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SGI-YOLOv9: an effective
method for crucial components
detection in the power
distribution network

Mianfang Yang, Bojian Chen*, Chenxiang Lin, Wenxu Yao and
Yangdi Li

State Grid Fujian Electric Power Research Institute, FuZhou, China

The detection of crucial components in the power distribution network is of
great significance for ensuring the safe operation of the power grid. However,
the challenges posed by complex environmental backgrounds and the difficulty
of detecting small objects remain key obstacles for current technologies.
Therefore, this paper proposes a detection method for crucial components
in the power distribution network based on an improved YOLOv9 model,
referred to as SGI-YOLOv9. This method effectively reduces the loss of fine-
grained features and improves the accuracy of small objects detection by
introducing the SPDConv++ downsampling module. Additionally, a global
context fusion module is designed to model global information using a self-
attention mechanism in both spatial and channel dimensions, significantly
enhancing the detection robustness in complex backgrounds. Furthermore, this
paper proposes the Inner-PIoU loss function, which combines the advantages of
Powerful-IoU and Inner-IoU to improve the convergence speed and regression
accuracy of bounding boxes. To verify the effectiveness of SGI-YOLOv9,
extensive experiments are conducted on the CPDN dataset and the PASCAL
VOC 2007 dataset. The experimental results demonstrate that SGI-YOLOv9
achieves a significant improvement in accuracy for small object detection
tasks, with an mAP@50 of 79.1% on the CPDN dataset, representing an
increase of 3.9% compared to the original YOLOv9. Furthermore, it achieves an
mAP@50 of 63.3% on the PASCAL VOC 2007 dataset, outperforming the original
YOLOv9 by 1.6%.
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1 Introduction

With the continuous growth in electricity demand and the ongoing expansion
of the power grid, the stability and reliability of the power distribution network,
as a critical hub in the power system, have become increasingly important. The
primary function of the power distribution network is to transmit electrical energy
from high-voltage transmission networks to low-voltage consumer networks, and
its reliability directly impacts the quality and safety of electricity supply to users.
Crucial components of the power distribution network include insulators, arresters,
transformers, and Cut-out Switches (COS), which must withstand harsh weather
conditions, high mechanical stress, and extreme voltage, making them prone
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to damage [1]. Therefore, the detection and monitoring of these
crucial components have become a central focus in the maintenance
and management of the power distribution network.

The power distribution network cover vast areas, with numerous
and complexly distributed equipment, making traditional manual
inspection methods insufficient to meet the operational and
maintenance demands of modern power grids. Manual inspections
are not only labor-intensive and inefficient, but they are also
susceptible to geographical constraints, resulting in risks of omission
and false detections.With the rapid advancement of computer vision
technology, image detection has gradually replaced traditional
manual inspections as a non-contact detection method [2]. This
technology enables comprehensive, multi-angle, and high-precision
inspection of crucial components in the power distribution
network, significantly enhancing the intelligence and automation of
component monitoring.

In the early stages of image detection, traditional methods
primarily relied on handcraft feature extraction, including
characteristics such as shape, color, and texture, combined
with machine learning algorithms for recognition. Murthy V S
et al.utilized a combination of Support Vector Machine (SVM) and
Multiresolution Analysis (MRA) to detect defects in transmission
line insulators, where MRA was used to capture insulator images,
and SVM was applied to detect their condition. Hao J et.at applied
Canny edge detection and directional angle selection to process
insulator images, followed by the Hough transform to extract
linear features of the damaged sections of the insulator. Zhang
K et al. [3] proposed a method based on k-means clustering and
morphological techniques to segment insulator images. Yu Y et al.
[4] introduced a model that uses iterative curve evolution based
on texture features and shape priors to detect insulators, though
this method requires pre-acquisition of shape priors, limiting its
applicability and resulting in slow detection speed. Zhao Z et al. [5]
proposed a method that uses orientation angle detection and binary
shape priors to locate insulators at different angles. However,
traditional methods generally depend on feature extraction and
shallow learning classification, and some even require the support
of prior knowledge. These limitations make it difficult for such
methods to cope with significantly varying complex scenes and
render them vulnerable to noise and background interference,
leading to weak generalization capabilities. As a result, traditional
methods are often suitable only for images with simple backgrounds
or large objects.

Deep learning-based object detection techniques, on the
other hand, offer promising new possibilities for identifying key
components. Architectures like Convolutional Neural Networks
(CNNs) are capable of automatically extracting image features
through multiple layers, which greatly enhances detection accuracy
and efficiency [6–8]. By leveraging training on large-scale datasets,
these models can perform consistently across a range of complex
scenarios, minimizing the need for manual intervention and
reducing the risk of misjudgment. This improvement bolsters the
reliability and safety of power systems, providing robust technical
support for the advancement of smart grid technologies.

