integral Equation (CBIE) and its normal derivative, we
simply introduce adjustments to Equations 53, 54, as shown in
Equations 55, 56.

Nl

∑
j=1

gij = ik
4π

∞

∑
n=0

n

∑
m=−n
(2n+ 1)Lmn (k,x2) × [I

m
n (k, x⃗2x1) + α

∂Imn (k, x⃗2x1)
∂n (x)

]

(55)

FIGURE 11
Sound pressure of the sphere model across various frequencies with
β = 0, β = − 1, and β = 1, incremented by a frequency step of 1 Hz. (A)
Real part. (B) Imaginary part. (C) Sound pressure.

Nl

∑
j=1

hij = ik
4π

∞

∑
n=0

n

∑
m=−n
(2n+ 1) L̃mn (k,x2) × [I

m
n (k, x⃗2x1) + α

∂Imn (k, x⃗2x1)
∂n (x)

]

(56)

The implementation process involves the following key steps:

1. Hierarchical Tree Construction: The computational domain
is partitioned into a hierarchical octree structure, with
each node representing a subdomain. Boundary elements
are assigned to the appropriate nodes based on their
spatial location.

2. Multipole Expansion Calculation: For each leaf node,
multipole moments are computed using the source terms
within the node. These moments encapsulate the collective
influence of sources on distant targets.

3. M2MTranslations: Multipole expansions from child nodes are
aggregated and translated to their parent nodes, propagating
the influence up the hierarchical tree.

4. M2L Translations: At each interaction list, multipole
expansions from distant nodes are translated into local
expansions at the target nodes. This step leverages the
translation operators to approximate interactions efficiently.

5. L2L Translations: Local expansions are propagated
down the tree to account for interactions within
localized regions.
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FIGURE 12
Sound pressure in terms of frequencies with different distances from the seabed for the sphere model. (A) β = −1. (B) β = 1.

FIGURE 13
Acoustic-structural interaction system for the fish model.

FIGURE 14
The numerical results of the fish model are verified in the convergence
of two mesh node numbers.

6. Evaluation of Local Expansions: The final local expansions
are evaluated at the target points, providing the approximate
contributions from distant sources.

4 Numerical illustrations

In this segment, the primary objective of the elastic spherical
shell model is to verify the accuracy of the numerical model by
comparing the analytical and numerical solutions. The fish model,
with its relatively complex geometry, represents the structural
features of real underwater organisms or submersibles. It is intended
to demonstrate the applicability and effectiveness of the proposed
method in solving underwater acoustic scattering problems. The

computations are executed using Fortran 90 on a desktop computer
with 128 GB of RAM and an Intel (R) Core (TM) i7-7700 CPU.

4.1 Acoustic scattering by an elastic
spherical shell

This section examines the acoustic field scattered by a spherical
shell structure when subjected to incident plane waves, taking into
account the reflections from the seabed, as depicted in Figure 6. In
the diagram, the center of the sphere is at the origin; Λ represents
the seabed surface; ̃r is the distance from the origin to the seabed
surface; fp is the incident plane wave; Ω f signifies the infinite fluid
domain.The seabed reflection coefficient is denoted by β, where β =
−1 corresponds to a soft seabed and β = 1 corresponds to a rigid
seabed.The incident plane waves, which have an amplitude of 1,
travel along the positive x-axis. Using Catmull-Clark subdivision
surfaces, three elastic spherical shells with 3,458, 4,800, and
9,408 mesh points were constructed. Figure 7 presents the variation
curves of sound pressure with frequency for the spherical models at
3,458, 4,800, and 9,408 mesh points, respectively. The computation
times for a single frequency were 33 s, 56 s, and 85 s for each
model. It can be observed from the figure that the differences in the
sound pressure curves across the three mesh densities are minimal;
however, the computation times differ significantly. Therefore, this
study adopts the spherical model with fewer mesh points to balance
computational efficiency and accuracy.When analyzing the acoustic
scattering of the sphere model, we found that the computation time
for the traditional Catmull-Clark subdivision surfaces coupled with
the FEM-BEM method was 428 s, whereas the computation time
for the Catmull-Clark subdivision surfaces accelerated by FMM and
coupled with the FEM-BEM method was only 33 s, demonstrating
that the computational efficiency of FMMis significantly higher than
that of traditional algorithms.