Deep learning-based object detection research can be generally
categorized into two main approaches. The first approach includes
two-stage detection models like R-CNN [9], Faster R-CNN [10],
andMask R-CNN [11], which use a region proposal network (RPN)

to generate candidate object regions, followed by classification and
regression to enhance detection accuracy. Such models are typically
characterized by complex architectures and high detection accuracy
but relatively slow processing speed. Zhao Z et al. [12] improved
the anchor generation method of the Faster R-CNN model and
optimized the non-maximum suppression (NMS) in the RPN,
achieving improved insulator detection, particularly for insulators
with varying aspect ratios, scales, and occlusions. However, the
dataset utilized by this network contains almost no images of
vertically oriented insulator strings. As a result, this method is
incapable of detecting missing faults in images that include such
types of insulator strings. Odo A et al. [13] utilized Mask R-
CNN and RetinaNet to detect insulators and U-bolts on each
tower. Dong C et al. [14] introduced an enhanced Cascade R-
CNN that integrates Swin-v2 with a balanced feature pyramid to
strengthen feature representation, while also incorporating side-
aware boundary localization for greater precision in detecting small
components in power transmission lines.

Another prominent category of algorithms comprises single-
stage object detection models, such as the YOLO (You Only Look
Once) series [15–21] and SSD [22]. These models bypass the need
for region proposal networks, allowing them to directly execute
classification and regression tasks following feature extraction by
the backbone network [23]. This approach significantly reduces
both training and inference time, enhancing efficiency. In practical
engineering applications, due to the limitations of computational
resources on devices, single-stage object detection algorithms are
often preferred. Qi C et al. [24] enhanced the SSD model by
using the lightweight SqueezeNet architecture and adding multiple
convolutional layers and connection branches, thus improving
feature extraction and enabling the detection of five types of
electrical equipment in substations. Siddiqui et al. [25] developed
an automated real-time system for detecting electrical equipment
and analyzing faults, employing a CNN-based framework to identify
insulators, arresters, and COS across different materials in complex
settings. However, this method operates in a simplified environment
with a single detection background and lacks interference from
complex backgrounds. Liu Z et al. [26] created a large-scale
dataset for transmission line component detection and optimized
YOLOv4 by adding a prediction layer and refining the selection of
positive and negative samples during training, thereby enhancing
small object detection. Qiu Z et al. [27] preprocessed insulator
images using the Laplacian sharpening method and improved
the YOLOv4 model structure by incorporating the lightweight
MobileNet convolutional neural network. However, its detection
performance on blurry and small objects was suboptimal. Liu M
et al. [28] improved YOLOv5 by incorporating diversified branch
blocks (DBB), efficient channel attention (ECA), and an upgraded
spatial pyramid pooling (SPP) module, with TensorRT utilized for
accelerated edge detection of critical components. Liu C et al. [29]
integrated a CBAMmixed attention module and Swin Transformer
self-attention into YOLOv7, along with adding a dedicated small
object detection layer to better identify small transmission line
components. Chen B et al. [30] introduced innovative methods,
including the Edge Detailed Shape Data Augmentation (EDSDA)
and the Cross-Channel and Spatial Multi-Scale Attention (CCSMA)
module, which enhanced the detection capability of insulator edge
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shapes and defect features. Additionally, the design of the Re-
BiC module and the MPDIoU localization loss function optimized
feature fusion and computational efficiency, leading to significant
improvements in detection accuracy and speed. He M et al. [31]
introduced an improved YOLOv8 model for detecting insulators
and fault areas, using GhostNet and an asymmetric convolution-
based feature extraction module to enhance recognition in complex
environments, while the ResPANet module fused high-resolution
feature maps with residual skip connections to mitigate information
loss in small feature layers. However, this method fails to effectively
extract the features of subtle defects, resulting in poor detection
performance for small target defects.

In practical applications, the small size of most key components
in the power distribution network, along with the cluttered
backgrounds, makes their detection particularly challenging. This
poses significant difficulties for traditional detectionmodels, driving
researchers to focus on small object detection techniques to improve
both accuracy and reliability. Developing more robust and effective
methods for identifying these components in complex environments
remains a critical research challenge in the field. Zhu Z et al.
[32] proposed a small object detection network with a multi-
level perception parallel structure. This network addressed the
issues of lacking global representation information and the dense
distribution of small objects through a global multi-level perception
module and a dynamic region aggregation module, respectively.
Qi G et al. [33] introduced an improved YOLOv5 algorithm,
which utilized an Adaptive Spatial Parallel Convolution module
(ASPConv) to extract multi-scale local context information of small
objects. Additionally, to enhance the detection performance of small
objects, it employed nearest-neighbor interpolation and sub-pixel
convolution algorithms to construct high-resolution feature maps
with rich semantic features. Li Y et al. [34] presented a feature
fusion module (CGAL) based on both global and local attention
mechanisms and designed a decoupled detection framework
featuring a four-head structure, thereby enabling efficient detection
of small objects. Zhang T et al. [35] optimized the backbone
of YOLOv5 by incorporating a Convolutional Block Attention
Module (CBAM) to focus on key information for insulator
and defect detection while suppressing non-essential information.
Additionally, small object detection anchors and layers were added
to improve the detection of small defects.

Although the aforementioned studies have made significant
progress in object detection, most of the research has primarily
focused on detecting high-voltage transmission lines using UAV
aerial images, where the targets are relatively large and the
backgrounds are comparatively simple. However, compared to high-
voltage transmission lines, the detection of key components in
the power distribution network presents more complex challenges.
Power distribution networks are typically deployed in areas with
dense human activity and diverse geographical and environmental
conditions, making them prone to obstructions from trees,
buildings, and other structures. Moreover, the components within
the power distribution network are generally smaller, more
densely distributed, and often have similar appearances, further
complicating the detection task. Existing algorithms still struggle
with handling the complex backgrounds typical of distribution
network scenarios, and they fail to effectively address the issue of
information loss for small components during the process of deep

feature extraction, which significantly impairs detection accuracy.
Therefore, there is an urgent need for more advanced methods that
can overcome these challenges and improve detection performance
in such complex environments.

To address the challenges of detecting crucial components in the
power distribution network, we propose an innovative algorithm,
SGI-YOLOv9. The main contributions of this paper are as follows.

• Wepropose the SPD++Conv downsamplingmodule to replace
the original downsampling module in the YOLOv9 backbone,
effectively reducing the loss of fine-grained features. This
allows the output feature maps of the backbone to retain more
detailed information, significantly improving the detection
accuracy of small objects.
• A Global Context Fusion module is proposed, leveraging
the ability of the self-attention mechanism to capture global
information. It models global context from both spatial
and channel dimensions of the feature maps. This module
effectively integrates global contextual features, enabling our
method to perform more robustly in challenging scenarios
such as complex backgrounds and occlusions.
• We propose the Inner-PIoU loss function, which combines
the advantages of Powerful-IoU and Inner-IoU. By introducing
scalable auxiliary bounding boxes, this method effectively
addresses the slow convergence and limited generalization
capabilities of traditional IoU loss function in small object
detection.

2 Materials and methods

2.1 Dataset preparation and analysis

The dataset used in this study is provided by a private user
on the Roboflow platform and has been named the Components
of Power Distribution Network (CPDN) [36]. It contains 3,383
images and 25,185 instances, with each image having a resolution of
640× 640. The dataset includes common crucial components in the
power distribution network, such as arresters, COS, insulators, and
transformers, as shown in Figure 1. It can be observed that, except
for transformers, the other components contain repeating circular
structures called sheds, which vary in material, number, and size.
The similarity in shed structures among these components increases
the difficulty of classification.

Figure 2 presents image samples from the CPDN dataset in
various environments, with each crucial component marked with
different colored boxes, illustrating their distribution and position
within the power distribution network. It is evident that the
backgrounds in the power distribution network images are highly
complex, covering diverse scenes such as urban streets, residential
areas, and green spaces. Due to the influence of different angles in
capturing images, components in these scenes are often obscured
by various objects, and there is significant overlap of targets.
Additionally, it is clear from the images that the components
occupy a relatively small portion of the overall frame, with targets
often blending into the background or multiple components being
closely arranged. These factors pose considerable challenges for
detection algorithms. The small visual differences between similar
components further increase the risk of misclassification.
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FIGURE 1
Illustration of crucial components in the power distribution network. (A) Arrester; (B) COS: Cut-out Switches; (C) Insulator (A) short polymer insulator;
(D) Insulator (B) long polymer insulator; (E) Insulator (C) short porcelain insulator; (F) Insulator (D) long porcelain insulator; (G) Transformer.

FIGURE 2
Annotated examples of crucial components in the CPDN dataset.
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In theCPDNdataset, the InsulatorC andTransformer categories
account for 7.7% and 7.2% of all instances, respectively, posing
challenges related to class imbalance and small object detection.
During training process, the model often assigns more weight to
categories with a larger number of samples, which can lead to
overfitting and reduce its ability to generalize to new datasets.
To address this issue, we apply data augmentation techniques to
mitigate the problemof class imbalance. Specifically, we usemethods
such as affine transformations, random noise, color jittering, and
brightness adjustments [26] to generate diverse training samples.
The augmented dataset is split into training, validation, and test sets
with a 7:2:1 ratio.

2.2 Proposed method

In this study, we select YOLOv9 as the baseline model due
to its various advantages. YOLOv9 introduces YOLOv9 introduces
Programmable Gradient Information (PGI) in its architecture,
which generates reliable gradient information through auxiliary
reversible branches, solving the information bottleneck problem
in deep network training and allowing the network to update
weights more effectively. Meanwhile, a Generalized Efficient Layer
Aggregation Network (GELAN) is proposed, which is based on
gradient path planning and balances accuracy and inference speed.

However, in real-world transmission line applications, detecting
crucial components presents multiple challenges. First, crucial
components such as insulators are typically small objects, which
places high demands on the model’s ability to extract fine-grained
features. Second, the background of transmission lines is highly
complex, with many interfering factors, and the components are
often occluded by other objects. As a result, YOLOv9 tends to have a
higher rate ofmissed and false detections in these complex scenarios,
particularly when detecting small objects and occluded objects. To
address these issues, this study will improve YOLOv9 by enhancing
feature extraction, contextual information utilization, and model
training to improve the detection accuracy of small targets and
enhance their robustness in occluded scenes, in order to achieve
high-precision detection of crucial components.