The sound pressure values at the computed points on the
circle for incident wave frequencies of 100 Hz and 200 Hz are
depicted in Figure 8, where the circle represents the projection of the
sphere model, with a radius of 2 m, onto the yoz plane. As observed
in the figure, at a frequency of 200 Hz, the sound pressure curve
exhibits more pronounced fluctuations, indicating that the larger
the external sound wave impacting the sphere model, the greater
the magnitude of sound pressure variation. When β = 0, the sound
pressure curves from numerical and analytical solutions align,
confirming the validity and reliability of the algorithm presented in
this study. For β = 0,1,−1, the numerical solutions vary significantly,
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FIGURE 15
Sound pressure and displacement distributions on the surface of a fish model: the first three columns depict the three components of displacement,
while the fourth column shows the sound pressure. (A) 1000 Hz, displacement x. (B) 1000 Hz, displacement y. (C) 1000 Hz, displacement z. (D)
1000 Hz,sound pressure. (E) 2000 Hz, displacement x. (F) 2000 Hz, displacement y. (G) 2000 Hz, displacement z. (H) 2000 Hz, sound pressure. (I)
3000 Hz, displacement x. (J) 3000 Hz, displacement y. (K) 3000 Hz, displacement z. (L) 3000 Hz, sound pressure.

demonstrating the importance of considering the seabed reflection
effects and highlighting the significance of the seabed’s nature.

Figure 9 illustrates the displacement and sound pressure
distributions on the sphere model when it is positioned 5 m above
the seabed. The first three columns represent the displacement
components in the x, y, and z axes, respectively, while the last
column indicates the sound pressure. As observed in the figure,

the sound pressure pattern exhibits symmetry along the x-axis,
and the displacement components also mirror this symmetry.
The displacement in the x-direction is the most significant,
whereas the y-direction shows the least. The sound pressure on
the sphere’s surface diminishes as we move in the negative x-
axis direction, whereas the x-direction displacement component
increases progressively.
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FIGURE 16
Sound pressure in terms of frequencies with different seabed
reflection coefficient for the fish model: frequency steps of 10 Hz. (A)
Real part. (B) Imaginary part. (C) Sound pressure.

Figure 10 displays the sound pressure of the spheremodel across
various frequencies with β = 0. Figures 10A–C depict the real part,
imaginary part, and magnitude of the sound pressure, respectively.
From the figure, it can be seen that when the frequency is within the
range of [0.140]Hz, the analytical solution and numerical solution
of the sound pressure on the surface of the sphere model match
very well, and the sound pressure changes are very small. When the
frequency iswithin the range of [160,200]Hz, the numerical solution
still matches well with the analytical solution, but the sound pressure
begins to change dramatically. This phenomenon further validates
the reliability of the algorithm presented in this paper and shows
that sound scattering is frequency-dependent.

Figure 11 shows the sound pressure of the sphere model at
different frequencies when β = 0, β = − 1, and β = 1. From the figure,
it can be seen that the sound pressure curves for β = 0, β = −1, and
β = 1 are distinct, indicating that the impact of seabed reflection on
the structural acoustic coupling system response in shallow water
environments cannot be ignored. It is noteworthy that the sound
pressure curves for β = 1 and β = −1 are roughly distributed on
either side of the sound pressure curve for β = 0, and the two curves
are essentially symmetric about the sound pressure curve for β =
0. This phenomenon indicates that the effects of rigid and flexible
seabeds on sound waves are opposite.

Figure 12 illustrates the sound pressure of the sphere model at
various distances from the seabed, where ̃r denotes the distance

from the model’s center to the seabed. It can be observed from the
figure that when the frequency is less than 60Hz, the sound pressure
curves for different ̃r are very close to each other; when the frequency
exceeds 60Hz, the differences between the sound pressure curves for
different ̃r gradually increase. This phenomenon confirms that the
effect of ground reflection is frequency-dependent.

4.2 Acoustic scattering by a fish model

This section analyzes the acoustic field scattering by a fish
model under the action of incident plane waves, taking into account
the reflection effects of the seabed, as shown in Figure 13. This
subsection calculates the sound pressure and displacement under
incident plane waves at different frequencies. The incident plane
waves propagate along the positive x-axis with a unit amplitude and
are scattered by the underwater model.