2.2.1 Overview of SGI-YOLOv9 network
In this study, we propose an improved YOLOv9 method by

optimizing two core modules in the original YOLOv9s model
architecture. First, in the deep downsampling part of the backbone
network, we design an SPDConv++ module to replace the original
convolutional module. SPDConv++ spatially decomposes and
reconstructs the input features, significantly reducing the loss of
fine-grained feature information during downsampling and thereby
improving the accuracy of small object detection. Second, in the
neck part, we introduce a Global Context Fusion Module (GCFM),
which combines spatial and channel self-attention mechanisms to
model global contextual information. The GCF module effectively
captures long-range contextual dependencies, enhancing robustness
and detection accuracy in complex backgrounds and occluded
scenarios. Additionally, during the training phase, we propose the
Inner-PIoU loss function to improve convergence. The rest of
the network structure and strategies remain consistent with the
original YOLOv9s.

Based on the aforementioned improvements, we
developed the final SGI-YOLOv9 algorithm, with the overall
architecture shown in Figure 3. The following sections will provide
a detailed explanation of the SGI-YOLOv9 method proposed in
this paper.

2.2.2 SPDConv++ moule
Small objects inherently possess limited feature information,

making it essential to minimize information loss during feature
extraction to maintain detection accuracy. In the original YOLOv9
architecture, a convolutional module with a stride of 2 is
employed for downsampling, which inevitably results in the
loss of fine-grained features, thereby impairing small object
detection. To address this limitation and improve the model’s small
object detection capability, inspired by SPD-Conv (space-to-depth
convolution) [37], we propose the SPD++ convolutional module, as
illustrated in Figure 4. Specifically, for the input feature Xwith a size
ofM×M×C, we first sample and split it into four sub-features: X1,
X2, X3 and X4, defined as shown in Equations (1)–(4).

X1 = X [0 :M : 2,0 :M : 2] (1)

X2 = X [1 :M : 2,0 :M : 2] (2)

X3 = X [0 :M : 2,1 :M : 2] (3)

X4 = X [1 :M : 2,1 :M : 2] (4)

The sub-features X1, X2, X3 and X4 are concatenated along
the channel dimension to form X′, with dimensions M

2
× M

2
× 4C.

At this stage, the spatial resolution of the features is half that of
the input, and the number of channels is four times the input.
As shown in Figure 4, the feature vectors sampled into the same
sub-feature map in the input X are labeled with the same color to
provide a more intuitive visualization. This demonstrates that the
process of transforming X into four sub-features does not result
in any feature loss, while the sub-features effectively preserve the
spatial structural relationships of the original input, enabling the
successful downsampling of input features without compromising
information integrity. However, the concatenated sub-features have
a channel count four times greater than that of the original input,
inevitably introducing channel redundancy. The original SPD-
Conv module employs a 1× 1 convolutional layer to compress the
channel dimensions to match the input, but directly applying 1× 1
convolutions significantly impacts the output due to the presence
of redundant information, resulting in feature loss. To address
this limitation, we propose the SPD++ convolutional module,
which incorporates a channel attention mechanism to emphasize
important channels and suppress redundant ones. Following the
channel attention module, a 1× 1 convolution is applied to adjust
the number of channels to match the input, effectively mitigating
the adverse effects of channel redundancy.

The channel attention module begins by performing global
max pooling and global average pooling on the input featuremap. By
using a three-layer fully connected feedforward network to interact
with different channels, a set of attention weights can be learned that
can suppress redundant channels and highlight important channels.
After the three-layer network, the resulting pooled vectors are then
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FIGURE 3
Overview of the SGI-YOLOv9 network.

processed by a three-layer fully connected feedforward network.
The outputs from both pooling operations are combined through
element-wise addition, followed by the application of a sigmoid
activation function to generate the channel attention weights. These
weights are subsequently used to reweight the input features along
the channel dimension, enhancing themodel’s ability to focus on the
most informative channels.

In the entire SPDConv++ module, we do not use convolutions
with a stride greater than 1, ensuring that downsampling is
performed with minimal loss of fine-grained feature information.
Compared to the original SPD convolution, we introduce a
channel attention mechanism to the concatenated sub-features to
highlight the more discriminative channels. Since the number of
channels in the concatenated sub-features is significantly higher
than that of the original input features, some redundant features are
inevitable. Therefore, incorporating a channel attention mechanism

is essential to effectively reduce redundancy and enhance themodel’s
discriminative capability.

2.2.3 Global context fusion
Contextual information is important for detecting small and

occluded objects; however, traditional convolutional network
architectures lack the ability to effectively integrate global contextual
features. In recent years, self-attention mechanisms, due to their
ability to establish long-range dependencies, have been widely
used in visual tasks to fuse global contextual information [38, 39].
However, traditional visual self-attention mechanisms only perform
computations in the spatial dimension, neglecting the modeling of
information in the channel dimension. Tomore fully integrate global
contextual information and further improve detection accuracy,
this paper proposes a Global Context Fusion module. This module
includes both spatial self-attention and channel self-attention
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FIGURE 4
The SPDConv++ module.

mechanisms, which model global information from the spatial
and channel dimensions, respectively, as shown in Figure 5A. The
outputs of the spatial self-attention module and the channel self-
attention module are concatenated along the channel dimension,
and finally passed through a 1× 1 convolutional layer to ensure that
the number of output channels is the same as the input.

Specifically, as shown in Figure 5B, in the spatial self-
attention module, for the input feature X, three parallel 1× 1
convolutions are first applied to generate the query matrix Q,
key matrix K, and value matrix V. Then, a Reshape operation
is used to adjust their dimensions, such that Q ∈ RHW×C, K ∈
RHW×C and V ∈ RHW×C.Subsequently, calculations are performed
according to Equation (5), where d denotes the length of each
feature vector in Q and K. Each feature vector in the Q, K, and
Vmatrices corresponds to a patch of the input image. By computing
the product of the Q matrix and KT, the relationships between
each patch and all other patches in the image are captured. These
relationships are quantified as attention weights, ranging from 0 to
1, using the softmax function. The resulting weight matrix is then
multiplied with the V matrix to generate a weighted output matrix.
In this process, each feature vector in the output matrix is computed
based on the connections of all patches in the image, thereby
capturing global contextual information. After the computation,
another Reshape operation is applied to adjust the result to match
the dimensions of the input features. Finally, a 1× 1 convolution is
applied, and the result is element-wise added to the original input
X.

A (Q,K,V) = So ftMax[QK
T

√d
]V (5)

Additionally, The spatial self-attention module uses tokens
corresponding to different spatial positions in the feature map as
computing units to obtain contextual information from the spatial

dimension, but ignores information modeling from the channel
dimension. In deep networks, the feature maps of different channels
focus on expressing different feature information, so it is equally
important to fuse global contextual information from the channel
dimension.Therefore, in the channel self-attentionmodule designed
in this paper, we treat each channel as an independent token for
self-attention mechanism calculation. As shown in Figure 5C, in the
channel self-attention module, each channel of the input feature X
is treated as an independent token. Therefore, in this module, after
applying the Reshape operation to Q, K, and V, Q ∈ RC×HW, K ∈
RC×HW and V ∈ RC×HW are obtained. The subsequent computation
process is the same as in the spatial self-attention module.

2.2.4 Inner-PIoU
Intersection over Union (IoU) is a fundamental metric for

assessing the performance of object detection systems. In these tasks,
IoU quantifies the overlap between the predicted bounding box
and the ground truth box, specifically calculating the ratio of the
intersection area to the union area of these boxes. An effectively
designed IoU-based loss function promotes better alignment of the
predicted bounding box with the ground truth, thereby enhancing
model convergence speed. In YOLOv9, the Complete Intersection
over Union (CIoU) metric is utilized, which considers not only
the overlapping area but also the distance between the center
points and the aspect ratio of the boxes [40]. However, CIoU has
limitations; it does not fully account for shape differences and
variations between anchor boxes and ground truth boxes, potentially
leading to undesirable convergence behavior [41]. Furthermore,
in scenarios where the anchor box and the ground truth box do
not overlap, merely increasing the size of the anchor box can lead
to a reduction in CIoU loss, which is an unreasonable outcome.
Consequently, during model training, CIoU may fail to adequately
represent the differences between bounding boxes, resulting in
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FIGURE 5
The global context fusion module.

decreased model generalization and slower convergence rates. To
address this limitation and improve detection accuracy, this study
introduces Powerful-IoU (PIoU) for optimization [42]. The loss
function for PIOU is defined as shown in Equations 6, 7.

P = (
wgt
p

wgt
+
wp

wgt
+
hgtp
hgt
+
hp
hgt
)/4 (6)

LPIoU = LIoU + 1− e−P
2

(7)

In this equation, wgt
p , wp, h

gt
p , hp epresent the absolute distances

between the edges of the anchor box and the target box,whilewgt and
hgt note the width and height of the target box, as shown in Figure 6.
PIoU incorporates a penalty factor that utilizes the size of the target
box as the denominator, along with a function that adjusts based on
the quality of the anchor box. This approach effectively directs the
anchor box to regress along a more efficient trajectory, leading to
accelerated model convergence and enhanced detection accuracy.

Although the new loss term in PIOU contributes to accelerating
model convergence, it has inherent limitations in adapting to
different types of detectors and detection tasks. To address these
issues, we introduce Inner-IOU to mitigate the common problems

of weak and slow convergence in various detection tasks. Inner-
IOU, by utilizing additional scalable bounding boxes, effectively
overcomes the shortcomings in generalization ability of existing
methods, thereby enhancing the overall model performance [43].
The parameters and operational mechanism are shown in Figure 9.
The calculation method for Inner-IOU is as shown in Equation 8.

IoUInner = inter
union

(8)

The calculation methods for inter and union are as shown in
Equations 9, 10.

inter = (min(bgtr ,br) −max(bgtl ,bl)) ∗ (min(bgtb ,bb) −max(bgtt ,bt))
(9)

union = (wgt ∗ hgt) ∗ (ratio)2 + (w∗ h) ∗ (ratio)2 − inter (10)

The definitions of bgtr , br, b
gt
l , bl, b

gt
b , bb, b

gt
t and bt as shown in

Equations 11–14.

bgtl = x
gt
c −

wgt ∗ ratio
2
,bgtr = x

gt
c +

wgt ∗ ratio
2

(11)
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FIGURE 6
Factors of Inner-PIOU.