Using Catmull-Clark subdivision surfaces, two fish models with
54,216 and 222 mesh points were constructed. Figure 14 illustrates
the sound pressure curves as a function of frequency for the
fish models with 54,216 and 222 mesh points, respectively. The
computation times for a single frequency were 483 s and 1,016 s for
each model. As shown in the figure, the differences in the sound
pressure curves between the twomesh densities areminor, with only
slight fluctuations that are acceptable considering the significant
disparity in computation times. Therefore, this study selects the fish
modelwith 54,216 mesh points to optimize computational efficiency
while maintaining acceptable accuracy.

When analyzing the acoustic scattering of the fish model,
we found that the computation time for the traditional Catmull-
Clark subdivision surfaces coupled with the FEM-BEM method
was 5,143 s, whereas the computation time for the Catmull-Clark
subdivision surfaces accelerated by FMM and coupled with the
FEM-BEMmethod was only 483 s.

Figure 15 shows the distribution of displacement and sound
pressure for the fish model at a distance of 0.5 m from the seabed.
As shown in the figure, the sound pressure and displacement
distributions are symmetric along the x-axis.Themagnitude order of
the various displacement components of the fish model at different
frequencies is not the same. For instance, at a frequency of 1,000 Hz,
the displacement component in the x-direction is the largest, and
the displacement component in the z-direction is the smallest; at
a frequency of 3,000 Hz, the displacement component in the z-
direction is the largest, and the displacement component in the
y-direction is the smallest.

Figure 16 displays the sound pressure of the fish model at
different frequencies for β = 0, β = −1, and β = 1, with a frequency
range of [03,000]Hz and a frequency step of 10 Hz. As shown in the
figure, the sound pressure on the surface of the fishmodel varies with
β. When the frequency is within the range of [0.600]Hz, the sound
pressure curves for β = 0, β = −1, and β = 1 match very closely.
However, when the frequency exceeds 600Hz, differences begin to
emerge among them. This phenomenon once again confirms that
the seabed reflection effect is frequency-dependent, not only for
spherical models but also for complex models, and it also validates
the necessity of considering the seabed reflection effect.

Figure 17 illustrates the sound pressure of the fish model at
various distances from the seabed. It can be observed from the
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FIGURE 17
Sound pressure in terms of frequencies with different distances from the seabed for the fish model. (A) β = −1. (B) β = 1.

figure that as the distance from the seabed increases, the sound
pressure curve gradually alignswith the sound pressure curve for β =
0. This phenomenon indicates that in shallow sea areas, the seabed
reflection effect must be taken into account, while in deep sea areas,
the seabed reflection effect can be selectively considered based on
needs. This phenomenon is related to the nature of the seabed.

5 Conclusion

Thispaper presents anovel algorithm for analyzing the interaction
between sound wave propagation and the vibration of underwater
thin-shell structures, taking into account the effects of seabed
reflection. We couple FEM with BEM to solve for shell vibrations
and sound wave propagation in an infinite domain. To consider the
effectsof seabedreflection, theBEMemploysahalf-space fundamental
solution approach. Within the isogeometric framework, geometric
modeling is conducted using Catmull-Clark subdivision surfaces,
and the same basis functions used for geometric modeling are
applied to discretize the physical fields of the coupled FEM/BEM
system.Theuseof isogeometricanalysismaintainsgeometricaccuracy,
reduces meshing efforts, and produces high-order continuous fields,
enabling the application of Kirchhoff-Love shell theory. Additionally,
FMM is formulated to accelerate vibro-acoustic simulations. The
precision of this algorithm is demonstrated through numerical
examples.This study also has certain limitations. The current model’s
assumption of linear elastic material properties, while suitable for
small deformations and stresses, does not capture nonlinear behaviors
under extreme conditions.The absence of fluid-structure interactions
(FSI) in the present model may overlook critical phenomena such
as damping and dynamic loading from fluid flows. Furthermore, the
simplified treatmentof seabed topographieswithpredefinedreflection
coefficients β limits themodel’s applicability to real-world scenarios.In
the future, incorporating nonlinear material models, fluid-structure
interaction modeling, and the uncertainty of seabed reflection
coefficients into the model will ensure that the proposed algorithm
not only maintains high computational efficiency but also delivers
accurate and reliable results in complex vibration-acoustic analyses.
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