FIGURE 7
The box loss curves of SGI-YOLOv9 and original YOLOv9 models.

bgtt = y
gt
c −

hgt ∗ ratio
2
,bgtb = y

gt
c +

hgt ∗ ratio
2

(12)

bl = xc −
w∗ ratio

2
,br = xc +

w∗ ratio
2

(13)

bt = yc −
h∗ ratio

2
,bb = yc +

h∗ ratio
2

(14)

The center point of the anchor box is (xc,yc), with its width and
height denoted asw, andh, respectively.The center point of the target
box is (xgtc ,y

gt
c ), with its width and height represented by wgt and

hgt. The ratio is the scaling factor, typically ranging from 0.5 to 1.5.
When the is less than 1, the auxiliary bounding box is smaller than
the actual bounding box, narrowing the effective regression range,
but the absolute value of its gradient is larger than that obtained
from IoU loss. Conversely, when the ratio s greater than 1, the
enlarged auxiliary bounding box expands the effective regression

range, benefiting regression in cases of low IoU. Finally, we propose
a novel computation method called Inner-PIoU, which combines
the advantages of Powerful-IoU and Inner-IoU, fully accounting
for the differences between bounding boxes. This method not only
enhances the model’s generalization ability and improves detection
accuracy for small objects, but also reduces unexpected convergence
behaviors. The formula for Inner-PIoU is shown in Equation 15.

LInner−PIoU = LPIoU + IoU− IoU
Inner (15)

3 Experimental results

To evaluate the efficacy of the proposed SGI-YOLOv9 method,
we performed training and testing using the CPDNdataset as well as
the PASCAL VOC 2007 dataset, followed by a comparative analysis
against other state-of-the-art object detection models. This chapter
offers a comprehensive overview of the experimental procedures and
implementation details.

3.1 Implementation details

3.1.1 Experimental environment
All experiments were conducted under a consistent

computational environment. The system specifications used in our
experiments are as follows: a 15-core Intel(R) Xeon(R) Platinum
8358P CPU operating at 2.60 GHz, and an NVIDIA GeForce RTX
3090GPU.The system ran onUbuntu 20.04with PyTorch 1.11.0 and
CUDA 11.3. The memory capacity was 24 GB, and Python version
3.8 was employed throughout the experiments.

3.1.2 Training and evaluation metric
3.1.2.1 Training

During themodel training phase, we configured themomentum
parameter to 0.9 and set the weight decay coefficient to 5e-4,
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FIGURE 8
Visualization results of the feature maps.

FIGURE 9
XGrad-CAM heatmap of YOLOv9 and SGI-YOLOv9.

employing stochastic gradient descent (SGD) as the optimization
algorithm. The batch size was consistently maintained at 32, with
a total of 200 training epochs and an initial learning rate of 0.01.
Additionally, auxiliary training strategies were implemented during
training; however, these strategies were not applied during the
inference phase.

3.1.2.2 Evaluation Metric
This paper employs commonly used evaluation metrics in the

field of object detection, including precision (P), recall (R), and
mean average precision (mAP). These metrics are used to assess
the effectiveness and accuracy of component detection in the
power distribution network. Higher values indicate better model
performance.The calculation of these metrics involves the following
parameters: TP (true positives, where the prediction is positive
and the actual label is also positive), FP (false positives, where the
prediction is positive but the actual label is negative), and FN (false
negatives, where the prediction is negative but the actual label is
positive).

In object detection tasks, precision measures the degree of
false positives produced by the algorithm. A higher precision
indicates fewer false detections. The calculation formula
is shown in Equation (16):

Precision = TP
TP+ FP

(16)

In object detection tasks, recall measures the degree of missed
detections by the algorithm. A higher recall indicates fewer missed
detections. The calculation formula is shown in Equation (17):

Recall = TP
TP+ FN

(17)

The evaluation of an object detection algorithm’s performance
should encompass both precision and recall metrics. By varying
the confidence thresholds, corresponding precision and recall values
can be derived, which are subsequently plotted to create a Precision-
Recall (PR) curve, with precision represented on the vertical axis
and recall on the horizontal axis. The area enclosed by the PR curve
and the coordinate axes indicates the Average Precision (AP). If we
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TABLE 1 Experimental results for different ratios in Inner-PIoU.

Method Precision (%) Recall (%) mAP@50 (%) mAP50-95 (%)

CIoU 80.6 70.1 75.2 45.0

Inner-PIOU (ratio = 0.9) 81.5 69.5 75.9 45.5

Inner-PIOU (ratio = 1.0) 81.1 69.6 75.8 45.5

Inner-PIOU (ratio = 1.1) 82.4 70.5 76.4 46.5

Inner-PIOU (ratio = 1.2) 82.2 69.7 76.1 45.9

denote the function associated with this curve as p(r), the formula
for AP is presented in Equation (18):

AP = ∫
1

0
p (r)dr (18)

Mean Average Precision (mAP) is calculated by determining the
AP values for all target categories and then computing their average.
The formula for mAP is provided in Equation (19):

mAP =
N

∑
n=1

AP (n)/N (19)

3.2 Ablation study

To determine the optimal ratio parameter for Inner-PIoU in
detecting crucial components in the CPDN dataset, we conduct a
series of experiments and compare the results with the CIoU used
in original YOLOv9, as shown in Table 1. When the ratio is set to
1.0, indicating no auxiliary bounding box and only using Powerful-
IoU, the results show a 0.6% increase in mAP@50, validating the
effectiveness of Powerful-IoU in detecting crucial components in
the power distribution network. When the ratio is set to 0.9, which
introduces a smaller auxiliary bounding box, there is no significant
improvement in mAP@50 compared to the ratio of 1.0. However,
when the ratio exceeds 1.0, indicating the use of a larger auxiliary
bounding box, the performance improves. Specifically, with ratio
values of 1.1 and 1.2, mAP@50 increases by 0.6% and 0.3%,
respectively, compared to a ratio of 1.0. Since most components in
the CPDN dataset are considered small objects, further experiments
demonstrate that when the ratio exceeds 1.0, the convergence of
the model training for small object detection improves significantly.
Consequently, this leads to a notable enhancement in detection
accuracy. Therefore, we select a ratio of 1.1 for Inner-PIoU as
the optimal parameter and use it as the default in subsequent
experiments.

We further analyze and compare the box loss of the improved
YOLOv9 with the original YOLOv9, as shown in Figure 7. The
curve shows that the loss for the improved YOLOv9 is significantly
lower than that of the original YOLOv9 during the initial
training phase, indicating that the improved YOLOv9 adapts to
the data more quickly. As the training epochs progress, both
models exhibit a rapid decline in loss, but the improved YOLOv9
demonstrates a much faster decrease. This indicates that the

improved YOLOv9 learns the positions of bounding boxes more
efficiently and reduces the deviation between the predicted and
actual boxes more effectively. After both models converge, the
loss for the SGI-YOLOv9 consistently remains lower than that
of the original YOLOv9. These findings confirm that the SGI-
YOLOv9, with the incorporation of Inner-PIoU, adapts to the
dataset faster, achieves lower loss values during training, and
converges more quickly.

Next, we conduct ablation experiments on each of the
proposed modules, as shown in Table 2. The results demonstrate
that each module contributes to improving the accuracy of
crucial components recognition in the power distribution network.
Specifically, when the ratio is set to 1.1, Inner-PIoU improves
accuracy by 1.2% on the CPDN test set, while SPDConv++ and
GCFM contribute improvements of 1.6% and 1.1%, respectively.
These findings further validate that the proposed methods enhance
the accuracy of crucial components recognition in the power
distribution network effectively.

As shown in Figure 8, we compare the feature maps extracted
at various stages of the backbone network between the original
YOLOv9 model and the SGI-YOLOv9 model. Through feature
map visualization, it is evident that after introducing the
SPDConv++ method, the improved model exhibits a stronger
response to edge information of crucial components in the
power distribution network. Particularly in the Stage 3, Stage
4, and Stage 5 phases of the backbone network, the SGI-
YOLOv9 model significantly reduces the loss of fine-grained
features, preserving more detailed information. These results
indicate that the SPDConv++ method effectively enhances the
richness of fine-grained features in the backbone network output
feature maps, further validating the effectiveness and robustness
of this method in object detection from the perspective of
feature visualization.

Additionally, we utilize XGrad-CAM [44] to perform a visual
analysis of the attention heatmaps for both the original YOLOv9
and the SGI-YOLOv9 models, as shown in Figure 9. In this figure,
(a) represents the input image, (b) shows the attention heatmap
from the original YOLOv9 model, and (c) displays the attention
heatmap from the SGI-YOLOv9 model. The visualization results
clearly indicate that the SGI-YOLOv9 model significantly improves
its focus on key components of the power transmission lines in
complex backgrounds.This highlights the notable advantage of SGI-
YOLOv9 in enhancing detection accuracy, particularly in complex
scenes involving crucial components of the power distribution
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TABLE 2 Ablation experiments for the SGI-YOLOv9 method.

Method Inner-PIoU SPDConv++ GCFM mAP@50 (%) mAP50-95 (%)

YOLOv9 — — — 75.2 45.0

SGI-YOLOv9

✓ — — 75.2 46.5

✓ ✓ — 78.0 47.7

✓ ✓ ✓ 79.1 48.5

TABLE 3 Comparison results of different models.

Method Precision (%) Recall (%) mAP@50 (%) map50-95 (%)

YOLOv5 [18] 83.7 67.9 72.3 40.0

YOLOv7 [19] 79.4 66.1 71.8 37.7

YOLOv8 [20] 82.1 68.3 74.8 44.0

YOLOv9 [21] 80.6 70.0 75.2 45.0

SGI-YOLOv9 85.2 72.3 79.1 48.5

network, further validating its effectiveness and reliability in
practical applications.

3.3 Compare with state-of-arts on CPDN
dataset

To ensure a fair comparison between our proposed SGI-
YOLOv9 method and other mainstream object detection methods
on the CPDN dataset, we train all models without loading any
pre-trained models. Table 3 presents the comparative experimental
results of SGI-YOLOv9 and other mainstream object detection
methods on the test set. As shown in the table, SGI-YOLOv9
achieves the highest scores across all evaluation metrics on the
CPDN test set, with a mAP@50 of 79.1%, which is a 3.9%
improvement over the original YOLOv9. This demonstrates that
our SGI-YOLOv9method offers a significant advantage in detecting
crucial components within the complex background of the power
distribution network.

To further evaluate the effectiveness of the SGI-YOLOv9
algorithm in detecting different types of components in the
power distribution network, we record the AP@50 for seven
component types in the dataset, as shown in Figure 10. It is
evident that the SGI-YOLOv9 model consistently outperforms the
original YOLOv9 in terms of overall AP@50. Specifically, SGI-
YOLOv9 demonstrates stable performance improvements when
detecting larger components such as COS and Transformers, with
increases of 1.7% and 1.3%, respectively. For smaller components,
such as Arresters and Insulators, the improvements are even
more significant. Notably, SGI-YOLOv9 achieves a 6.1% increase
in AP@50 for Arresters, marking the most substantial gain.
Additionally, the mAP@50 for the four types of Insulators increases

FIGURE 10
Comparison of AP@0.5 for different categories between the original
YOLOv9 and SGI-YOLOv9 on the CPDN dataset.

by 4.58%.These results confirm the significant improvement of SGI-
YOLOv9 in detecting small objects, highlighting its enhanced ability
to focus on and handle small objects in complex scenes.

To comprehensively validate the effectiveness of the proposed
SGI-YOLOv9 method, we compare its visualization results for
crucial components detection with those of other mainstream
object detection algorithms, as shown in Figure 11. It is evident
that YOLOv5, YOLOv7, YOLOv8, and YOLOv9 all exhibit varying
degrees of omission and false detections. This is especially
pronounced when the crucial components are small or occluded,
where other mainstream models demonstrate low confidence in
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FIGURE 11
Results of various methods for crucial components detection in the power distribution network.

their predicted bounding boxes, leading to numerous missed
detections and false positives. In contrast, our SGI-YOLOv9 model
shows higher detection accuracy when handling small and occluded
crucial components. These findings demonstrate that SGI-YOLOv9
is highly effective for crucial component detection tasks in the
complex environments of the power distribution network.

3.4 Compare with state-of-arts on the
PASCAL VOC 2007 dataset

To further validate the effectiveness of the proposed SGI-
YOLOv9 model in object detection tasks, we conducted training
experiments on the PASCAL VOC 2007 dataset and systematically
compared its performance on the test set with several mainstream
object detection algorithms. Notably, all models utilized in the
comparisonwere lightweight versions. As shown in Table 4, the SGI-
YOLOv9 model achieved a significant performance improvement,
attaining a mAP@50 value of 63.3%, which represents a 1.6%
increase compared to the original YOLOv9. Additionally, the
precision improved by 1.4%, and the recall increased by 1.3% over
the original YOLOv9. These results demonstrate that SGI-YOLOv9
not only delivers superior accuracy in insulator defect detection
tasks but also excels in general-purpose object detection tasks.
This highlights the model’s robustness, algorithmic superiority, and
strong generalization capability across diverse application scenarios.

TABLE 4 Experimental Results of Different Models on the PASCAL VOC
2007 dataset.

Precision (%) Recall (%) mAP@50 (%)

Faster-RCNN 34.1 54.7 57.5

Mask-RCNN 33.9 69.1 57.2

YOLOv5 69.4 52.9 60.3

YOLOv7 66.8 52.5 58.3

YOLOv8 68.8 53.0 56.5

YOLOv9 66.7 54.1 61.7

SGI-YOLOv9 68.1 55.4 63.3

4 Conclusion

This paper presents an improved method based on YOLOv9
to address the challenges of small objects detection and complex
scenarios in the detection of crucial components in the power
distribution network. By designing the SPDConv++ module, we
reduce the loss of fine-grained feature information and improve the
accuracy in detecting small objects. Simultaneously, the proposed
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global context fusion module models global information from
both spatial and channel dimensions, effectively handling complex
backgrounds and occlusion issues. Additionally, we optimized the
loss function of IoU in YOLOv9 by proposing the Inner-PIoU
method, which combines the advantages of Powerful-IoU and
Inner-IoU to enhance the regression performance of the bounding
boxes, thereby improving the model’s generalization ability and
detection accuracy for crucial components in the power distribution
network. Experimental results demonstrate the effectiveness of SGI-
YOLOv9, achieving an mAP@50 of 79.1% on the CPDN dataset, an
improvement of 3.9% over the original YOLOv9, and an mAP@50
of 63.3% on the PASCAL VOC 2007 dataset, surpassing YOLOv9
by 1.6%. The proposed method provides effective technical support
for detecting crucial components in the power distribution network
under complex scenarios, contributing to the safety and reliability
of power grid. Future research may focus on further optimizing
the model’s computational efficiency and applying it to more power
system scenarios to promote the development of smart grids.
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